Supplementary Information

Mobility of Proton Carriers in Phosphate Glasses Depends on

Polymerization of Phosphate Framework

Takuya Yamaguchi^{a,b}, Takuya Kataoka^c, Satoshi Tsukuda^a, Tomohiro Ishiyama^d,

Junji Nishii^e, Toshiharu Yamashita^f, Hiroshi Kawazoe^f, and Takahisa Omata^{a,b,c*}

 ^a Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Sendai 980-8577, Japan
^b Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai 980-0845, Japan
^c Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita 565-0871, Japan
^d Fuel Cell Materials Group, Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), AIST Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan
^e Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan
^f Kawazoe Frontier Technologies Corporation, Kuden-cho 931-113, Sakae-ku, Yokohama 247-0014, Japan

* Corresponding author. Tel.: +81-22-217-5832, Fax: +81-22-217-5832

e-mail: takahisa.omata.c2@tohoku.ac.jp

(5500)		1	U		
	Compositions				
	<i>x</i> =28	<i>x</i> =32	<i>x</i> =35	<i>x</i> =38	<i>x</i> =40
Peak position of v_{OH} band at ~2800 cm ⁻¹ (cm ⁻¹)	2827	2860	2880	2894	2895
Peak position of v_{OH} band at ~3300 cm ⁻¹ (cm ⁻¹)	3271	3302	3319	3315	3324
Integrated area ratio of A ₃₃₀₀ /A ₂₈₀₀	0.1008	0.1150	0.1208	0.1456	0.1644

Table S1 Positions of the fitted peaks of the v_{OH} band and integrated area ratio of the band at ~3300 cm⁻¹ (A₃₃₀₀) to that at ~2800 cm⁻¹ (A₂₈₀₀) in the IR spectra of the glasses after APS.

<u>Calculation of the proton mobility of 25NaO_{1/2}-8LaO_{3/2}-1GeO₂-66PO_{5/2} glass after APS at 200 °C</u>

The proton conductivity of $25\text{NaO}_{1/2}$ - $8\text{LaO}_{3/2}$ - 1GeO_2 - $66\text{PO}_{5/2}$ glass after APS was reported at a temperature higher than 250 °C in our previous paper.¹ The conductivity values at 250 and 300°C were 6.2×10^{-6} and 5.4×10^{-5} S cm⁻¹, respectively. Therefore, we extrapolated the proton conductivity at 200 °C ($\sigma_{\rm H} = 5.2 \times 10^{-7}$ S cm⁻¹) to determine the proton mobility at 200 °C. The value of $n_{\rm H}$ used for the calculation was 4.8×10^{21} cm⁻³. The proton mobility of the glass after APS was determined to be 6.8×10^{-10} cm² V⁻¹ s⁻¹ at 200 °C, as calculated from $\sigma_{\rm H}$ and $n_{\rm H}$.

References

1. K. Kawaguchi, T. Yamaguchi, T. Omata, T. Yamashita, H. Kawazoe and J. Nishii, *Phys. Chem. Chem. Phys.*, 2015, **17**, 22855.