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SI:1  Theories

An integral equation theory1 consists of the Ornstein-Zernike (OZ) equation coupled with an 
appropriate closure equation. In the analysis of solvation properties of a solute, it is assumed 
that the solute is inserted into a solvent under the isochoric condition at infinite dilution. In 
the first step, the solvent-solvent correlation functions are calculated. In the second step, the 
solute-solvent correlation functions are calculated using the solvent-solvent correlation 
functions as part of the input data. In the third step, the potential of mean force (PMF) 
between solutes is calculated from the solute-solvent correlation functions. In this study, we 
consider two solvents. One of them is a model water and the other is a hard-sphere solvent 
formed by neutral hard spheres. The molecular diameter dS and number density in the bulk ρS 
are set at those of real water at 298 K and 1 atm: dS=0.28 nm and ρSdS

3=0.7317. The solute is 
a neutral hard sphere with diameter dU.

SI:1.1  Radial-symmetric integral equation theory (RSIET) for simple fluids
When the solvent is a simple fluid like the hard-sphere solvent and the solute is spherical, the 
solvent-solvent and solvent-solute correlation functions are dependent only on the distance 
between centers of two particles.1 That is, they possess radial symmetry. The OZ equation can 
be written as


h(r)=c(r)+4S  c(r−r’)hSS(r’)r’2dr’,                                          
(S1)

0

where h and c are the solute-solvent total and direct correlation functions, respectively, hSS is 
the solvent-solvent total correlation function, and r is the distance between centers of two 
particles. The closure equation is given by
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h(r)+1=exp[−u(r)/(kBT)+h(r)−c(r)+b(r)],                                          
(S2)

where u is the solute-solvent pair potential, kB is the Boltzmann constant, T is the absolute 
temperature, and b is the solute-solvent bridge function. We employ the hypernetted-chain 
(HNC) approximation, b(r)0, in the closure equation. The OZ equation is formally exact.

For solving eqns (S1) and (S2), a sufficiently long range rL is divided into N grid points 
(ri=ir, i=0, 1, …, N−1; r=rL/N; r=0.01dS; N=4096) and all of the correlation functions are 
represented by their values on these points. The basic equations are then numerically solved 
by means of the robust, highly efficient algorithm developed by Kinoshita and coworkers.2 
Since the HNC approximation is employed, we can calculate the solvation free energy μ (i.e., 
excess chemical potential) of the solute from the solute-solvent correlation functions via the 
Morita-Hiroike formula.3,4 For this model system, μ is given by μ=−TS where S is the 
solvation entropy. The solute-solvent pair correlation component of S, which is denoted by 
SPA, is calculated from the solute-solvent pair correlation function g(r)=h(r)+1.5,6 “S−SPA” 
represents the solute-solvent-solvent triplet and higher-order (i.e., solute-solvent many-body) 
correlation components: It is denoted by SMB.
    The PMF between hard-sphere solutes HS(r) (rdU) (the superscript “HS” denotes 
“hard-sphere solvent”) calculated from7

HS(r)/(kBT)=−fUU(r)=hUU(r)−cUU(r).                                             
(S3)

Here, hUU and cUU are the solute-solute total and direct correlation functions, respectively, and 
the solute-solute bridge function is neglected. The function fUU(r) is obtained via the back 
Fourier transform of FUU(k) expressed as7

FUU(k)=ρSC(k)H(k)                                                           
(S4)

where C(k) and H(k) are the Fourier transforms of c(r) and h(r), respectively, and k is the 
wave number. HS(r) possesses only the entropic component S

HS(r): 
HS(r)/(kBT)=−S

HS(r)/kB. The physical meaning of S
HS(r) is “S of two solutes separated by 

distance r”  “S of two solutes infinitely separated”. It is known that the HNC tends to 
overestimate S of a solute: Both of “S of two solutes separated by distance r” and “S of two 
solutes infinitely separated” are somewhat overestimated, but the cancellation of errors occurs 
when the subtraction is taken. As a matter of fact, it was shown that the PMF thus calculated 
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without incorporating the solvent-solvent, solute-solvent, and solute-solute bridge functions is 
in good agreement with the exact PMF.8,9

SI:1.2  Angle-dependent integral equation theory (ADIET) for molecular fluids
We employ a multipolar model for water: A water molecule is modeled as a hard sphere with 
diameter dS=0.28 nm in which a point dipole and a point quadrupole of tetrahedral symmetry 
are embedded.10,11 The ADIET10−13 explicitly takes account of the dependence of a correlation 
function on the orientations of solvent molecules. The OZ equation can be written as

h(12)=c(12)+{1/(82)}Sc(13)hSS(32)d(3),                                        
(S5)

where h and c are the solute-water total and direct correlation functions, respectively, hSS is 
the water-water total correlation function, (ij) represents (rij, i, j), rij is the vector 
connecting centers of particles i and j, i denotes the three Euler angles describing the 
orientation of particle i, d(3) represents integration over all position and angular coordinates 
of particle 3, and S is the water number density in the bulk. We emphasize that the OZ 
equation is formally exact. The closure equation is expressed by


c(12)=  [h(12){w(12)b(12)}/r’]dr’u(12)/(kBT)+b(12),                          
(S6a)

r
w(12)=c(12)h(12)+u(12)/(kBT),                                               
(S6b)

where u is the pair potential, b is the bridge function, and r is the distance between centers of 
two particles. The closure equation is reformulated so that the rotational-invariant expansion 
mentioned below can be applied to it. The HNC approximation, b(12)0, is employed in the 
closure equation.

For the numerical solution of eqns (S5) and (S6), a correlation function is expanded in a 
basis set of rotational invariants, and the basic equations are reformulated in terms of the 
projections Xmnl

(r) occurring in the rotational-invariant expansion of X(12) (X is a water-
water or water-solute correlation function).10−13 The expansion considered for m, nnmax=4 
gives sufficiently accurate results for a nonpolar solute. A sufficiently long range rL is divided 
into N grid points (ri=ir, i=0, 1, …, N−1; r=rL/N; r=0.01dS; N=4096) and all of the 
projections are represented by their values on these points. The numerical solution of the 
basic equations is carried out using the robust, highly efficient algorithm developed by 
Kinoshita and coworkers.14
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The influence of molecular polarizability of water is taken into account by employing the 
self-consistent mean field (SCMF) theory.10,11 At the SCMF level, the many-body induced 
interactions are reduced to pairwise additive potentials involving an effective dipole moment. 
At 298 K and 1 atm, the effective dipole moment thus is about 1.42 times larger than the bare 
gas-phase dipole moment. S is evaluated via the temperature derivative of  calculated using 
the Morita-Hiroike formula adapted to molecular fluids10,11 (U=μ+TS; U is the solvation 
energy). Upon solute insertion, the translational freedom of water molecules in the entire 
system is restricted, and the orientational freedom of water molecules near the solute is 
constrained. The translational and orientational contributions are calculated using the 
projections of (mnl,)=(000,00) and those of (mnl,)(000,00), respectively.13 SPA and SMB 
are calculated by extending the procedure described above to molecular liquids.12,13 The 
dielectric constant of water, which is a good measure of the validity of a theory, is calculated 
to be 83 that is in good accord with the experimental value. Moreover, it was shown that the 
results (e.g., thermodynamic quantities of hydration such as the hydration free energy) from 
the ADIET using the HNC approximation and the multipolar model are in very good 
agreement with those from the molecular dynamics simulation employing the SPC/E and 
TIP4P models, for nonpolar solutes with a wide range of sizes.13,15

The PMF between hard-sphere solutes (r) (rdU) is calculated on the basis of the 
extension of eqn (S4) to molecular fluids.16 More specifically, it is calculated using the 
Hankel transforms of projections occurring in the rotational-invariant expansions of the 
solute-water correlation functions. The equation corresponding to eqn (S4) and the calculation 
procedure of (r) were given in our earlier publication.16 The entropic component of (r), 
S(r), is calculated through the temperature derivative of (r), and the energetic component 
E(r) is obtained as E(r)=(r)+TS(r).

SI:1.3  Morphometric approach (MA)
SPA/kB and SMB/kB are further decomposed into the excluded-volume (EV) and solvent-
accessible surface (SAS) terms. In the MA,17,18 Z (=SPA/kB or SMB/kB) is expressed as the 
linear combination of four geometric measures of a solute:

Z=C1Vex+C2A+C3X+C4Y.                                                      
(S7)

Here, eqn (S7) is referred to as the morphometric form for Z, Vex is the EV, A is the SAS area, 
and X and Y are the integrated mean and Gaussian curvatures of the SAS, respectively. In the 
MA, the solute shape enters a value of Z via the four geometric measures. The four 
coefficients C1C4 are dependent only on the solvent species and its thermodynamic state. 
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The solvent in the bulk (i.e., sufficiently far from the solute) contributes to the EV term 
“C1Vex”, whereas the solvent near the solute contributes to the SAS term “C2A+C3X+C4Y”.
    The C1C4 are determined by the following two steps: (1) Calculate Z for hard-sphere 
solutes with various diameters (0.6dS≤dU≤10dS, dS=0.28 nm) using each theory; and (2) 
determine C1C4 by means of the least square fitting applied to the following equation (i.e., 
eqn (S7) applied to hard-sphere solutes):

Z=C1(4πdUS
3/3)+C2(4πdUS

2)+C3(4πdUS)+C4(4π),                                    
(S8)

where dUS=(dU+dS)/2. The fitting is performed so that the FD defined by

FD=  {(ZTheoryZMA)/ZTheory}2                                                  
(S9)
    dU

can be minimized. Here, the superscripts “Theory” and “MA”, respectively, denote the values 
calculated by each theory and by eqn (S8), and the summation is taken over all of the values 
of dU. We define the error ED (%) as

ED=100(1/MD)  (ZTheoryZMA)/ZTheory                                          
(S10)

dU

where MD is the number of the values of dU. When the solvent is the model water, ED is 
smaller than 4% for Z=SPA/kB and 0.2% for SMB/kB. For the hard-sphere solvent, the errors are 
an order of magnitude smaller.15,19

Using the values of C1C4 thus determined, we can obtain Z of a complexly shaped 
solute (e.g., a polyatomic solute) only if its Vex, A, X, and Y are calculated. In this study, 
however, we treat a hard-sphere solute with diameter dU. We define SPA,EV, SPA,SAS, SMB,EV, 
and SMB,SAS as follows:

SPA,EV=C1
PA(4πdUS

3/3),                                                      
(S11a)
SPA,SAS=C2

PA(4πdUS
2)+C3

PA(4πdUS)+C4
PA(4π),                                     

(S11b)

SMB,EV=C1
MB(4πdUS

3/3),                                                     
(S12a)
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SMB,SAS=C2
MB(4πdUS

2)+C3
MB(4πdUS)+C4

MB(4π).                                  
(S12b)

Here, the superscripts “PA” and “MB”, respectively, represent the coefficients determined for 
SPA/kB and SMB/kB. (SPA,EV can be obtained by the Asakura-Oosawa theory20,21 without using 
the MA.) The solvents in the bulk (i.e., sufficiently far from the solute) and near the solute 
contribute to the EV and SAS terms, respectively.

SI:2  Magnitudes and signs of the four constituents of solvation entropy

SI:2.1  Hard-sphere solvent
SPA,EV, SPA,SAS, SMB,EV, and SMB,SAS for solutes with dU=dS, 4dS, and 10dS in the hard-sphere 
solvent are given in Table S1. SMB,SAS/kB is positive whereas the others are negative. 
SPA,EV/kBSMB,EV/kB and SPA,SAS/kBSMB,SAS/kB.

Table S1  The four constituents of solvation entropy.

dU/dS SPA,EV/kB SPA,SAS/kB SMB,EV/kB SMB,SAS/kB

1 −4.19 −2.00 −20.6 17.2
4 −65.5 −22.1 −322 138
10 −697 −127 −3430 730

SI:2.2  Water
The translational and orientational contributions to S (STrans and SOrient, respectively) for 
solutes with dU=dS, 4dS, and 10dS in the model water are given in Table S2. The orientational 
contribution is only 2% of the total solvation entropy for a hard-sphere solute with diameter 
dU=dS and the percentage decreases as dU becomes larger.13,22 The reason for this is the 
following: Upon solute insertion, the restriction of orientational freedom occurs only for the 
water molecules near the solute, whereas that of translational one reaches all the water 
molecules in the system; and the orientational contribution does not possess the EV term.

Table S2  Translational and orientational contributions to solvation entropy.

dU/dS STrans/kB SOrient/kB

1 −8.95 −0.14
4 −234 −2.60
10 −2820 −14.8
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SPA,EV, SPA,SAS, SMB,EV, and SMB,SAS for solutes with dU=dS, 4dS, and 10dS in the model water 
are given in Table S3. Both of the translational and orientational contributions are included. 
The orientational contribution is significant only in SPA,SAS/kB: In a strict sense, SPA,SAS is 
attributed a decrease in not only the translational freedom but also the orientational freedom 
of each solvent particle near the solute. SMB,SAS/kB is positive whereas the others are negative. 
SPA,EV/kBSMB,EV/kB and SPA,SAS/kBSMB,SAS/kB.

Table S3  The four constituents of solvation entropy.

dU/dS SPA,EV/kB SPA,SAS/kB SMB,EV/kB SMB,SAS/kB

1 −4.19 −0.82 −14.0 9.95
4 −65.5 −3.59 −219 51.9
10 −697 −16.2 −2330 212

SI:3  Entropic and enthalpic components of potential of mean force under 
isobaric condition

SI:3.1  Relation between components of potential of mean force (PMF) under isochoric 
condition and those under isobaric one
For the PMF between solutes in water, S(r) and E(r) are calculated under the isochoric 
condition. The entropic and enthalpic components under the isobaric condition (SP(r) and 
EP(r), respectively) are related to S(r) and E(r) through (also see Section 2.4, 
“Contribution from structure and properties of bulk water to thermodynamic quantities of 
solvation”, in the main article)12,23

SP(r)/kB=S(r)+(r),                                                     
(S13a)
EP(r)/(kBT)=E(r)/(kBT)+(r),                                              
(S13b)
(r)=(*/T*)VP(r)/dS

3.                                                   
(S13c)

Here, VP(r) is the change in system volume caused when the distance between centers of two 
solutes changes from  to r under the isobaric condition. The dimensionless parameters, * 
and T*, which depend only on the properties of pure bulk water, are defined as *=T and 
T*=TkBT/dS

3 where  is the isobaric thermal expansion coefficient and T is the isothermal 
compressibility. */T*=0.208, 0.0, 0.894, and 2.43 at T=273, 277, 298, and 373 K, 
respectively.24,25

7



SP(r), for example, is equivalent to “SP of a pair of solutes separated by distance r”  
“SP of a pair of solutes infinitely separated”. Since “VP of a pair of solutes separated by 
distance r” is not significantly different from “VP of a pair of solutes infinitely separated”, 
VP(r) is very small. Therefore, (r) is very small irrespective of the value of */T*: 
SP(r) and EP(r) are almost equal to S(r) and E(r), respectively. It follows that SP(r) and 
EP(r) are largely dependent on the change in the structure and properties of bulk water just 
as S(r) and E(r).

VP(r) can approximately be calculated in the following manner.

(1) The MA is applied to the solute-solute pair:

VP(r)/dS
3=C1Vex(r)+C2A(r)+C3X(r)+C4Y(r).                                 

(S14)

Here, Vex(r), for example, is the EV change caused when the distance between centers of 
two solutes changes from  to r. It follows that Vex(r), A(r), X(r), and Y(r) are all zero 
for rdUdS.
(2) The four coefficients (C1C4) are determined beforehand by treating the partial molar 
volumes of hard-sphere solutes with various diameters (0.6dS≤dU≤30dS, dS=0.28 nm) (see 
section SI:1.3).
(3) Vex, A, X, and Y are expressed as functions of r. Vex, A, X, and Y are all 
negative for rdUdS.
(4) Using the values of C1C4 determined in step (3) and eqn (S12), we can calculate 
VP(r)/dS

3.

SI:3.2  Entropic and enthalpic components of potential of mean force between hard-
sphere solutes in water under isobaric condition
(r) is zero for rdUdS and negative for rdUdS. When “rdU” becomes smaller than dS, 
the compression of bulk water occurs under the isobaric condition. Consequently, the entropic 
and energetic components of the PMF, which would arise under the isochoric condition, 
exhibits slight downward shifts (i.e., they shift in negative directions). In Fig. S1, SP/kB and 
EP/(kBT) are compared with S/kB and E/(kBT), respectively. These are components of the 
PMF between hard-sphere solutes with diameter dU immersed in the model water (dS=0.28 
nm and SdS

3=0.7317): (a) dU=dS, (b) dU=4dS, and (c) dU=30dS. As observed in the figure, 
SP/kB and EP/(kBT) are almost indistinguishable from S/kB and E/(kBT), respectively. 
Therefore, in the main text we refer to S/kB and E/(kBT) as the entropic and enthalpic 
components of the PMF, respectively.
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Fig. S1  Comparison between S/kB and SP/kB and that between E/(kBT) and EP/(kBT). 
S/kB and E/(kBT) are the entropic and energetic components of the PMF scaled by kBT 
under the isochoric condition, respectively. SP/kB and EP/(kBT) are the entropic and 
enthalpic components of the PMF scaled by kBT under the isobaric condition, respectively. 
The quantities are calculated for hard-sphere solutes with diameter dU immersed in the model 
water (dS=0.28 nm and SdS

3=0.7317): (a) dU=dS, (b) dU=4dS, and (c) dU=30dS. Note that the 
entropic component is plotted as its negative so that the entropy-energy or entropy-enthalpy 
compensation can be emphasized.
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