An insight into intrinsic interfacial properties between Li metal and Li₁₀GeP₂S₁₂ solid electrolyte

Bingbing Chen,^a Jiangwei Ju,^a Jun Ma,^a Jianjun Zhang,^a Ruijuan Xiao,^{*b} Guanglei Cui,^{*a} Liquan Chen^b

^aQingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

^b Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.

Fig S1 Both stable and intermediate NEB images for Li ion migration in P4₂-LGPS bulk structure.(a) Along c direction, (b) along ab plane.

Fig. S2 The surface slab structure of (a) PS_4 -terminated, (b) GeS_4 -terminated for $P4_2$ -LGPS(001).

Fig. S3 The interface structure of (a) Li/PS_4 -LGPS and (b) Li/GeS_4 -LGPS. The d_0 is equilibrium interface separation.

Figure S4. The interface structure optimized (left) and Density of states (DOS) projected at different layers away from the interface (right). (a) PS₄-terminated, (b) GeS₄-terminated. The Fermi level is located at zero energy.

Element	а	b	с	Element	а	b	c
Li	0.728	0.772	0.294	Ge	0.000	0.000	0.301
Li	0.271	0.227	0.294	S	0.500	0.194	0.411
Li	0.227	0.728	0.794	S	0.500	0.805	0.411
Li	0.772	0.271	0.794	S	0.805	0.500	0.911
Li	0.728	0.227	0.294	S	0.194	0.500	0.911
Li	0.271	0.772	0.294	S	0.500	0.304	0.094
Li	0.227	0.271	0.794	S	0.500	0.695	0.094
Li	0.772	0.728	0.794	S	0.695	0.500	0.594
Li	0.756	0.224	0.036	S	0.304	0.500	0.594
Li	0.243	0.775	0.036	S	0.500	0.692	0.776
Li	0.775	0.756	0.536	S	0.500	0.307	0.776
Li	0.224	0.243	0.536	S	0.307	0.500	0.276
Li	0.756	0.775	0.036	S	0.692	0.500	0.276
Li	0.243	0.224	0.036	S	0.000	0.690	0.096
Li	0.775	0.243	0.536	S	0.000	0.309	0.096
Li	0.224	0.756	0.536	S	0.309	0.000	0.596
Li	0.500	0.500	0.939	S	0.690	0.000	0.596
Li	0.500	0.500	0.439	S	0.000	0.789	0.403
Li	0.000	0.000	0.548	S	0.000	0.210	0.403
Li	0.000	0.000	0.048	S	0.210	0.000	0.903
Р	0.500	0.500	0.685	S	0.789	0.000	0.903
Р	0.500	0.500	0.185	S	0.000	0.208	0.698
Р	0.500	0.000	0.503	S	0.000	0.791	0.698
Р	0.000	0.500	0.003	S	0.791	0.000	0.198
Ge	0.000	0.000	0.801	S	0.208	0.000	0.198

Table S1: The atomic positions of relaxed ordered P42/mc LGPS structure.

Table S2 The calculated lattice parameters for the $Li_{10}GeP_2S_{12}$

$Li_{10}GeP_2S_{12}$	a (Å)	b (Å)	c (Å)
P4 ₂	8.778	8.778	12.675
Ref	8.758	8.758	12.626
Exp	8.714	8.714	12.607

Element	а	b	с	Element	а	b	c
Li	0.223	0.777	0.271	P	0.000	0.499	0.613
Li	0.269	0.756	0.654	Р	0.000	1.000	0.350
Li	0.777	0.223	0.271	Р	0.500	0.499	0.155
Li	0.731	0.244	0.654	Р	0.500	0.499	0.540
Li	0.268	0.266	0.074	S	0.000	0.194	0.316
Li	0.268	0.266	0.463	S	0.000	0.807	0.315
Li	0.732	0.733	0.074	S	0.308	0.499	0.120
Li	0.732	0.734	0.463	S	0.307	0.499	0.505
Li	0.223	0.223	0.271	S	0.693	0.499	0.120
Li	0.269	0.244	0.654	S	0.694	0.499	0.505
Li	0.777	0.777	0.271	S	0.500	0.688	0.191
Li	0.732	0.756	0.654	S	0.500	0.688	0.576
Li	0.268	0.733	0.074	S	0.500	0.311	0.191
Li	0.268	0.734	0.463	S	0.500	0.310	0.576
Li	0.732	0.266	0.074	S	0.189	0.999	0.386
Li	0.732	0.266	0.463	S	0.811	0.999	0.386
Li	0.000	0.510	0.136	S	0.000	0.308	0.194
Li	0.000	0.510	0.518	S	1.000	0.309	0.576
Li	0.000	0.510	0.327	S	0.000	0.695	0.195
Li	0.510	1.000	0.364	S	1.000	0.694	0.577
Li	0.491	1.000	0.173	S	0.191	0.497	0.006
Li	0.491	1.000	0.561	S	0.195	0.500	0.384
Li	0.248	0.221	0.172	S	0.810	0.497	0.006
Li	0.247	0.221	0.556	S	0.806	0.500	0.384
Li	0.751	0.779	0.173	S	0.502	0.790	0.310
Li	0.752	0.779	0.556	S	0.500	0.792	0.692
Li	0.269	0.756	0.364	S	0.502	0.208	0.311
Li	0.732	0.244	0.364	S	0.500	0.206	0.692
Li	0.268	0.244	0.364	S	0.286	0.999	0.119
Li	0.732	0.755	0.364	S	0.290	0.999	0.502
Li	0.248	0.779	0.172	S	0.711	0.999	0.120
Li	0.247	0.779	0.556	S	0.710	0.999	0.502
Li	0.752	0.221	0.172	S	0.000	0.692	0.075
Li	0.752	0.220	0.556	S	0.000	0.692	0.454
Ge	0.500	0.999	0.081	S	0.000	0.311	0.077
Ge	0.500	0.999	0.463	S	0.000	0.308	0.454
Ge	0.501	0.999	0.271	S	0.808	0.499	0.264
Ge	0.500	0.999	0.655	S	0.813	0.499	0.649
Р	0.000	0.499	0.039	S	0.193	0.499	0.264
Р	0.000	0.499	0.419	S	0.187	0.499	0.648
Р	0.000	0.500	0.230	S	0.500	0.196	0.039

Table S3 The atomic positions of relaxed GeS₄-terminated surface structure.

Element	а	b	с	Element	а	b	c
S	0.500	0.792	0.424	S	0.292	1.000	0.233
S	0.709	1.000	0.232	S	0.285	1.000	0.616
S	0.713	1.000	0.616				

Table S4 The Atomic positions of relaxed PS4-terminated surface structure.

Element	а	b	с	Element	а	b	с
Li	0.223	0.777	0.297	Li	0.245	0.778	0.208
Li	0.245	0.778	0.635	Li	0.245	0.780	0.547
Li	0.777	0.224	0.297	Li	0.734	0.223	0.209
Li	0.755	0.223	0.635	Li	0.734	0.221	0.547
Li	0.267	0.268	0.130	Ge	0.495	0.004	0.132
Li	0.267	0.267	0.464	Ge	0.497	0.003	0.465
Li	0.729	0.734	0.129	Ge	0.497	0.004	0.299
Li	0.731	0.734	0.464	Ge	0.497	0.003	0.629
Li	0.222	0.225	0.297	Р	0.998	0.502	0.101
Li	0.244	0.224	0.635	Р	0.998	0.503	0.428
Li	0.777	0.778	0.297	Р	0.994	0.504	0.263
Li	0.755	0.779	0.635	Р	0.994	0.504	0.595
Li	0.267	0.733	0.130	Р	0.033	0.910	0.017
Li	0.268	0.734	0.464	Р	0.998	0.003	0.369
Li	0.731	0.267	0.129	Р	0.002	0.007	0.700
Li	0.732	0.267	0.464	Р	0.493	0.505	0.201
Li	1.000	0.510	0.182	Р	0.493	0.504	0.532
Li	1.000	0.510	0.515	S	0.160	0.107	0.002
Li	0.999	0.535	0.026	S	0.998	0.197	0.338
Li	1.000	0.511	0.344	S	0.999	0.199	0.672
Li	1.000	0.511	0.673	S	0.068	0.738	0.984
Li	0.510	0.001	0.380	S	0.998	0.811	0.338
Li	0.490	0.000	0.214	S	0.999	0.815	0.672
Li	0.490	0.000	0.547	S	0.300	0.507	0.170
Li	0.245	0.223	0.209	S	0.300	0.504	0.501
Li	0.245	0.221	0.547	S	0.687	0.507	0.171
Li	0.734	0.777	0.209	S	0.688	0.505	0.502
Li	0.734	0.779	0.547	S	0.490	0.693	0.232
Li	0.268	0.757	0.380	S	0.490	0.690	0.564
Li	0.732	0.245	0.380	S	0.490	0.313	0.231
Li	0.268	0.245	0.380	S	0.490	0.317	0.564
Li	0.732	0.757	0.380	S	0.234	0.976	0.045

Element	a	b	c	Element	a	b	С
S	0.186	0.001	0.400	S	0.706	0.001	0.167
S	0.131	0.006	0.746	S	0.705	0.003	0.500
S	0.842	0.948	0.041	S	0.998	0.696	0.131
S	0.809	0.001	0.400	S	0.999	0.694	0.458
S	0.885	0.005	0.748	S	0.999	0.312	0.133
S	0.992	0.309	0.232	S	0.999	0.312	0.458
S	0.992	0.313	0.564	S	0.802	0.502	0.293
S	0.992	0.702	0.233	S	0.804	0.503	0.627
S	0.992	0.699	0.565	S	0.187	0.502	0.292
S	0.191	0.504	0.072	S	0.186	0.503	0.626
S	0.191	0.503	0.397	S	0.495	0.207	0.099
S	0.805	0.499	0.072	S	0.498	0.212	0.432
S	0.804	0.503	0.398	S	0.493	0.801	0.098
S	0.498	0.795	0.334	S	0.498	0.795	0.431
S	0.498	0.799	0.663	S	0.702	0.003	0.264
S	0.498	0.212	0.334	S	0.709	0.003	0.595
S	0.498	0.208	0.663	S	0.290	0.003	0.265
S	0.284	0.002	0.167	S	0.283	0.003	0.596
S	0.286	0.002	0.499				

Element	а	b	с	Element	a	b	c
Li	0.933	0.444	0.750	Li	0.000	0.511	0.420
Li	0.933	0.110	0.750	Li	0.736	0.778	0.395
Li	0.266	0.777	0.750	Li	0.265	0.778	0.395
Li	0.600	0.444	0.750	Li	0.735	0.222	0.395
Li	0.600	0.110	0.750	Li	0.266	0.222	0.395
Li	0.600	0.777	0.750	Li	0.509	0.000	0.395
Li	0.933	0.777	0.749	Li	0.222	0.778	0.333
Li	0.266	0.444	0.749	Li	0.777	0.244	0.333
Li	0.266	0.111	0.749	Li	0.777	0.778	0.333
Li	0.775	0.935	0.704	Li	0.221	0.227	0.333
Li	0.776	0.599	0.704	Li	0.000	0.511	0.291
Li	0.111	0.934	0.704	Li	0.266	0.758	0.270
Li	0.111	0.600	0.704	Li	0.733	0.758	0.270
Li	0.444	0.267	0.703	Li	0.267	0.244	0.270
Li	0.444	0.933	0.703	Li	0.733	0.244	0.270
Li	0.777	0.267	0.703	Li	0.510	0.001	0.266
Li	0.110	0.267	0.703	Li	0.268	0.733	0.204
Li	0.444	0.600	0.703	Li	0.732	0.733	0.204
Li	0.936	0.777	0.666	Li	0.267	0.267	0.204
Li	0.932	0.109	0.650	Li	0.733	0.267	0.204
Li	0.933	0.445	0.649	Li	0.000	0.511	0.162
Li	0.268	0.112	0.646	Li	0.266	0.778	0.141
Li	0.266	0.443	0.646	Li	0.754	0.778	0.141
Li	0.599	0.111	0.645	Li	0.735	0.222	0.141
Li	0.267	0.777	0.645	Li	0.265	0.222	0.141
Li	0.623	0.778	0.645	Li	0.509	0.999	0.140
Li	0.599	0.443	0.645	Li	0.776	0.224	0.074
Li	0.085	0.956	0.604	Li	0.244	0.225	0.074
Li	0.110	0.287	0.599	Li	0.733	0.777	0.074
Li	0.445	0.269	0.596	Li	0.245	0.779	0.074
Li	0.044	0.646	0.595	Li	0.000	0.511	0.040
Li	0.398	0.600	0.595	Li	0.501	0.004	0.457
Li	0.422	0.956	0.591	Ge	0.503	0.009	0.328
Li	0.755	0.604	0.591	Ge	0.502	0.009	0.202
Li	0.779	0.265	0.591	Ge	0.501	0.013	0.076
Li	0.799	0.933	0.582	Ge	0.063	0.897	0.548
Li	0.998	0.488	0.540	Р	0.001	0.490	0.484
Li	0.268	0.733	0.458	Р	0.501	0.510	0.402
Li	0.732	0.267	0.458	Р	0.003	0.508	0.355
Li	0.731	0.733	0.458	Р	0.001	0.007	0.275
Li	0.268	0.267	0.458	Р	0.001	0.509	0.227

Table S5 The Atomic positions of relaxed Li/PS₄-LGPS interface structure.

Element	а	b	с	Element	а	b	с
Р	0.504	0.511	0.148	S	0.694	0.508	0.172
Р	0.003	0.510	0.100	S	0.312	0.512	0.171
Р	0.007	0.019	0.018	S	0.509	0.698	0.124
Р	0.136	0.025	0.982	S	0.001	0.319	0.124
S	0.896	0.029	0.980	S	0.007	0.702	0.123
S	0.862	0.804	0.622	S	0.502	0.326	0.123
S	0.239	0.799	0.579	S	0.294	0.008	0.102
S	0.981	0.113	0.570	S	0.711	0.006	0.102
S	0.891	0.743	0.551	S	0.814	0.510	0.076
S	0.189	0.491	0.508	S	0.190	0.508	0.075
S	0.808	0.467	0.507	S	0.506	0.224	0.052
S	0.501	0.800	0.482	S	0.494	0.817	0.048
S	0.500	0.209	0.482	S	0.007	0.207	0.041
S	0.998	0.687	0.462	S	0.998	0.830	0.040
S	0.003	0.313	0.457				
S	0.710	0.004	0.430				
S	0.295	0.004	0.429				
S	0.692	0.510	0.426				
S	0.310	0.510	0.426				
S	0.002	0.702	0.378				
S	0.000	0.315	0.378				
S	0.501	0.322	0.378				
S	0.502	0.694	0.378				
S	0.299	0.005	0.355				
S	0.708	0.010	0.355				
S	0.191	0.506	0.331				
S	0.814	0.511	0.331				
S	0.504	0.801	0.302				
S	0.502	0.215	0.302				
S	0.000	0.817	0.300				
S	0.001	0.200	0.299				
S	0.189	0.004	0.252				
S	0.813	0.004	0.252				
S	0.809	0.507	0.251				
S	0.194	0.507	0.251				
S	0.501	0.215	0.228				
S	0.501	0.801	0.227				
S	0.000	0.698	0.204				
S	0.001	0.322	0.203				
S	0.710	0.009	0.176				
S	0.296	0.008	0.175				

Element	а	b	с	Element	а	b	с
Li	0.400	0.399	0.717	Li	0.490	0.000	0.412
Li	0.066	0.066	0.717	Li	0.754	0.220	0.407
Li	0.733	0.733	0.717	Li	0.265	0.779	0.407
Li	0.733	0.066	0.717	Li	0.734	0.778	0.407
Li	0.067	0.399	0.717	Li	0.265	0.221	0.407
Li	0.733	0.399	0.717	Li	0.000	0.489	0.380
Li	0.400	0.066	0.717	Li	0.732	0.267	0.337
Li	0.066	0.733	0.717	Li	0.732	0.733	0.337
Li	0.400	0.733	0.717	Li	0.268	0.266	0.337
Li	0.243	0.555	0.666	Li	0.268	0.733	0.337
Li	0.910	0.556	0.666	Li	0.489	0.000	0.268
Li	0.243	0.889	0.666	Li	0.732	0.243	0.263
Li	0.577	0.222	0.666	Li	0.732	0.757	0.263
Li	0.577	0.889	0.666	Li	0.267	0.244	0.263
Li	0.577	0.556	0.666	Li	0.267	0.756	0.263
Li	0.244	0.222	0.666	Li	0.000	0.489	0.236
Li	0.910	0.222	0.666	Li	0.222	0.224	0.194
Li	0.910	0.889	0.662	Li	0.778	0.776	0.194
Li	0.400	0.733	0.610	Li	0.222	0.776	0.194
Li	0.400	0.067	0.607	Li	0.778	0.224	0.194
Li	0.734	0.066	0.606	Li	0.734	0.220	0.124
Li	0.400	0.400	0.606	Li	0.264	0.221	0.124
Li	0.734	0.732	0.606	Li	0.264	0.778	0.124
Li	0.734	0.399	0.606	Li	0.735	0.779	0.124
Li	0.066	0.399	0.606	Li	0.491	0.000	0.124
Li	0.066	0.067	0.606	Li	0.000	0.490	0.092
Li	0.067	0.732	0.606	Li	0.731	0.265	0.055
Li	0.578	0.222	0.555	Li	0.289	0.266	0.055
Li	0.578	0.890	0.555	Li	0.711	0.734	0.055
Li	0.911	0.890	0.551	Ge	0.289	0.735	0.055
Li	0.911	0.223	0.551	Ge	0.479	0.942	0.482
Li	0.243	0.912	0.550	Ge	0.503	0.002	0.339
Li	0.245	0.222	0.550	Ge	0.502	0.002	0.198
Li	0.579	0.554	0.550	Р	0.503	0.007	0.052
Li	0.909	0.554	0.550	Р	0.995	0.489	0.461
Li	0.219	0.554	0.546	Р	0.504	0.501	0.399
Li	0.644	0.245	0.476	Р	0.002	0.500	0.308
Li	0.224	0.220	0.476	Р	0.002	0.000	0.256
Li	0.777	0.755	0.476	Р	0.001	0.501	0.165
Li	0.221	0.755	0.476	Р	0.501	0.503	0.113

Table S6 The Atomic positions of relaxed Li/GeS₄-LGPS interface structure

Element	а	b	с	Element	а	b	с
S	0.022	0.509	0.021	S	0.708	0.002	0.085
S	0.179	0.516	0.986	S	0.294	0.005	0.084
S	0.938	0.516	0.977	S	0.001	0.691	0.047
S	0.397	0.718	0.556	S	0.007	0.315	0.044
S	0.437	0.172	0.512	S	0.509	0.218	0.027
S	0.818	0.473	0.493	S	0.501	0.800	0.026
S	0.192	0.488	0.486				
S	0.694	0.000	0.454				
S	0.275	0.987	0.449				
S	0.986	0.692	0.438				
S	0.003	0.314	0.430				
S	0.504	0.682	0.428				
S	0.507	0.307	0.425				
S	0.311	0.504	0.373				
S	0.694	0.506	0.373				
S	0.709	0.000	0.369				
S	0.295	0.001	0.368				
S	0.001	0.685	0.336				
S	0.001	0.309	0.334				
S	0.503	0.208	0.310				
S	0.502	0.796	0.310				
S	0.194	0.501	0.282				
S	0.189	0.000	0.282				
S	0.815	0.000	0.282				
S	0.812	0.502	0.282				
S	0.002	0.809	0.229				
S	0.002	0.192	0.229				
S	0.501	0.208	0.227				
S	0.501	0.795	0.227				
S	0.813	0.500	0.191				
S	0.189	0.500	0.191				
S	0.297	0.001	0.168				
S	0.705	0.001	0.168				
S	0.500	0.687	0.141				
S	0.500	0.317	0.140				
S	0.000	0.693	0.139				
S	0.000	0.308	0.138				
S	0.693	0.505	0.087				
S	0.310	0.505	0.087				

Table S7 Calculated the lattice mismatch (ϵ), equilibrium interfacial distances (d₀), interface adhesion work (W_{ad}) of the PS₄ and GeS₄- terminated for the interface of Li/LGPS

Slab	3	d_0 (Å)	W_{ad} (J m ⁻²)
GeS ₄ -terminated	4.5%	2.02	-1.81
PS ₄ -terminated	4.5%	1.82	-1.57