Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supplementary Material for

The role of Tat peptide self-aggregation in membrane pore stabilization: insights from a computational study

Muhammad Jan Akhunzada,^a Balasubramanian Chandramouli,^{a,#} Nicholus Bhattacharjee,^a Sara Macchi^c, Francesco Cardarelli^c, and Giuseppe Brancato^{a,b*}

^a Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126 Pisa, Italy.

^b Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, I-56100 Pisa, Italy

^c NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12 - 56127 Pisa, Italy

[#]Present address: Compunet, Istituto Italiano di Tecnologia (IIT), Via Morego 30, I-16163 Genova, Italy

Corresponding author: E-mail: giuseppe.brancato@sns.it

Content

- 1) Figure S1. Images of Tat_{11} peptide transduction in cells.
- 2) Table S1. List of atoms of TAMRA model reporting atom type and atomic charge.
- 3) Table S2. Molecular dynamics simulation details.
- 4) Figure S2. Figures of Tat₁₁ peptide replica MD simulations.
- 5) Figure S3. Figures of Tat₁₁-TAMRA peptide replica MD simulations.
- 6) Figure S4. Figures of Tat_{11} -TAMRA dimer replica MD simulations.
- 7) Figure S5. Figures of Tat₁₁-TAMRA dimer as extracted from unconstrained and SMD simulations.

Figure S1. Transduction of Tat₁₁ peptide, originating from spatially restricted zones (NZs) on the plasma membrane (white arrows). Time-lapse confocal microscopy at room temperature (with frames recorded every 30 seconds) for a free serum growth medium 15 μ M solution of Tat₁₁-TAMRA administered to CHO-K1 cells. Five frames recorded at 1, 2, 3, 5 and 10 min are shown; transmitted-light channel recorded at 10 min is shown in the last frame. Scale bars: 10 μ m.

Table S1. List of atoms of TAMRA model reporting atom type and atomic charge (i.e., standard

С10 С17 С21-Н23

H24

CHARMM format is adopted).

*>>>> 27 1	•>> CI	HARMM to	opology	file	generated	by	Mole	efactu	re <	<<<<	<	
DEFA	LAST	NONE										
AUTO	ANGL	ES DIHE										
RESI	TMR	-1.0	00									
GROUP	,											
ATOM	00	0	-0.7981	LO								
ATOM	cc	с	0.7497	70								
ATOM	OXT	0	-0.7981	LO								
ATOM	CA	CT1	-0.1635	50								
ATOM	N	NH1	-0.3821	LO								
ATOM	HN	н	0.2681	LO								
ATOM	HA	HB	0.1396	50								
ATOM	СВ	CT2	-0.1196	50								
ATOM	HB2	HA	0.1437	70								
ATOM	нвз	HA	0.1437	70								
ATOM	s	S	-0.3034	10								
ATOM	CS4	CP1	0.0400	00								
ATOM	CS3	CP2	0.0400	00								
ATOM	CS2	с	0.4500	00								
ATOM	OS2	0	-0.5270	00								
ATOM	HS4	HA	0.0140	00								
ATOM	н31	HA	0.0140	00				00 0	хт			
ATOM	н32	HA	0.0140	00				λ /	/			
ATOM	CS1	С	0.4500	00				CC				
ATOM	OS3	0	-0.5270	00				1				
ATOM	NS	NH1	-0.0290	00]	HN-N-C	СА-НА	1		
ATOM	C1	CG2R61	-0.2630	00				1				
ATOM	C6	CG2R61	-0.2110	00				нв2-0	СВ-НЕ	33		
ATOM	C5	CG2R61	0.2710	00				1				
ATOM	C7	с	0.4360	00				s	HS	4		
ATOM	02	0	-0.6340	00				1				
ATOM	03	0	-0.6340	00			1	н32-С	54C	sз-н	31	
ATOM	н6	HGR61	0.0840	00				1	1			
ATOM	C2	CG2R61	0.0070	00				1	1			
ATOM	Н2	HGR61	0.1130	00			0	s3=cs1	L C	:s2=0	s2	
ATOM	C3	CG2R61	-0.2320	00				\	/			
ATOM	нз	HGR61	0.1010	00				\	/			
ATOM	C4	CG2R67	-0.0010	00					NS			
ATOM	C22	CG2R67	0.2700	00					1			
ATOM	C8	CG2R61	0.0390	00					l			
ATOM	C15	CG2DC1	-0.1410	00				н2	C1	н6		
ATOM	н8	HGA4	0.1330	00				\ /	- \\	/		
ATOM	C14	CG2DC1	-0.1810	00				C2	C6			
ATOM	н9	HGA4	0.1490	00				11	I			
ATOM	C13	CG2DC2	0.1000	00				C3	C5	02		
ATOM	N1	NH1	0.0510	00				/ \	- 11	\setminus /		
ATOM	C20	CT3	-0.1660	00				нЗ	C4	C7=0	03	
ATOM	н16	HA	0.0930	00					1			
ATOM	H17	HA	0.0930	00				н8	1	н10		
ATOM	н18	HA	0.0930	00				1	1	1		
ATOM	C23	CT3	-0.1660	00		H	19 (C15	C22	C19	н7	
ATOM	н13	HA	0.0930	00			$\lambda / $	/ \ /	/ \\	. /	\\ /	
ATOM	H14	HA	0.0930	00			C1-	4 C8	з с	:11	C18	
ATOM	н15	HA	0.0930	00		н16	1	1	I	1	I.	Н22
ATOM	C12	CG2DC1	-0.2300	00		\		1	11	1	1	/
ATOM	н4	HGA4	0.1430	00	н17	7-C2	0 C	:13	С9	C10	C1'	7 C21-1
ATOM	С9	CG2R61	0.2570	00		1	\ /	\\ /	Λ	/ \	// `	\ / \
ATOM	01	OG3R60	-0.2180	00	H	18	N1	C12	01	Ċ	216	N2
ATOM	C10	CG2R61	0.2570	00			/	I			Λ	
ATOM	C16	CG2R61	-0.2300	00	H	12-C	23	н4	F	15	C24	-н25

Н5	HGR61	0.14300
C17	CG2R61	0.10000
N2	NH1	0.05100
C21	CT3	-0.16600
H22	HA	0.09300
н23	HA	0.09300
н24	HA	0.09300
C24	CT3	-0.16600
н25	HA	0.09300
н26	HA	0.09300
H27	HA	0.09300
C18	CG2R61	-0.18100
Н7	HGR61	0.14900
C19	CG2R61	-0.14100
н10	HGR61	0.13300
C11	CG2R61	0.03900
	H5 C17 N2 C21 H22 H23 H24 C24 H25 H26 H27 C18 H7 C19 H10 C11	H5 HGR61 C17 CG2R61 N2 NH1 C21 CT3 H22 HA H23 HA H24 HA C24 CT3 H25 HA H26 HA H27 HA C18 CG2R61 H7 HGR61 C19 CG2R61 H10 HGR61 C11 CG2R61

BOND OO CC CC OXT CC CA BOND CA HA CA CB CA N N HN BOND CB HB3 CB S CB HB2 S CS4 BOND CS4 H32 CS4 CS1 CS4 CS3 CS3 HS4 BOND CS3 H31 CS3 CS2 CS2 NS CS2 OS2 BOND CS1 OS3 CS1 NS NS C1 C1 C6 BOND C1 C2 C6 H6 C6 C5 C5 C4
 BOND
 C5
 C7
 C7
 O2
 C7
 O3
 C2
 H2

 BOND
 C2
 C3
 C3
 H3
 C3
 C4
 C4
 C22
BOND C22 C11 C22 C8 C8 C15 C8 C9 BOND C15 H8 C15 C14 C14 H9 C14 C13 BOND C13 N1 C13 C12 N1 C23 N1 C20
 BOND
 C20
 H18
 C20
 H17
 C20
 H16
 C23
 H13

 BOND
 C23
 H15
 C23
 H14
 C12
 H4
 C12
 C9
BOND C9 01 01 C10 C10 C11 C10 C16 BOND C16 C17 C16 H5 C17 N2 C17 C18 BOND N2 C24 N2 C21 C21 H22 C21 H23 BOND C21 H24 C24 H26 C24 H25 C24 H27 BOND C18 H7 C18 C19 C19 H10 C19 C11 IMPR C7 C5 O3 O2

IMPR C17 C18 C16 N2 IMPR C13 C14 C12 N1 IMPR CC OXT OO CA IMPR CS1 CS4 NS OS3 IMPR CS2 CS3 NS OS2

IMPR N -C CA HN DONOR HN N

END

/ \ н26 н27

Table S2. Molecular	dynamics	simulation	details.
------------------------	----------	------------	----------

System	# lipids	# water mols	# ions	Replica / Length
DOPC lipid bilayer	400	33126	-	Unconstrained MD: 1; 100 ns
Tat ₁₁ monomer	320	19062	8 Cl ⁻	Unconstrained MD: 3; 400 ns
Tat ₁₁ -TAMRA monomer	320	19062	8 Cl ⁻	Unconstrained MD: 3; 600 ns Steered MD: 4; 40 ns
Tat ₁₁ -TAMRA dimer	320	19062	16 Cl ⁻	Unconstrained MD: 3; 0.6-1.0µs Steered MD: 4; 40 ns

Initial box size $105 \times 95 \times 95 \text{ Å}^3$.

Figure S2. (A,C) Snapshot configurations issuing from Tat₁₁ replica simulations taken at different time intervals. Peptides are depicted in red. (B,D) Corresponding translocation distance of monomer center of mass along the longitudinal pore axis (i.e., Z-coordinate).

Figure S3. (A,C) Snapshot configurations issuing from Tat₁₁-TAMRA replica simulations taken at different time intervals. Peptides are depicted in red with TAMRA dye in green. (B,D) Corresponding translocation distance of monomer center of mass along the longitudinal pore axis (i.e., Z-coordinate).

Figure S4. (A,C) Snapshot configurations issuing from Tat_{11} -TAMRA dimer replica simulations taken at different time intervals. Peptides are depicted in red with TAMRA dye in green. (B,D) Corresponding translocation distance of dimer center of mass along the longitudinal pore axis (i.e., Z-coordinate).

Figure S5. Snapshot configurations issuing from Tat11-TAMRA dimer (A) unconstrained simulations and (B) SMD simulations taken at different time intervals. Arginine residues are depicted in red and lysine residues are depicted in blue with TAMRA dye in green. Phosphate atoms are in yellow and lipids are in grey.