Complexation of β-cyclodextrin with dual molecular probes bearing fluorescent and paramagnetic moieties linked by short polyether chains

Sorin Mocanu,^a Iulia Matei^{*,a} Sorana Ionescu,^b Victorita Tecuceanu,^c Gabriela Marinescu,^a Anca Leonties, ^a Petre Ionita,^{a,d} Daniela Culita^a and Gabriela Ionita^{*,a}

^a "Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, Bucharest 060021, Romania. E-mail: ige@icf.ro

^b Department of Physical Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest, Romania

^c Organic Chemistry Centre of the Romanian Academy, 202B Splaiul Independentei, 78100 Bucharest, Romania

^d Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania

Table S1. Fluorescence quantum yields (Φ) of Py(EG)_nT dual probes; S_{probe}/S_{PyCOO-} is the ratio of the integrated emission intensities of the probe and PyCOO⁻, indicating the extent of intramolecular quenching by the paramagnetic moiety

Probe	Φ	S_{probe}/S_{PyCOO} -
Py(EG) ₁ T	0.096	0.093
Py(EG) ₂ T	0.051	0.064
Py(EG) ₃ T	0.159	0.310
Py(EG) ₄ T	0.127	0.173
Py(EG) ₅ T	0.151	0.205
Py(EG) ₆ T	0.234	0.246
$Py(EG)_1$	0.556	0.874
$Py(EG)_6$	0.574	0.913

Fig. S1. Normalized absorption spectra of (A) PyCOO⁻ and relevant Py(EG)_n parent compounds, and (B) selected Py(EG)_nT dual probes, in pH 7.4 phosphate buffer at 20°C.

Fig. S2. Excitation spectra of PyCOO⁻ and selected Py(EG)_nT probes in pH 7.4 phosphate buffer at 20°C; $\lambda_{em} = 380$ nm for PyCOO⁻ and 415 nm for Py(EG)_nT.

Fig. S3. The EPR spectra of $Py(EG)_1T$ in the absence (a) and in the presence of β -CD (b) and $Py(EG)_6T$ in the absence (c) and in the presence of β -CD (d)in water/glycerol (9:1). Concentration of β -CD is 10^{-2} M.

Fig. S4. Steady-state fluorescence spectra of (A) $Py(EG)_1$ and (B) $Py(EG)_6$ parent compounds, (C) $Py(EG)_1T$ and (D) $Py(EG)_6T$ dual probes in the presence of increasing concentrations of β -CD.

Fig. S5. Dependence of τ_c on the β -CD concentration: experimental (blue) and best fit for 1:1 stoichiometry (red).

Fig. S6. Dependence of τ_c on the β -CD concentration: experimental (blue) and best fit for 1:2 stoichiometry

Fig. S7. Deconvoluted steady-state fluorescence spectra of $Py(EG)_4T$ in the absence (A) and in the presence (B) of 10^{-2} M β -CD.

The association constants, K, characterizing the equilibria in solution have been determined according to eq. (S1) assuming a 1:1 stoichiometry of the interaction. In order to minimize band superposition effects, the K values have been computed employing the area (S in Table S2) of the band at ~440 nm, obtained by deconvolution. In the case of the probes that present little band superposition at ~450 nm, we checked that similar K values can be obtained when employing the decrease in fluorescence intensity at 445 nm.

$$S = \frac{S_0 + K S_c[CD]}{1 + K [CD]} \quad (S1)$$

In eq. (S1), S₀ and S_c are band areas of the guest in the absence of CD and of the 1:1 complex, respectively.

Probe	[β-CD] (M)	λ_1	S ₁	λ_2	S_2	λ_3	S ₃
Py(EG) ₁ T	0	402.4	14.5	419.8	42.3	441.6	42.2
	10-2	389.1	9.4	407.0	25.5	425.1	63.9
Py(EG) ₂ T	0	405.4	26.9	425.9	43.6	448.6	27.0
	10-2	391.1	13.7	409.3	25.1	427.1	60.0
Py(EG) ₃ T	0	405.3	23.8	425.3	44.4	448.6	28.6
	10-2	390.0	12.4	408.6	25.8	427.2	60.4
Py(EG) ₄ T	0	401.3	12.1	418.2	41.3	439.5	46.0
	10-2	390.6	10.0	408.0	33.3	428.6	56.3
Py(EG) ₆ T	0	401.5	10.4	418.4	45.5	441.6	40.6
	10-2	389.2	8.9	407.4	28.4	428.6	60.9

Table S2. Positions (λ , in nm) and relative areas (S, %) of the peaks in the deconvoluted emission spectra of Py(EG)_nT dual probes in the absence and in the presence of β -CD

Fig. S8. Dependence of the normalized fluorescence emission on the β-CD concentration for selected Py(EG)_nT probes: (A) Py(EG)₁T, (B) Py(EG)₂T, (C) Py(EG)₃T and (D) Py(EG)₆T. The solid lines represent the best fits according to eq. (S1) for 1:1 stoichiometry.

Fig. S9. Fitted fluorescence intensity decays of (A) PyCOO⁻, (B) Py(EG)₆, (C) Py(EG)₂T and (D) Py(EG)₃T in the absence and in the presence of β -CD; $\lambda_{em} = 380$ nm for PyCOO⁻ and 415 nm for Py(EG)_nT; IRF = instrument response function.

Probe	[β-CD]	τ_1	B_1	f_1	<i>a</i> ₁	$ au_2$	B_2	f_2	<i>a</i> ₂	<tbody< th=""><th>χ^2</th></tbody<>	χ^2
	(M)	(ns)				(ns)				(ns)	
Py(EG) ₁ T	0	5.17	0.087	-	-	—	-	—	-	—	1.05
	10-3	5.35	0.071	0.90	0.72	1.45	0.028	0.10	0.28	4.98	1.03
	10-2	6.35	0.053	0.78	0.62	2.79	0.033	0.21	0.38	5.58	1.07
Py(EG) ₂ T	0	5.18	0.064	0.86	0.47	0.76	0.071	0.14	0.53	4.56	1.03
	10-3	5.26	0.052	0.79	0.39	0.91	0.080	0.21	0.61	4.34	1.10
	10-2	6.05	0.063	0.85	0.62	1.75	0.038	0.15	0.38	5.41	1.07
Py(EG) ₃ T	0	5.17	0.068	0.89	0.61	1.01	0.043	0.11	0.39	4.71	1.12
	10-3	5.28	0.065	0.87	0.57	1.02	0.050	0.13	0.43	4.73	1.08
	10-2	6.12	0.064	0.88	0.62	1.42	0.039	0.12	0.38	5.54	1.16
Py(EG) ₆ T	0	5.15	0.090	-	-	_	-	—	-	_	1.19
	10-3	5.70	0.067	0.84	0.76	3.48	0.021	0.16	0.24	4.92	1.22
	10-2	7.96	0.048	0.70	0.55	4.05	0.040	0.30	0.45	5.21	1.17
Py(EG) ₁	0	5.22	0.088	1	-	_	-	—	-	_	1.06
	10-3	5.49	0.082	0.96	0.91	2.38	0.008	0.04	0.09	5.36	1.10
	10-2	8.22	0.045	0.66	0.52	4.55	0.041	0.34	0.48	6.99	1.11
$Py(EG)_6$	0	5.12	0.089	1	-	—	-	—	-	_	1.23
	10-3	5.48	0.073	0.88	0.80	2.92	0.018	0.12	0.20	5.18	1.01
	10-2	6.91	0.051	0.72	0.57	3.58	0.039	0.28	0.43	5.96	1.20
PyCOO-	0	35.20	0.332	1	1	_	_	_	_	_	1.01
	10-2	36.47	0.501	1	1	_	_	_	_	_	1.15

Table S3. Fluorescence decay fitting parameters of $Py(EG)_nT$, $Py(EG)_n$ and $PyCOO^-$ in the absence and in the presence of β -CD; $\lambda_{em} = 415$ nm for $Py(EG)_nT$ and $Py(EG)_n$, and 380 nm for $PyCOO^-$

Note: The maximum error in τ is ± 0.02 ns.

Fig. S10. EPR spectra of $Py(EG)_6T$ loaded in PEG900/ β -CD (A) without adamantol and (B) with adamantol.

Fig. S11. Steady-state fluorescence spectra of $Py(EG)_n$ probes after diffusion in PEG900/ β -CD gel.