Correlation between structural change and electrical transport

properties of indium nitride under high pressure

Junkai Zhang,^{ab} Ji Qi,^a Yanzhang Ma,^c Tingjing Hu,^a Jiejuan Yan,^d Feng Ke,^d Xiaoyan Cui,^a Yang Gao,^c Meiling

Sun,*be and Chunxiao Gao*b

^aKey Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal

University,

Siping, 136000, China

^bState Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China

^cDepartment of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA

^dCenter for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China

eSchool of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, China

To whom correspondence should be addressed. E-mail: <u>cc060109@qq.com</u> and <u>sunml@sdut.edu.cn</u>

Supplementary Information for Publication

Table S1. Values of E_g and dE_g/dP for the different candidate phases of InN and the phase transition pressures. B1, B2, and B3 represent the rocksalt, wurtzite, and zinc-blende phase of InN, respectively.

Compound	Phase	Pressure (GPa)	E _g (eV)		<i>dE_g/dP</i> (meV/GPa)	
			Present	other	Present	other
			work	calculation	work	calculation
	В3	0		0.0 ^{a,b,c}		19.94°
				0.02 ^d		16.0 ^d
				0.5813 ^e		
				0.753°, 0.75 ^f		34.0°
	B2	0	0.08		16.5	
				-0.354 ^g , -0.18 ^h ,		23.4 ^g
				-0.160 ⁱ , -0.118 ^g		
				0.00 ⁱ , 0.03 ^h		
						21.0 ^j
				0.26 ^d , 0.694 ^g		33.0 ^d , 31.0 ^g
				0.711 ^g		26.1 ^g
				0.772 ⁱ , 0.805 ^g		34.0 ^g
InN	B1	0		0.0573 ^e , 0.22 ^a , 0.372 ^k		9.4 ^e
				0.6153 °		64.7 ^e
				0.6887 °		
				0.7438 °		44.7 ^e
	B3-B1	10.0		0.00ª, 0.081 ¹		
		10.5 ^k				
		11.84 ^m				
	B2-B1	10.0	0.28		33.0	
		10.2		0.4 ⁿ		18.0 ⁿ
		10.86 ^m				

	11.1	0.75 ^k	24.9 ^k
	13.0	0.1803°, 1.3249°, 1.4571°	
	16.0		22.0°
	21.6	1.66 ^d	41.0 ^d

^aPlane wave self-consistent method with GGA-PBE (Ref. 1).

^bFP-LAPW method with MBJLDA (modified Becke-Johnson exchange potential+LDA) (Ref. 2).

^cFPLAPW method with LDA (Ref. 3).

^dSelf-consistent LMTO method with LDA-ASA (Ref. 4).

^ePAW method with HSE06, GW, and GGA, respectively (Ref. 5).

^fPW-PP method with LDA+ HGH (Ref. 6).

^gPAW method with PBE, HSE06, G₀W₀(HSE06), scGW₀, G₀W₀(PBE), and GGA, respectively

(Ref. 7).

^hPAW method with LDA+U (Ref. 8).

ⁱPAW method with GGA, GGA+U, and HSE, respectively (Ref. 9).

^jLAPW method with LDA (Ref. 10).

^kTroullier-Martins pseudopotentials, DFT-LDA (Ref. 11).

¹FP-LAPW method with GGA-EV (Ref. 12).

^mDFT with both LDA and GGA (Ref. 13).

ⁿPlane wave pseudopotential with LDA (Ref. 14).

^oPlane wave basis and with pseudopotentials, LDA+U (Ref. 15).

References

1 J. M. Panchal, M. Joshi, P. N. Gajjar, Phase Transitions, 2016, 89, 1-27.

2 M. I. Ziane, Z. Bensaad, B. Labdelli, H. Bennacer, Sensors Transducers, 2014, 27, 374-384.

3 S. Berrah, H. Abid, A. Boukortt, M. Sehil, Turk J Phys., 2006, 30, 513-518.

4 N. E. Christensen, I. Gorczyca, Phys. Rev. B, 1994, 50, 4397-4415.

5 Alvarado, Andrew Michael, High-Pressure Properties of Several Narrow Band gap Semiconductors from First-Principles Calculations, 2016, UNLV *Theses, Dissertations, Professional Papers, and Capstones.* 2629.

6 S. Q. Wang, H. Q. Ye, J. Phys.: Condens. Matt., 2002, 14, 9579-9587.

7 Y. F. Duan, L. X. Qin, L. W. Shi, G. Tang, Computational Materials Science, 2015, 101, 56-61.

8 A. Janotti, D. Segev, C. G. Van de Walle, Phys. Rev. B, 2006, 74, 045202-1-9.

9 J. Kaczkowski, Acta Physica Polonica, 2012, 121, 5-6.

10 S. H. Wei, A. Zunger, Phys. Rev. B, 1999, 60, 5404-5411.

11 J. Serrano, A. Rubio, E. Hernández, A. Muñoz, A. Mujica, *Phys. Rev. B*, 2000, **62**, 16612-16623.

12 R. Ahmed, H. Akbarzadeh, Fazal-e-Aleem, Phy. B, 2005, 370, 52-60.

13 S. Saib, N. Bouarissa, Phys. B: Conden. Matt., 2007, 387, 377-382.

14 W. X. Feng, S. X. Cui, H. Q. Hu, W. Zhao, Phys. Status Solidi B, 2010, 247, 313-317.

15 J. M. Besson, L. Bellaich, K. Kunc, Phys. Stat. Sol. (b), 1996, 198, 469-474.