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I. THE CHANGE FROM THE SYMMETRY TO THE
ATOMIC BASIS

In order to perform the dynamical calculations, some pro-
cessing of the ab initio 15x15 relativistic potential matrix pro-
vided by MOLPRO is required. Being labeled by global fea-
tures like C2v symmetry and total spin, the 15 molecular elec-
tronic states do not correlate (for large R) to the internal states
of the colliding atoms. A change to a more dynamical ba-
sis to get potentials and couplings labeled by the asymptotic
states of the atoms, and thus suitable to be introduced in the
scattering equations, is needed.

Let us recall that the 15 electronic states considered above
are labeled by A1, A2, B1 or B2 (the irreducible representa-
tion of the group C2v they belong to) plus S and MS quan-
tum numbers (total electronic spin and its projection). In ad-
dition, these states have a defined value of Λ (the absolute
value of the projection of the orbital electronic angular mo-
mentum on the internuclear axis, Λ = |ML|) [1]. We will
name this initial C2v-symmetry basis as B1 and schematically
note it as |Sym, (L),Λ, S ,MS 〉, where Sym stands for the ir-
reducible representation; the value of L has been enclosed in
parentheses in order to remind that the electronic orbital angu-
lar momentum is not strictly a good quantum number, being
only asymptotically defined. The list of the 15 states in basis
B1, characterized by their labels, can be found in Table I. The
spectroscopic notation, including the atomic electrostatic term
(2S +1L) they correspond to, is also shown. As noted above,
this basis is not convenient for the dynamics: the spin-orbit
couplings among these electronic states do not vanish at in-
finity, where interaction between fragments should disappear,
as they do not correlate to particular internal states of the col-
liding atoms. Moreover, the couplings are in general complex
numbers and this complicates their use.

N Spectroscopic notation |S ym, (L),Λ, S , MS 〉

1 1Σ+(1D) |A1, (2), 0, 0, 0〉
2 1∆(1D) |A1, (2), 2, 0, 0〉
3 1Σ+(1S ) |A1, (0), 0, 0, 0〉
4 1Π(1D) |B1, (2), 1, 0, 0〉
5 3Π(3P) |B1, (1), 1, 1,+1〉
6 3Π(3P) |B1, (1), 1, 1, 0〉
7 3Π(3P) |B1, (1), 1, 1,−1〉
8 1Π(1D) |B2, (2), 1, 0, 0〉
9 3Π(3P) |B2, (1), 1, 1,+1〉

10 3Π(3P) |B2, (1), 1, 1, 0〉
11 3Π(3P) |B2, (1), 1, 1,−1〉
12 1∆(1D) |A2, (2), 2, 0, 0〉
13 3Σ−(3P) |A2, (1), 0, 1,+1〉
14 3Σ−(3P) |A2, (1), 0, 1, 0〉
15 3Σ−(3P) |A2, (1), 0, 1,−1〉

TABLE SI. Electronic states in C2v-symmetry basis, B1, 
numbered from 1 to 15.

The atomic states which can be experimentally prepared

correspond to the spectral terms, named 2S +1L j and labeled
by L, S and j (total electronic angular momentum) quantum
numbers. Ω, the projection of j onto an axis, could be also
selected in principle (J and MJ are used in the literature in-
stead of the symbols j and Ω which we prefer here). In what
follows, our aim is to change from basis B1 to a basis which
correlates to these atomic states. We may conceptually de-
compose the process of changing basis into two steps: i) first
we can change from the current C2v-symmetry basis to a def-
inite signed-ML basis, |(L),ML, S ,MS 〉, which we will name
as basis B2; ii) from the latter we will change to a third basis,
basis B3, noted as |(L, S ) j,Ω〉 (with Ω = ML + MS ), which at
infinity diagonalizes the electronic Hamiltonian of each atom,
thus correlating to the spectral terms 2S +1L j. We will examine
each step separately below.

The first change of basis is equivalent to the one which re-
lates the real spherical harmonics (of defined C2v-symmetry)
to the complex spherical harmonics (of defined spherical sym-
metry). For example, states (4) and (8) in basis B1, with Λ = 1
(Π states), are transformed using the same expressions which,
for hydrogenic atoms, relate ψpx, ψpy orbitals with ψp+1 , ψp−1

orbitals. The list of quantum numbers of this second basis,
B2, is given in Table II, together with the equations for the
change of basis. In addition to performing these linear com-
binations, which change to a signed-ML basis, some states of
basis B1 are simply multiplied by the imaginary unit (i). This
way we are able to get a matrix which is real numbered at ev-
ery R. An additional advantage of basis B2 is that the number
of couplings is reduced to a minimum as only states with the
same value of Ω = ML + MS are coupled.

N |(L),ML, S , MS 〉 Change

I |0, 0, 0, 0〉 (I) = (3)
II |2,+2, 0, 0〉 (II) = 1

√
2
((2) + i(12))

III |2,+1, 0, 0〉 (III) = − 1
√

2
((4) + i(8))

IV |2, 0, 0, 0〉 (IV) = 1
V |2,−1, 0, 0〉 (V) = 1

√
2
((4) − i(8))

VI |2,−2, 0, 0〉 (VI) = 1
√

2
((2) − i(12))

VII |1,+1, 1,+1〉 (VII) = − 1
√

2
((5) + i(9))

VIII |1,+1, 1, 0〉 (VIII) = − 1
√

2
((6) + i(10))

IX |1,+1, 1,−1〉 (IX) = − 1
√

2
((7) + i(11))

X |1, 0, 1,+1〉 (X) = i(13)
XI |1, 0, 1, 0〉 (XI) = i(14)
XII |1, 0, 1,−1〉 (XII) = i(15)
XIII |1,−1, 1,+1〉 (XIII) = 1

√
2
((5) − i(9))

XIV |1,−1, 1, 0〉 (XIV) = 1
√

2
((6) − i(10))

XV |1,−1, 1,−1〉 (XV) = 1
√

2
((7) − i(11))

TABLE SII. Electronic states in signed-ML basis, B2, numbered 
using roman numerals, and their relation with the states of basis B1, 
given in ordinary numerals.

The second step involves diagonalizing the potential matrix
expressed in basis B2 at infinity, VB2(R = ∞) to obtain a diag-
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onal matrix Vd. Let us name as C the corresponding change
of basis: Vd = C−1 · VB2(R = ∞) · C. Only states in B2 with
the same Ω are coupled and hence each Ω box can be diag-
onalized independently. Each eigenvalue should correspond
to a spectral term, S(2S +1L j), with a particular projection Ω,
and the energy gaps between them should reproduce the ex-
perimental gaps. Now, by applying to B2 at every R the same
change of basis, C, we get a third basis, B3, and the corre-
sponding potential matrix, VB3(R) = C−1 · VB2(R) ·C. The list
of B3 vectors and their quantum numbers are given in Table
III. Electronic basis B3 is the one we will consider for the
dynamics: it is related to B1 by the same change of basis at
all distances, and each electronic state (and the associated po-
tential diagonal terms) correlates to particular internal states
of the incoming atoms, the couplings between them vanishing
at long distances.

N Asymptotic correlation |(L, S ) j,Ω〉

1 3P2(Ω = 0) |(1, 1)2, 0〉
2 3P2(Ω = +2) |(1, 1)2,+2〉
3 3P2(Ω = +1) |(1, 1)2,+1〉
4 3P1(Ω = 0) |(1, 1)1, 0〉
5 3P2(Ω = −1) |(1, 1)2,−1〉
6 3P2(Ω = −2) |(1, 1)2,−2〉
7 1D2(Ω = +2) |(2, 0)2,+2〉
8 3P1(Ω = +1) |(1, 1)1,+1〉
9 3P0(Ω = 0) |(1, 1)0, 0〉
10 1D2(Ω = +1) |(2, 0)2,+1〉
11 1D2(Ω = 0) |(2, 0)2, 0〉
12 3P1(Ω = −1) |(1, 1)1,−1〉
13 1S 0(Ω = 0) |(0, 0)0, 0〉
14 1D2(Ω = −1) |(2, 0)2,−1〉
15 1D2(Ω = −2) |(2, 0)2,−2〉

TABLE SIII. Electronic states in basis B3, numbered from 1 to 
15; the atomic states of S to which they correlate are given in the 
first column.

The way used to define B 2 i s s omewhat a rbitrary: i f we 
changed the phase of any vector in B2, by simply multiplying 
by (−1) one of the linear combinations in Table II, the matrix 
of the potential VB2(R) would still be real and eigenstates with 
defined M L would s till be o btained. The definition of  B3  is 
also arbitrary: the eigenstates of the potential are obtained by 
numerical diagonalization and their relative phases are thus

random. There exist conventions to solve analogous arbi-
trariness, and fix the relative phases of different eigenstates
of the projection of an angular momentum. Indeed, we do
need states to satisfy particular phase-relations among them:
this will be required for Eq. (4) (see the main text) to be valid
in order to get channels with defined l (relative angular mo-
mentum) in the space-fixed system, when solving the scatter-
ing equations. Such a change of basis is commonly used in
the closely related problem of the collision of an atom with a
rigid rotor: channels in the body-fixed (BF) system with de-
fined quantum numbers j and Ω are combined using Eq. (4) in
order to get channels in the SF system with defined l and thus
parity; different parities are decoupled. However, Eq. (4) is
based on the conventions of the spherical harmonics. To make
sure that such conventions are valid for the electronic atomic
basis we consider, a heuristic procedure is applied here. Be-
fore entering into details, let us recall two statements. The
first one is that the matrix elements of the potential matrix in
basis B2 at infinity (where L is defined) are related through
the Wigner-Eckart theorem, which can be applied separately
to S and L angular momenta. However, for the Wigner-Eckart
relations to be valid, the electronic states have to keep a par-
ticular phase-relation. The second statement is that the change
of basis which diagonalizes the spin-orbit perturbation within
a 2S +1L atomic term, if the small couplings with other atomic
terms are neglected, is given by Clebsch-Gordan coefficients.
Again, this imposes a particular phase-relation to the elec-
tronic states in B3. Based in these two statements, we have
implemented a two-step heuristic procedure in order to fix the
phase of the electronic states. First we check if the Wigner-
Eckart relations among the matrix elements in basis B2 are
are consistent in sign. If needed, particular electronic states
are changed sign for Wigner-Eckart relations to be fulfilled.
In our case, changing the sign of states V , IX, X and XV was
necessary and we applied such additional change to the defi-
nition of basis B2 just before diagonalizing [2]. In a second
step, we compare the numerical eigenvectors which diagonal-
ize VB2 at infinity with the corresponding approximate eigen-
vectors in terms of Clebsch-Gordan coefficients; as expected,
they are found very similar, except for the small contribution
of states belonging to other atomic terms. In a few cases,
both eigenvectors differ in a global sign, and we proceed to
change the sign of that particular numerical eigenvector. We
have checked that this procedure in two steps is satisfactory
enough in order to get potential matrices which do not con-
nect scattering channels of different parities when changed to
SF basis.

[1] The correspondence between irreducible representations of C∞v

and C2v allows to assign Λ and ± (behavior under reflection sym-
metry, for Σ states) labels.

[2] Accordingly, the linear combinations corresponding to states V ,
IX, X and XV in Table II should be changed sign.


