Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supplementary Information

for

Solid State Vibrational Circular Dichroism towards Molecular Recognition: Chiral Metal Complexes Intercalated in a Clay Mineral

Hisako Sato, ^a * Kenji Tamura, ^b Kazuyoshi Takimoto, ^a and Akihiko Yamagishi^c

- ^a Department of Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
- ^b National Institute for Materials Science, Tsukuba 305-0044, Japan
- ^c School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan

Contents:

- 1. The experimental VCD and IR spectra of BINOL in CD₃CN
- 2. The calculated VCD and IR spectra of *R*-BINOL in CH₃CN
- 3. The calculated VCD and IR spectra of a molecular associate between *R*-BINOL and Δ or Λ [Ru(phen)₃]²⁺ under various conformations
- 4. The calculated VCD and IR spectra for the optimized structure of a molecular associate between *R* BINOL and Δ or Λ -[Ru(phen)₃]²⁺ in a gaseous state
- 5. The snapshot of the animation of molecular motion for the selected vibrations of a molecular associate between *R*-BINOL and Δ - [Ru(phen)₃]²⁺

S1. The experimental VCD and IR spectra of BINOL in CD₃CN

Figure S1. The observed IR (lower) and VCD (upper) spectra of BINOL in CD_3CN : Solid and thin lines are for the *R* and *S*-forms, respectively.

Figure S2. The calculated IR (lower) and VCD (upper) spectra of *R*-BINOL in CH₃CN together with the optimized molecular structure under the cis-cis conformation. The solvent was approximated as a dielectric continuum (see the calculation details in the text).

S3. The calculated VCD and IR spectra of a molecular associate between *R*-BINOL and Δ - or Λ - [Ru(phen)₃]²⁺ under various conformations

Figure S3.The calculated IR (lower) and VCD (lower) spectra of a molecular associate between *R*-BINOL and Δ - or Λ -[Ru(phen)₃]²⁺ under various conformations. The structure of *R*-BINOL was assumed to take the conformation of cis-cis (blue) or trans-trans (black) or cis-trans (red), respectively: (a) *R*-BINOL/ Δ -[Ru(phen)₃]²⁺ and (b) *R*-BINOL/ Λ -[Ru(phen)₃]²⁺

S4. The calculated VCD and IR spectra for the optimized structure of a molecular associate between *R*- BINOL and Δ - or Λ -[Ru(phen)₃]²⁺ in a gaseous state

Figure S4. The calculated VCD (upper) and IR (lower) spectra for a molecular associate between BINOL and $[Ru(phen)_3]^{2+}$: (a) *R*-BINOL/ Δ - $[Ru(phen)_3]^{2+}$ and (b) *R*-BINOL/ Λ - $[Ru(phen)_3]^{2+}$. The structure of each associate was energetically optimized in a gaseous state. Accordingly BINOL took a cis-cis conformation. The main peaks were assigned to either BINOL or $[Ru(phen)_3]^{2+}$ as indexed in terms of alphabets or numbers, respectively.

S5. The snapshot of the animation of molecular motion for the selected vibrations of a molecular associate between *R*-BINOL and Δ - [Ru(phen)₃]²⁺

(a)

Figure S5. The snapshots of the animation for the vibrational motion in a molecular associate between *R*-BINOL and Δ -[Ru(phen)₃]²⁺. The selected vibrations were (a) peak No. **5** and *d* around 1485 cm⁻¹ and (b) peak No. **8** and *b* around 1370 cm⁻¹ in the calculated spectrum in Figure S4 (a), respectively.