Supporting Information

Nature of selenium hydrogen bonding: Gas phase spectroscopy and quantum chemistry calculations

Kamal K. Mishra^a, Santosh K. Singh^a, PaulamiGhosh^{b,c}, DebashreeGhosh^{*b,c},

and Aloke Dasa*

^aDepartment of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. HomiBhaba Road, Pune-411008

^bDepartment of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata-700032. Email: pcdg@iacs.res.in

^cPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune-411008

Table of content

Page Numbers
3-5
6
7
8
9
10
11
12
12
13
14 15-21

1. Experimental and Computational Methods

Experimental Methods

Materials: Indole (Sigma-Aldrich, purity \ge 99.0%), phenol (Sigma-Aldrich, purity \ge 99.0%) and dimethyl selenide (Alfa Aesar, purity \ge 90.0%) were used without any further purification.

The experiment was performed in a home-built jet-cooled Time of Flight mass spectrometer. The experimental setup was described elsewhere in details.^[1] Only a brief description is presented here. The experimental techniques used in this work were two-color resonant 2-photon ionization (2C-R2PI) spectroscopy, resonant ion-dip infrared (RIDIR) spectroscopy, and IR-UV hole-burning spectroscopy.

Two-color resonant 2-photon ionization (2C-R2PI) spectroscopy: Mass selected electronic spectra of indole...dimethyl selenide (indmse) and phenol...dimethyl selenide (phdmse) dimeric complexes were measured using 2C-R2PI spectroscopy. To synthesize indmse/ phdmse complexes in a supersonic jet, mixed vapor of dimethyl selenide (maintained at -78°C by keeping it in a dry ice bath) and indole (heated at 75 °C)/phenol (heated at 40 °C) is seeded in a carrier gas mixture of He/Ne (30:70) at 55 psig was expanded in high vacuum through a pulsed nozzle (General valve, series 9, 0.5 mm orifice diameter, 10 Hz rep. rate). The molecular complexes were ionized using 2-color resonant 2-photon ionization (2C-R2PI) technique. In this technique, the wavelength of the first photon obtained from frequency doubled output of a tunable dye laser (Continuum, ND6000, 10 Hz, 10 ns, 80 µJ/pulse) pumped by second harmonic output of a Nd:YAG laser (10 Hz, 10ns, Surelite II-10, Continuum) is scanned through the vibronic levels of the S₁ state. Subsequently another photon of fixed wavelength (355 nm) obtained from frequency doubled output of another tunable dye laser (Continuum, ND6000, 10 Hz, 10 ns, 800 µJ/pulse) pumped by second harmonic output of a Nd:YAG laser (10 Hz, 10 ns, Surelite II-10, Continuum) without any time delay from the first laser ionizes the molecules from the S_1 state. The ions were mass analyzed in the Time of Flight mass spectrometer and detected using a microchannel plate detector.

Resonant ion-dip infrared (RIDIR) spectroscopy: The IR spectra of the complexes were measured using RIDIR spectroscopy. In this technique, the excitation UV laser wavelength was

fixed at one particular transition in the electronic spectrum and the ionization laser fired without any delay from the excitation laser was fixed at 355 nm. A tunable IR laser (resolution $\sim 2 \text{ cm}^{-1}$, OPO/OPA, Laser Vision), pumped by a Nd:YAG laser (10 Hz, 10 ns, Surelite II-10, Continuum) preceded the UV lasers by 100 ns was scanned through the N-H/O-H stretching frequency region. Whenever the IR laser frequency is in resonance with any of the vibrational frequency of molecules or complexes, depletion in the UV signal appears as the IR spectrum.

IR-UV hole-burning spectroscopy: This technique is similar to the RIDIR spectroscopy. However the IR laser is fixed to a particular vibrational transition in the IR spectrum and the excitation UV laser is scanned through the whole region of the R2PI spectrum. Here, the ion signal for the electronic bands in the R2PI spectrum belonging to the same conformer is depleted while the IR laser is parked to specific vibration of the conformer. This spectroscopy was used to verify the presence of more than one conformer of indmse and phdmse complexes in the experiment.

<u>Computational methods</u>

We optimized the structures of different conformers of indole and phenol complexes at the B97-D level of theory using 6-311++g(d,p), cc-pVTZ and aug-cc-pVTZ basis sets. Vibrational frequencies of different conformers of the complexes were calculated using the same level of theory to ascertain that the optimized structures are true minima. Binding energies of the complexes were calculated considering basis set superposition error (BSSE) and zero point energy (ZPE) corections. Apart from the energy calculated at the B97-D level, we also calculated the energy of the monomers and complexes at the CCSD/6-311++g(d,p) level of theory (single point calculation), to check for the consistency of the DFT functional that was used. Thermal correction to the binding energy was done to calculate the Gibbs free energy (ΔG) at 10 K for the formation of the complexes using thermochemical analysis in Q-Chem. ΔG has been calculated at an average temperature of 10 K considering that translational (~ 1 K), rotational (<10 K) and vibrational temperatures (30-50 K) in supersonic jet are different.

To determine different components of the interaction energies in the S/Se hydrogen bonded complexes, Symmetry Adapted Perturbation Theory (SAPT) at the level of SAPT2/aug-cc-pVDZ and Absolutely Localized Molecular Orbital-Energy Decomposition Analysis (ALMO-

EDA) at the B97-D/6-31+G(d,p) level were performed. To determine the structures of the observed conformers of the complexes in the experiment, theoretical IR spectra of various conformers were compared with the experimental IR spectra of the complexes. As the vibrational frequencies were calculated according to harmonic approximation, the calculated frequencies (N-H and O-H) were corrected using a scaling factor. The scaling factor was obtained from the ratio of experimental N-H/O-H stretching frequency of monomer (indole/phenol) and calculated harmonic N-H/O-H stretching frequency of monomer (indole/monomer) obtained at a particular level of theory and basis set. The scaling factors obtained for N-H and O-H stretching frequencies at the B97-D/6-311++g(d,p) level of theory are 0.9588 and 0.9609, respectively while the same obtained for N-H and O-H stretching frequencies at the B97-D/aug-cc-pVTZ level of theory are 0.978 and 0.9795, respectively. All the calculations were performed using Gaussian09^[2] and Q-Chem 4.0 software packages^[3].

Detailed NBO calculations were performed using NBO6.0 program to determine charge transfer (CT) values in various conformers of indole and phenol with dmse, dms and dmo along with the change in the occupancy of lone pair orbitals ($\Delta \eta_s \text{and } \Delta \eta_p$) of the donor atoms (Se/S/O) and σ^* anti bonding orbital ($\Delta \sigma^*_{N-H/O-H}$) of the N-H/O-H bond upon complex formation. The NBO calculations were carried out at the B97-D level of theory using 6-31+G(d), 6-311++g(d,p) and cc-pVTZ basis sets. CT is defined as the difference between the sum of all the natural charges over individual atom in the complex and the sum of all the charges over individual atom in the monomers. In regard to the strength of the hydrogen bond, it is more important to look at the change in the occupancy of lone pair orbitals ($\Delta \eta_s \text{and } \Delta \eta_p$) of the hydrogen bond acceptor atoms (Se/S/O) and antibonding orbital ($\Delta \sigma^*_{N-H/O-H}$) of the N-H/O-H bond upon complex formation. The hydrogen bond acceptor atoms (Se/S/O) have s and p types of lone pair orbitals. However it has been found that the efficient charge transfer from the acceptor atoms to the hydrogen bond donor occur mostly from the p-type lone pair orbital for all the S and Se complexes. It is interesting to note that the charge transfer from both s and p type lone pair orbitals of oxygen atom in the case of indmo and phdmo complexes is negligible.

Figure S1. Electronic spectra of (a) indole, (b) indmse, (c) phenol, and (c) phdmse complexes measured using 2C-R2PI spectroscopy. The spectra have been presented in relative wavenumber scale with respect to the 0_0^0 bands of the complexes.

Table S1. Observed and calculated low frequency intermolecular vibrational modes of indmseA in the S_1 state. The S_1 state intermolecular vibrational modes are calculated at the TD-B3LYP/6-31G(d) level of theory

Observed (cm ⁻¹)	Calculated (cm ⁻¹)	Assignments
14	20	α
28		2α
	36	
	48	
	70	
79	85	σ
	110	

(cm^{-1})	Assignments
17	α'
28	β'
	$\alpha' + \beta'$
	2β'
59	(α'+2β')/(γ')
	3β'
72	
86	σ'
113	$(\sigma'\!\!+\alpha')\!/\!(\delta')$
	$\sigma'\!\!+\beta'$
	σ '+2 β '
	17 28 59 72 86 113

Table S2. Observed (S₁) and calculated (S₀)^a low frequency intermolecular vibrational modes of phdmseA complex. The S₀ state low frequency vibrational modes are calculated at the B97-D/6-311++G(d,p) level of theory

^aLow frequency intermolecular vibrations of phdmse could not be calculated at the S_1 state as there was a problem in optimizing the geometry of the complex due to breaking of the Se-CH₃ bond. However the low frequency vibrations calculated at the S_0 level match pretty well with those observed in the experiment.

Figure S2. Structures of various conformers of (a) indole and (b) phenol complexes with dimethyl selenide (dmse), dimethyl sulfide (dms) and dimethyl ether (dmo) optimized at the B97-D/aug-cc-pVTZ level of theory. BE represents the BSSE and zero point energy corrected binding energies of the complexes. ${}^{a}v_{NH}(exp) = 3367 \text{ cm}^{-1}$ (Experimental N-H stretching frequency of indms) and ${}^{b}v_{OH}(exp) = 3527 \text{ cm}^{-1}$ (Experimental O-H stretching frequency of phdms) are taken from references 18 and 22 (in the manuscript), respectively. Theoretical harmonic N-H stretching frequencies [$v_{NH}(cal)$] of the indole complexes and O-H stretching [$v_{OH}(cal)$] frequencies of the phenol complexes provided with the structures in the figure are scaled using factors of 0.978 and 0.9795, respectively. It should be pointed out here that v_{OH} (cal) of phdmsA is quite far away from v_{OH} (exp). However this is a minimum energy structure and calculation at this level of theory shows two different structures of phenol...dimethyl sulphide complex.

Table S3. BSSE and zero point energy corrected binding energies (BE) in kcal/mol of various conformers of Se, S, and O centered hydrogen bonded complexes of indole as well as phenol calculated at various levels of theory. CCSD and B97-D/6-31+G(d,p) calculations are done at single point level

	Complexes	BE B97-D/6-	BE B97-D/6-	BE B97-D/cc-	BE B97-D/aug-	BE CCSD/6-
		311 + G(d,p)	31+G(d,p)	pVTZ	cc-pVTZ	311 + G(d,p)
Ļ	indmseA	-6.41	-6.83	-5.75	-5.77	-4.47
es o e	indmseB	-6.11	-6.00	-5.53	-5.50	-4.26
plex ndol	indmsA	-6.26	-5.77	-5.49	-5.47	-5.05
l.	indmsB	-5.75	-5.03	-5.27	-5.20	-4.23
0	indmo	-6.78	-6.87	-5.51	-5.63	-5.70
f	phdmseA	-6.63	-7.02	-5.96	-6.02	-4.54
ces o ol	phdmseB	-7.11	-7.40	-6.16	-6.27	-4.87
plex	phdmsA	-6.54	-5.52	-5.68	-5.75	-4.98
Om	phdmsB	-6.65	-6.36	-6.04	-6.13	-5.23
U	phdmo	-7.70	-6.54	-6.29	-6.46	-6.51

Table S4. Comparison of BSSE and zero point corrected binding energies (BE, in kcal/mol) and Gibbs free energies (ΔG , in kcal/mol) of various conformers of hydrogen bonded complexes of indole and phenol calculated at the B97-D/6-311++G(d,p) level of theory. ΔG has been calculated at 10 K and 50 K

	Complexes	BE	$\Delta G (10 \text{ K})$	ΔG (50 K)
s of	indmseA	-6.41	-6.05	-5.58
	indmseB	-6.11	-5.81	-5.56
olexe dole	indmsA	-6.26	-6.12	-5.92
Jomr in	indmsB	-5.75	-5.48	-5.32
0	indmo	-6.78	-6.51	-6.14
	phdmseA	-6.63	-6.44	-5.98
Complexes of phenol	phdmseB	-7.11	-6.72	-6.35
	phdmsA	-6.54	-6.16	-5.91
	phdmsB	-6.65	-6.29	-5.87
	phdmo	-7.70	-7.40	-7.23

	Complexes	Δv_{cal}	ΔE_{Ele}	ΔE_{Pol}	ΔE_{Disp}	ΔE_{Rep}	ΔE_{Total}
ч	indmseA	151	-8.25	-2.96	-7.14	11.66	-6.69
es o e	indmseB	181	-7.30	-3.32	-6.15	10.98	-5.79
plex ndol	indmsA	163	-8.33	-4.78	-6.85	13.22	-6.74
l I	indmsB	219	-8.17	-3.75	-6.63	12.62	-5.93
C	indmo	252	-10.70	-3.77	-4.88	12.42	-6.93
Ť	phdmseA	236	-9.23	-3.69	-7.08	12.69	-7.31
les o	phdmseB	322	-9.69	-4.34	-6.31	13.14	-7.20
plex	phdmsA	119	-9.41	-3.37	-7.42	12.84	-7.36
Om	phdmsB	326	-10.27	-4.64	-6.13	13.54	-7.50
0	phdmo	218	-14.26	-5.16	-5.20	16.86	-7.76

Table S5. Different components of the total interaction energy (kcal/mol) of various conformers of hydrogen bonded complexes of indole and phenol calculated at the SAPT2/aug-cc-pVDZ level of theory. Theoretical red-shift (Δv_{cal} in cm⁻¹) values in the N-H/O-H stretching frequency of the complexes with respect to indole/phenol monomer are also provided in the table

Table S6. Decomposition of interaction energies (kcal/mol) of different conformers of the complexes of indole and phenol obtained at the B97-D/6-31+G(d,p) method using ALMO-EDA method. Theoretical red-shift (Δv_{cal} in cm⁻¹) values in the N-H/O-H stretching frequency of the complexes with respect to indole/phenol monomer are also provided in the table

	Complexes	Δv_{cal}	ΔE_{Frz}	ΔE_{Pol}	ΔE_{CT}	ΔE_{Total}
÷,	indmseA	151	-2.94	-0.92	-3.05	-6.91
les 0 le	indmseB	181	-1.71	-1.00	-3.69	-6.40
plex ndol	indmsA	163	-2.50	-0.95	-3.09	-6.54
lom I	indmsB	219	-0.87	-1.12	-4.09	-6.09
0	indmo	252	-2.83	-1.58	-2.84	-7.25
f	phdmseA	236	-2.61	-1.10	-3.99	-7.69
les o	phdmseB	322	-1.83	-1.34	-4.54	-7.71
plex	phdmsA	119	-2.68	-1.06	-3.32	-7.05
lom]	phdmsB	326	-1.33	-1.45	-4.68	-7.46
0	phdmo	218	-2.40	-2.26	-3.88	-8.54

Table S7. NBO charge transfer values (CT) in various conformers of indmse, indms, and indmo complexes calculated at the B97-D/6-311++G(d,p) level of theory using various basis sets. Change in the occupancy of s and p-type lone pair orbitals ($\Delta \eta_s$ and $\Delta \eta_p$) of the hydrogen bond acceptor atoms (Se/S/O) and antibonding orbital ($\Delta \sigma^*_{N-H}$) of the N-H bond upon complex formation are also shown

Complexes	Methods	СТ	$\Delta\eta_s{}^a$	$\Delta\eta_p{}^b$	$\Delta\sigma^{*}_{\text{N-H}}$
	B97-D/6-31+G(d)	0.0348	-0.0011	-0.0357	0.0331
indmseA	B97-D/6311++G(d,p)	0.0332	-0.0008	-0.0290	0.0279
	B97-D/cc-pVTZ	0.0304	-0.0010	-0.0262	0.0251
	B97-D/6-31+G(d)	0.0408	-0.0017	-0.0391	0.0368
indmseB	B97-D/6311++G(d,p)	0.0381	-0.0016	-0.0325	0.0322
	B97-D/cc-pVTZ	0.0358	-0.0017	-0.0301	0.0295
	B97-D/6-31+G(d)	0.0358	-0.0012	-0.0400	0.0306
indmsA	B97-D/6311++G(d,p)	0.0353	-0.0007	-0.0248	0.0288
	B97-D/cc-pVTZ	0.0296	-0.0007	-0.0201	0.0244
	B97-D/6-31+G(d)	0.0430	-0.0013	-0.0366	0.0391
indmsB	B97-D/6311++G(d,p)	0.0434	-0.0013	-0.0323	0.0368
	B97-D/cc-pVTZ	0.0376	-0.0014	-0.0266	0.0315
	B97-D/6-31+G(d)	0.0363	-0.0084	-0.0074	0.0319
indmo	B97-D/6311++G(d,p)	0.0308	-0.0066	-0.0011	0.0249
	B97-D/cc-pVTZ	0.0242	-0.0035	0.0038	0.0200

Table S8. NBO charge transfer values (CT) in all the possible conformers of phdmse, phdms, and phdmo complexes calculated at the B97-D/6-311++G(d,p) level of theory using various basis sets. Change in the occupancy of s and p-type lone pair orbitals ($\Delta \eta_s$ and $\Delta \eta_p$) of the hydrogen bond acceptor atoms (Se/S/O) and antibonding orbital ($\Delta \sigma^*_{N-H}$) of the N-H bond upon complex formation are also shown

Complexes	Methods	СТ	$\Delta\eta_s{}^a$	$\Delta\eta_p{}^b$	$\Delta\sigma^{*}_{ m O-H}$
	B97-D/6-31+G(d)	0.0422	-0.0012	-0.0388	0.0372
phdmseA	B97-D/6-311++G(d,p)	0.0372	-0.0008	-0.0295	0.0305
	B97-D/cc-pVTZ	0.0362	-0.0012	-0.0284	0.0307
	B97-D/6-31+G(d)	0.0528	-0.0004	-0.0490	0.0470
phdmseB	B97-D/6-311++G(d,p)	0.0485	-0.0004	-0.0404	0.0415
	B97-D/cc-pVTZ	0.0467	-0.0006	-0.0390	0.0412
	B97-D/6-31+G(d)	0.0329	-0.0018	-0.0260	0.0283
phdmsA	B97-D/6-311++G(d,p)	0.0311	-0.0012	-0.0202	0.0233
	B97-D/cc-pVTZ	0.0267	-0.0013	-0.0164	0.0216
	B97-D/6-31+G(d)	0.0543	-0.0012	-0.0450	0.0485
phdmsB	B97-D/6-311++G(d,p)	0.0527	-0.0010	-0.0392	0.0449
	B97-D/cc-pVTZ	0.0465	-0.0012	-0.0346	0.0418
	B97-D/6-31+G(d)	0.0443	-0.0119	-0.0104	0.0417
phdmo	B97-D/6-311++G(d,p)	0.0400	-0.0092	-0.0039	0.0348
	B97-D/cc-pVTZ	0.0322	-0.0066	0.0020	0.0310

Cartesian Co-ordinates of the optimized geometries of the complexes at the B97-D/6-311++G(d,p) level of theory:

indmseA

	Atom	Х	Y	Z	Z
N	-0.46	84236059	-0.84491	67272	-0.8049382440
С	-3.74	18590230	1.343982	23226	0.4387728477
С	-3.65	77554815	-0.03319	77307	0.6132862671
С	-2.50	57884078	-0.70929	63995	0.1660260538
С	-2.07	35225201	-2.08116	77960	0.1844236081
С	-0.83	21256422	-2.11544′	78855	-0.4035164617
С	-1.46	55518207	0.04033	13745	-0.4565862661
С	-1.54	90321000	1.42763	17938	-0.6393309154
С	-2.69	74097263	2.067581	1435	-0.1815212156
Η	-4.62	43947632	1.877359	90158	0.7805102428
Η	-4.46	72856695	-0.58101	60170	1.0884288101
Η	-2.61	52118889	-2.93128	56564	0.5754277405
Η	-2.79	62188796	3.14204	17695	-0.3083316599
Η	-0.75	02848471	1.980582	20946	-1.1253988880
Η	0.45	61298406	-0.58155	55063	-1.1286572340
Η	-0.17	06355712	-2.95219	01528	-0.5817538317
С	2.34	08038943	-1.123894	44130	1.1968067836
Η	1.25	36515725	-1.21888	11664	1.2712076675
Η	2.77	75786305	-2.07693	16142	0.8849644751
Η	2.77	07180568	-0.821184	43224	2.1552013824
С	1.81	36378601	1.694633	37058	0.6625605038
Η	2.29	03904554	1.954919	93018	1.6114428771
Η	1.86	31949708	2.548242	27728	-0.0191527043
Η	0.77	05870430	1.407476	65077	0.8203001139
Se	e 2.790)5568496	0.208296	1311	-0.1829155336

indmseB

Atom	Х	Y	Ζ	
N	-0.6081194386	-1.131	2939803	-0.3531905215
С	-3.7058279922	1.555	1650119	0.1508806907
С	-3.8921324058	0.178	7904584	0.2271072549
С	-2.7858904855	-0.673	61671644	0.0444125557
С	-2.6022459997	-2.099	4560389	0.0571529359
С	-1.2695426842	-2.330	9752476	-0.1837382976
С	-1.5070278759	-0.096	59365295	-0.2153679371
С	-1.3170124217	1.289	7278417	-0.2929377560
С	-2.4299113581	2.105	6750533	-0.1068768612

Н	-4.5524323582	2.2214922657	0.2900117447
Н	-4.8774505582	-0.2348602757	0.4254210210
Н	-3.3589462835	-2.8540863510	0.2211117474
Н	-2.3153222594	3.1845693341	-0.1628454757
Н	-0.3393556459	1.7169953404	-0.4947300890
Н	0.3921564544	-1.0291807109	-0.4965359976
Н	-0.7273719318	-3.2640396317	-0.2541853939
С	1.9035678923	0.4371297741	1.5739876419
Н	0.8668230437	0.6959837769	1.3451659772
Н	1.9249644887	-0.3610418710	2.3209398354
Н	2.4481121296	1.3071550546	1.9505254853
С	2.6957077295	1.3816380894	-1.1092362614
Н	3.1613177559	2.2077609479	-0.5651410039
Н	3.2473938120	1.1942423624	-2.0343658770
Н	1.6545323092	1.6157005117	-1.3454611813
Se	2.8104804156	-0.2616331580	-0.0301998366

indmsA

Ι	Atom	Х	Y	Ζ
N	0.055	59266969	-0.8590316057	-0.7689239741
С	-3.340	58293584	1.1745559085	0.3869739911
С	-3.202	33678624	-0.1971034003	0.5659705319
С	-2.010	05902222	-0.8196397160	0.1484849064
С	-1.514	47767980	-2.1694802454	0.1800787683
С	-0.258	83781869	-2.1454308772	-0.3763795732
С	-0.99	12593385	-0.0224880906	-0.4492604354
С	-1.13	34441109	1.3595940292	-0.6346678293
С	-2.32	15583276	1.9458049621	-0.2075035024
Η	-4.26	16312633	1.6664122148	0.7053664303
Η	-3.99	83197636	-0.7811760391	1.0222378183
Η	-2.02	46572917	-3.0440273633	0.5598233085
Η	-2.46	66530711	3.0145044734	-0.3382619646
Η	-0.34	89885212	1.9488807119	-1.1010501694
Η	0.969	90152531	-0.5520744694	-1.0880248391
Η	0.444	42643465	-2.9513508593	-0.5390406262
С	3.133	30971327	-1.0347440026	0.8855459486
Η	2.098	80977648	-1.3173064855	1.1066002878
Η	3.65	75207057	-1.8834709412	0.4367435787
Н	3.648	84434142	-0.7396880180	1.8052982904
С	2.235	52242924	1.5797776088	0.6376348142
Н	2.778	85222287	1.8344034164	1.5533995273
Η	2.143	34295057	2.4741247587	0.0145181271
Η	1.23	57529877	1.2048025592	0.8806617565
S	3.17	30505563	0.3368220103	-0.3294624664

indmsB

Ν	-0.0175977772	-1.1318176100	0.0000112808
С	-3.1226929298	1.5983264959	0.0000628638
С	-3.3357838107	0.2237382286	0.0000047158
С	-2.2250160837	-0.6416364818	-0.0000084661
С	-2.0678950815	-2.0707712182	-0.0001548744
С	-0.7176634315	-2.3216020778	0.0001371697
С	-0.9118432943	-0.0824640432	0.0000463360
С	-0.6961867017	1.3035000157	0.0000963821
С	-1.8151135283	2.1327436842	0.0001078590
Η	-3.9722981894	2.2753265175	0.0000465238
Η	-4.3454730239	-0.1785413427	-0.0000625531
Η	-2.8532858217	-2.8137692785	-0.0002967521
Η	-1.6790925648	3.2105771525	0.0001336857
Η	0.3038675689	1.7249997525	0.0001183235
Η	0.9969768171	-1.0599739758	0.0000100243
Η	-0.1851568277	-3.2628240624	0.0002216795
С	2.8193114707	0.7060765128	1.4063072382
Η	1.7372346040	0.8650280180	1.4481039470
Η	3.1398130173	0.1913846814	2.3166847707
Η	3.3418974462	1.6654591408	1.3345261771
С	2.8193723606	0.7059518532	-1.4064040343
Η	3.3419568224	1.6653392994	-1.3346833950
Η	3.1399160365	0.1911793511	-2.3167209933
Η	1.7372972953	0.8649013596	-1.4482662215
S	3.2843770478	-0.3756676947	0.0000100330

indmo

Aton	n X	Y	Ζ	
N	0.2807690619	-1.1044	1549475	-0.0001440719
С	-2.890000052	1.5580	769726	0.0000669645
С	-3.0767609703	0.1750	669679	0.0000819658
С	-1.9464259490	-0.6704	4350036	0.0000069529
С	-1.7522929131	-2.0949	9249987	-0.0000020501
С	-0.3900309076	-2.3153	3659644	-0.0000920652
С	-0.6426239639	-0.0781	619707	-0.0000820611
С	-0.4522059990	1.3126	5290341	-0.0001000625
С	-1.5906050194	2.1222	2510054	-0.0000230495
Η	-3.7558110218	2.2192	2369508	0.0001249744
Н	-4.0813389597	-0.247	6550574	0.0001499766
Н	-2.5205068939	-2.859	9250180	0.0000499580
Н	-1.4778340467	3.2057	7980082	-0.0000360501
Н	0.5473239901	1.7460	550592	-0.0001790732

Η	1.2932060585	-0.9705869220	-0.0001750830
Н	0.1658521159	-3.2461889504	-0.0001250718
С	3.3018670347	0.4928271280	1.1855088957
Н	2.6388850129	1.3753031112	1.2246199035
Н	3.0881640606	-0.1623878779	2.0374358977
Н	4.3528140268	0.8275431544	1.2282178843
С	3.3021500086	0.4931171293	-1.1852881043
Н	4.3531109997	0.8278311558	-1.2276721157
Н	3.0886360157	-0.1618808756	-2.0374291023
Н	2.6391909859	1.3756151126	-1.2243330965
0	3.0655620409	-0.2710068773	-0.0000131021

phdmseA

Aton	n X	Y	Ζ	
С	-2.0872052442	1.7865	366529	0.0533786230
Н	-2.6500952396	2.2017	935489	-0.7901544312
Н	-2.4794313095	2.1867	146979	0.9954615767
Н	-1.0208602566	2.0190	267198	-0.0417293525
С	-1.3362550157	-0.5653	774199	-1.5751241665
Н	-0.3152870462	-0.1781	563420	-1.4866961557
Н	-1.3115369354	-1.6547	314268	-1.6876530819
Н	-1.8611280138	-0.1100	875215	-2.4224022223
Se	-2.3288141089	-0.1847	663601	0.1039397648
С	3.4619958198	1.1137	510061	-0.3787221049
С	3.6519649237	-0.2621	579963	-0.5825459917
С	2.7034919707	-1.1900	710283	-0.1386819581
С	1.5475909132	-0.7422	520578	0.5243509616
С	1.3586378085	0.6344	889462	0.7482108484
С	2.3113657626	1.5538	599773	0.2898068156
Н	4.2022777839	1.8301	180307	-0.7305661305
Н	4.5446449689	-0.6175	679736	-1.0964079289
Н	2.8376600515	-2.2580	310314	-0.3005838708
Н	0.4723777639	0.9679	409257	1.2857517876
Η	2.1559766815	2.6178	469802	0.4677347277
0	0.6430089622	-1.6823	460890	0.9385909979
Н	-0.2085120760	-1.2367	101344	1.1205269298

phdmseB

Atom	Х	Y	Ζ	
С -	2.8904523393	1.38115	01055	-0.4045518875
Н -	3.5273332594	1.25949	03379	-1.2878919771

Η	-3.4566264333	1.8628718284	0.4006672123
Η	-1.9971213533	1.9696122281	-0.6404036347
С	-1.3267001280	-0.9396045139	-1.3632954640
Η	-0.5074981541	-0.2331434155	-1.5334561815
Η	-0.9189960865	-1.9389085476	-1.1759167342
Н	-2.0094360555	-0.9682202922	-2.2199195292
Se	-2.3361482928	-0.4075830664	0.2644526144
С	3.9016427675	-0.7694395652	-0.2155789802
С	3.8301037122	0.6048225149	-0.4925705682
С	2.6673436478	1.3315413643	-0.2148924432
С	1.5570296381	0.6806281290	0.3509282670
С	1.6236536926	-0.6951379551	0.6398468541
С	2.7925627572	-1.4116808009	0.3517687328
Η	4.8090428175	-1.3292204467	-0.4354140754
Η	4.6864177192	1.1170426968	-0.9303833416
Η	2.6016406048	2.3969354255	-0.4284481247
Η	0.7639026833	-1.1885371416	1.0920656330
Η	2.8350287990	-2.4764668679	0.5797734125
0	0.4400615744	1.4320409884	0.6039664033
Н	-0.3015744117	0.8363648725	0.8462801608

phdmsA

Atom	Х	Y	Z	
С	2.1951226843	0.8233	3208304	-0.3334323402
Н	1.1367952540	1.0044	4280637	-0.5462058117
Н	2.4291196613	1.195	1841524	0.6676452948
Η	2.8288909213	1.3240	6867513	-1.0715752517
С	1.9160148022	-1.367	8353702	-2.0143876815
Η	2.5578406726	-0.897	3213906	-2.7661713648
Η	1.9556102776	-2.454	1137548	-2.1379527224
Η	0.8840932877	-1.020	2764111	-2.1335160651
S	2.5247236225	-0.9800	027061	-0.3317895672
С	-2.8537864074	0.934	1635331	-0.6339070831
С	-2.6030384454	1.568	9544076	0.5886443656
С	-1.6017604779	1.104	5244278	1.4431826785
С	-0.8395131298	-0.013	0682106	1.0770146569
С	-1.0958649348	-0.665	3054537	-0.1386051089
С	-2.0947859775	-0.184	8220629	-0.9894470076
Н	-3.6313384918	1.303	6565091	-1.2953537252
Н	-3.1881604179	2.437	3069478	0.8793399993
Н	-1.3929461577	1.595	5948286	2.3888671582
Н	-0.5100069831	-1.540	8556876	-0.4042763316
Н	-2.2858815370	-0.695	7394954	-1.9296791825
0	0.1347013745	-0.430	8794150	1.9316492788

phdmsB

Atom	n X	Y	Z	
С	3.504994	0.988539	0.174007	
Н	4.239215	0.782819	0.963383	
Н	4.016968	1.421887	-0.693225	
Н	2.741356	1.688790	0.535209	
С	1.909669	-1.068002	1.186088	
Н	1.196387	-0.298723	1.506567	
Н	1.367142	-2.000220	0.992648	
Н	2.664868	-1.239920	1.963622	
S	2.718343	-0.573388	-0.386376	
С	-3.456934	-0.690690	0.192127	
С	-3.305476	0.664041	0.527063	
С	-2.101549	1.332363	0.279889	
С	-1.029775	0.642187	-0.313229	
С	-1.176455	-0.714044	-0.659972	
С	-2.386144	-1.372253	-0.402273	
Η	-4.396058	-1.205101	0.388326	
Н	-4.131307	1.206685	0.986310	
Н	-1.974111	2.382189	0.538030	
Н	-0.348269	-1.237474	-1.136646	
Н	-2.490654	-2.421954	-0.675732	
0	0.129271	1.336703	-0.536006	
Η	0.836811	0.708769	-0.800627	

phdmo

Atom	Х	Y	Ζ	
С	-3.7266325746	0.341	7907673	0.2206281891
Н	-4.4279351047	-0.492	25393207	0.3732005717
Η	-3.6438491403	0.922	21611832	1.1433089121
Η	-4.1034904641	0.986	57706298	-0.5882210849
С	-2.3987050985	-0.897	4145526	-1.2944915769
Η	-2.7371748411	-0.283	38841326	-2.1432844138
Η	-1.3609912458	-1.202	24195517	-1.4546138832
Η	-3.0393505086	-1.788	80008544	-1.2114844542
0	-2.4298184487	-0.147	74623852	-0.0866386056
С	3.2316995966	-0.752	5934324	0.2435151319
С	3.2863419545	0.572	8752430	-0.2056349809
С	2.1217821410	1.327	1942408	-0.3514338187
С	0.8770559763	0.757	4044100	-0.0432836978

С	0.8151456939	-0.5694787931	0.4150632778
С	1.9899274165	-1.3145543075	0.5531468712
Η	4.1419518390	-1.3341900168	0.3533071647
Η	4.2452142210	1.0243290311	-0.4467686238
Η	2.1551013368	2.3546572251	-0.7012141834
Η	-0.1492577965	-0.997716605	0.6745201091
Η	1.9293477879	-2.3394608727	0.9103022401
0	-0.2311944835	1.5263614281	-0.2009212424
Η	-1.0287031322	0.9838822979	-0.0543780480

References

- a)S. Kumar, I. Kaul, P. Biswas, A. Das, *The Journal of Physical Chemistry A* 2011, 115, 10299; b)S.
 Kumar, A. Das, *The Journal of Chemical Physics* 2012, 136, 174302; c)S. Kumar, A. Das, *The Journal of Chemical Physics* 2013, 139, 104311.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. H. Li, H. P., A. F. B. Izmaylov, J., G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox*Gaussian 09, Revision B.01*, Gaussian, Inc, Wallingford CT (2009).
- Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio, H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, E. Neuscamman, C. M. Oana, R. Olivares-Amaya, D. P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, et al., *Molecular Physics* 2015, *113*, 184.