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Monte Carlo based Computational Method: 

In the Monte Carlo analysis, we assume that the Fe3O4 material has a saturation magnetization 
A/m and that the applied external field is A/m ( Gauss), 54.78 10spM   53.9 10aH   5000aB 

which can be provided by rare-earth permanent magnets and is sufficiently strong to saturate the 
nanoparticles considered in our study. To simplify the analysis, the carrier fluid is assumed to be 
nonmagnetic ( ). Simulations were performed using the Monte Carlo method with the 0f 

Metropolis algorithm to determine the final equilibrium particle structures. The approach was as 
follows. First, an initial configuration is generated consisting of randomly distributed particles. 
Each particle is then subjected to a random walk with a limited displacement step to generate a 
new position  in the particle trail. The change in the total energy  between new  , ,new new newx y z U
and initial configurations is then evaluated based on the particle displacement. The total energy 

 includes the magnetostatic and magnetic dipole-dipole energies, electrostatic energy, Van der U
Waals potential energy and a surfactant energy that is computed when the particles are in contact. 
A uniform random number  is generated with  and if it meets the expression: 0 1 
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, the particle displacement is accepted and the new particle configuration is adopted. This process 
is repeated until equilibrium is reached. Our computational model takes into account several 
dominant assembly mechanisms, including the induced magnetostatic, magnetic dipole-dipole 
interactions, the electrostatic repulsion, Brownian dynamics, Van der Waals interaction and a 
steric repulsive force caused by surfactant-surfactant contact, which are described as follows. 

Interaction with an Applied Magnetostatic Field: The magnetostatic energy is predicted 
using an “effective” dipole moment method in which the particle is modeled as an “equivalent” 
point dipole with an effective moment. The moment is defined by , where  and , ,eff i p i pV Mm ,p iV

 is the volume and magnetization of the particle i, respectively. For magnetic-dielectric core-pM

shell particles, only the core contributes to that magnetic force and consequently, . , ,eff i core i pV Mm
The moment can be determined using a magnetization model that takes into account self-
demagnetization and magnetic saturation of the particles.
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In this expression,  is the susceptibility of the carrier fluid, Msp is the saturation magnetization f

of the particle, and  is its intrinsic magnetic susceptibility. The magnetic potential energy Um of p
the i’th particle is given by

  (S4), ,m i eff i aU   m B

The force on the particle is obtained by taking the gradient of the magnetostatic energy.

Magnetic Dipole-dipole Interactions: A potential energy  due to the magnetic dipole-ddU
dipole interaction can be described as the following equation,
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, where  and  are the moments of i’th and j’th particle, respectively, and  is the ,eff im ,eff jm ijr

displacement vector between them. Note that  for identical core shell particles.6
,dd ij coreU R

Interparticle Electrostatic Interactions: The electrostatic repulsion between particles due to 
the double layer forces is described by the DLVO theory. An electrostatic energy  is generated eU
by,
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, where  is relative permittivity,  is the permittivity of free space, z is the valency of ions, e is  0

the fundamental electronic charge,  is the Debye decay length,  is the concentration of ions, 1  bn
 is the surface charge.q

Van der Waals Potential Energy: Van der Waals potential Energy is calculated using
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, where  is the Hamaker constant,  and  are the radius of the i’th and j’th particle, A ,p iR ,p jR
respectively.

Surfactant Interaction: A potential energy  is introduced into our model due to the sU
surfactant-surfactant contact, which is used to preclude particle overlapping during assembly,
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, where  and  are the average thickness of the surfactant layer and the surface density of  sN
surfactant molecules, respectively.

Viscous Drag: The drag force on a particle is computed using Stokes’ formula

 (S9)vis,
i

i i
dD
dt


xF

, where  is described as the drag coefficient (  is the fluid viscosity and  is , ,6i hyd p iD R  , ,hyd p iR
the hydrodynamic radius of the i’th particle).

Interparticle Hydrodynamic Interactions: Hydrodynamic interactions between particles 
become important at small surface-to-surface separation distances. The force between two 
neighboring particles is based on lubrication theory and given by,
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, where  is the separation between the surfaces and  is the relative velocity between the ijh , ,r i jV

particles. When the particles are in contact ( ) this force is considered to be negligible.0ijh 

Brownian Motion: The Brownian force in one dimension is modeled as a Gaussian white noise 
process

 (S11),
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, where  is Boltzmann’s constant,  is the Stokes’ drag coefficient as described above and  is Bk iD 

a random number with a Gaussian distribution. The 3D Brownian force is obtained by applying 
this equation for each force component.

Finite Element based Computational Method: 

Figure S1. The computational domain for optical property calculation. 
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We used 3D full-wave computational models to study the optical behaviors of magnetic-plasmonic 
chains. Specifically, we used the finite element (FE)-based Radio Frequency (RF) solver module in 
the commercial COMSOL multiphysics program (COMSOL Version 5.3, www.comsol.com). The 
dimensions of individual nanoparticles are identical to those employed in the self-assembly 
analysis. A 3D computational photonic analysis is employed to investigate the optical properties 
in the 1D chain of Fe3O4@Au nanoparticles. The computational model is well defined in a Cartesian 
coordinate (x, y, z). The chain is illuminated with a uniform plane wave with the  field parallel E
to the x-axis which is identical to the direction of 1D chain. A surface current boundary is 
employed as the excitation source. 

Fig. S1 shows the full model consisting of PDMS layers (blue) for channel formation, perfect 
matched layers (PMLs, grey) for backscattering elimination, and water environment wrapping 
around the single chain. The chain is illuminated with a uniform plane wave with the E field 
parallel to the x-axis which is identical to the direction of 1D chain. The wave will propagate along 
the negative direction of the z-axis which is indicated by the wave vector k in Fig. S1. A surface 
current boundary is employed as the excitation source, as shown in the literature1-3. In order to 
reduce the computation time and required computer resources, the final computational model is 
obtained by cutting the full model into a quarter along the symmetric planes (orange). Perfect 
electric conductor (PEC) conditions are applied at the boundries perpendicular to E, and perfect 
magnetic conductor (PMC) conditions are applied at the boundries perpendicular to H. It is 
important to note that these symmetry BCs mimic the response of an infinite 2D array of chains 
with a center-to-center x and y lattice spacing equal to the spatial period of the CD. 

The time-harmonic E field within the domain satisfies the equation:
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where r, r and σ are the relative permeability, permittivity and conductivity of the media, 
respectively. In the computational model, we compute the power absorbed by the particle Qabs (W) 
and then use this to compute the cross section abs = Qabs/Ilaser, where Ilaser (W/m2) is the incident 
irradiance. 

Material Properties: 

The refractive index of the surrounding medium ( ), in this case H2O, is also assumed to 
2m H On n

be lossless4, i. e.
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In these expressions  is the vacuum wavelength in units of micrometers.
Gold: When the gold shells are thinner than the mean free path of the free electrons (~ 42 nm), 

a dielectric function for gold that accounts for electron-surface scattering is described as4
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, where  is the bulk dielectric function of gold,  is the angular frequency of incident light, ,Au bulk 

eV is the plasma frequency, nm/s is the Fermi velocity, nm is 0.93p  15=1.40 10fv   42l 
the mean free path of the free electrons,  is a dimensionless parameter, usually assumed to be A
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close to unity ( ) and  is the reduced effective mean free path of the free 1A   
2

p c
eff

D D
L




electrons. The bulk dielectric function is given by an analytical expression that is based on an 
experiment-fitted critical points model5-7,
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Fe3O4: The Fe3O4 core is lossy and the refractive index of Fe3O4 at optical frequencies has not been 
widely reported. We obtain values for the real and imaginary components of in tabular form 

3 4Fe On
by discretizing plots of measured data found in the literature8. As noted, since  is complex-

3 4Fe On
valued the core contributes to absorption in the Fe3O4@Au NPs. 

Thermodynamic Model: 

The thermodynamic model is based on the same computational domain as the photonic analysis 
except that a thermal insulation condition is imposed on all boundaries. The temperature T 
throughout the computational domain satisfies the equation, 

(S16)( )p
TC k T Q
t

 
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
, where Q (W/m3) is the thermal energy generated per unit volume, i.e. Q=Qh inside the gold shell 
and Fe3O4 core, and Q = 0 in all other (loss less) materials. Here, ρ is the density, Cp is the specific 
capacity and k is the thermal conductivity of the material. In our analysis, the temperature-
dependent thermal conductivity, heat capacity, and material density of the surfactant (assumed 
to be polymer), gold, Fe3O4, and water are extracted from the previous literatures9-13. The initial 
temperature is set to 20 °C.s
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