Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supplementary Information For

Polysulfides intercalation in bilayer structured graphitic C₃N₄: a first-principles study

Sinan Li^a, Shaobin Yang^{*b}, Ding Shen^a, Wen Sun^b, Xueying Shan^b, Wei Dong^b, Yuehui Chen^c, Xu Zhang^b,

Yongqiang Mao^c, Shuwei Tang^d

^a College of Mining Engineering, Liaoning Technical University, Fuxin123000, PR China
 ^b College of Materials Science and Engineering, Liaoning Technical University, Fuxin123000, PR China
 ^c College of Science, Liaoning Technical University, Fuxin 123000, PR China
 ^d Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China

*Corresponding Author: yangshaobin@lntu.edu.cn (Shaobin Yang)

Figure S1. The optimized structure and relative energy of a metastable $bi-C_3N_4$. The bottom layer is plotted with balls, and the top layer is represented with sticks. The C and N atoms are denoted by gray and blue balls, respectively.

E = 1.985 eV/super-cell

Figure S2. The optimized structure of the $bi-C_3N_4$ with AA stacking. The bottom layer is plotted with balls, and the top layer is represented with sticks. The C and N atoms are denoted by gray and blue balls, respectively.

Isolated Li atom intercalation in the bi-C₃N₄

Table S1 shows the binding energies (E_b) of lithium polysulfides (LiPSs: Li₂S_n, n=1, 2, 4, and 8) and the structure (Li@bi-C₃N₄) of Li inserted in bi-C₃N₄.

The binding energy per Li (E_b^{LiPSs}) of LiPSs is defined as:

$$E_{\rm b}^{\rm LiPSs} = \left(n \cdot E_{\rm S_8} / 8 + 2E_{\rm Li} - E_{\rm LiPSs}\right) / 2$$
 (S1)

where E_{S_8} , E_{Li} and E_{LiPS_8} are the total energies of a S₈ molecule, per Li atom in bulk Li unit cell and LiPSs clusters, respectively.

The binding energy per Li ($E_{b}^{Li@bi-C_{3}N_{4}}$) of Li@bi-C_{3}N_{4} is defined as:

$$E_{\rm b}^{\rm Li@bi-C_3N_4} = \left(E_{\rm bi-C_3N_4} + 2E_{\rm Li} - E_{\rm Li@bi-C_3N_4}\right)/2$$
(S2)

where $E_{bi-C_3N_4}$ and $E_{Li@bi-C_3N_4}$ are the total energies of bi-C_3N_4 and Li@bi-C_3N_4, respectively. The optimized structures of Li@bi-C_3N_4 is shown in Figure S3.

Table S1. The binding energies (E_b) of LiPSs and Li@bi-C₃N₄

	$\mathrm{Li}_2\mathrm{S}_8$	Li_2S_6	Li_2S_4	Li_2S_2	$\mathrm{Li}_2\mathrm{S}$	Li@bi-C ₃ N ₄
$E_{\rm b}$ / eV	1.219	1.245	1.043	0.528	0.007	5.839

Figure S3. The optimized structure of the bi- C_3N_4 inserted by isolated Li atom. The bottom layer is plotted with balls, and the top layer is represented with sticks. The C, N and Li atoms are denoted by gray, blue and purple balls, respectively.

Figure S4. Isosurfaces for the intercalation structures of S_8 and LiPSs. The green and the red isosurfaces represent the regions of electron density loss and gain 0.02 e/Å³, respectively. The S and Li atoms are denoted by yellow, purple balls, respectively.

The structures of the typically used ether solvents

Figure S5. The optimized structures of three typically used 1,3-dioxolane (DOL), 1,2-dimethox-yethane (DME) and tetrahydrofuran (THF) ether solvents in liquid Li-S battery electrolytes, respectively. The C, H and O atoms are denoted by gray, white and red balls, respectively.

The structure of S₈ intercalation in the bilayer graphene

Figure S6. Isosurfaces for the pristine bilayer graphene inserted by $S_{8.}$ The green and the red isosurfaces represent the regions of electron density loss and gain 0.001 e/Å³, respectively. The C and S atoms are denoted by gray and yellow balls, respectively.

Figure S7. Isosurfaces for the structure of S_8 adsorption on the surface of monolayer $g-C_3N_4$. The green and the red isosurfaces represent the regions of electron density loss and gain 0.003 e/Å³, respectively. The C, N and S atoms are denoted by gray, blue and yellow balls, respectively.

Cohesive energies for bi-C3N4 with different interlayer distances

Figure S8 shows the cohesive energy E_c as a function of the initial interlayer distances d_0 for bi-C₃N₄ with AB stacking, E_c can be defined by:

$$E_{\rm c} = E_{\rm bi-C_3N_4} - 2 \cdot E_{\rm mono-C_3N_4} \tag{S3}$$

where $E_{bi-C_3N_4}$ are the total energies of the bi-C_3N_4 with AB stacking; $E_{mono-C_3N_4}$ is the total energy of monolayer g-C_3N_4 (mono-C_3N_4).

As shown in Figure S8, when the interlayer distance is larger than 8.0 Å, the E_c are close to 0 eV indicating a negligible vdW attraction between the double layers of bi-C₃N₄.

Figure S8. Cohesive energies E_c as a function of the initial interlayer distances d_0 for bi-C₃N₄ with AB stacking.

Details of the structure optimizing for the LiPSs and solvent molecules inserted structures

In order to obtain the ground states of LiPSs and solvent molecules inserted structures ($S_8@bi-C_3N_4$, LiPSs@bi-C_3N_4, DME@bi-C_3N_4, THF@bi-C_3N_4 and DOL@bi-C_3N_4), the initial geometries of the inserted structures were generated by the process below.

1st step: testing the interlayer distances

The single point energies ($E_{X@bi-C_3N_4}$) of S₈@bi-C₃N₄ and DME/DOL/THF@bi-C₃N₄ with different d_{g-g} were calculated to test the effects of interlayer distances d_{g-g} on the total energies of LiPSs@bi-C₃N₄ and Solvents@bi-C₃N₄, respectively. A cutoff energy of 500 eV and a Monkhorst-Pack k-point mesh of 2 × 2 ×1 are used. The convergence threshold for self-consistent field (SCF) tolerance is set to 1.0×10^{-6} eV/atom. Figure S9 shows the relative energies E_r as a function of d_{g-g} for S₈@bi-C₃N₄ and Solvents@bi-C₃N₄. E_r is defined by :

$$E_{\rm r} = E_{\rm X@bi-C_3N_4} - E_{\rm X@bi-C_3N_4}^{\rm min}$$
(S4)

where $E_{X@bi-C_3N_4}^{\min}$ are the minimum value in $E_{X@bi-C_3N_4}$. The results show that E_r are the smallest ones (defined by 0 eV/super-cell) when the d_{g-g} are 8.0 Å and 7.0 Å for S₈@bi-C₃N₄ and Solvents@bi-C₃N₄, respectively.

Figure S9. Relative energies E_r as a function of the interlayer distances d_{g-g} for (a) S_8 @bi-C₃N₄, (b) DME@bi-C₃N₄, (c) DOL@bi-C₃N₄ and (d) THF@bi-C₃N₄

2nd step: testing the loading sites in the interlayer

As shown in Figure S10, based on the tests for d_{g-g} , the centers of mass for S₈ and LiPSs clusters were loaded at the three sites in bi-C₃N₄ with d_{g-g} =8.0 Å, and two sites (No.1 and 3) were tested for DME/DOL/THF loaded in bi-C₃N₄ with d_{g-g} =7.0 Å. From Table S2 to S10 show structures and relative energies *E* for S8, LiPSs, DME, DOL and THF loaded at different sites and with different the rotation angles in bi-C₃N₄, respectively. A cutoff energy of 500 eV and a Monkhorst-Pack k-point mesh of 2 × 2 ×1 are used to calculate the single point energies. The convergence threshold for self-consistent field (SCF) tolerance is set to 1.0 × 10⁻⁶ eV/atom.

Figure S10. Tested sites for LiPSs in the interlayer of bi-C₃N₄

3rd step: optimizing with medium quality

Based on the results in Table S2~S10, the structures with the smallest *E* for each loading site were optimized with medium quality. A cutoff energy of 270 eV is used for S₈@bi-C₃N₄ and LiPSs@bi-C₃N₄, and 300 eV is used for DME/DOL/THF@bi-C₃N₄. A Monkhorst-Pack k-point mesh is $2 \times 2 \times 1$. The convergence threshold for self-consistent field (SCF) tolerance is set to 2.0×10^{-5} eV/atom. Atomic positions are relaxed with the maximum force on all atoms to be less than 0.05 eV/Å. The maximum displacement is 2.0×10^{-3} Å, and the stress is less than 0.1 GPa. The *E* of optimized structures are listed in Table S11~S19.

The last step: optimizing with fine quality

Based on the results in Table S11~S19, one structure with the smallest *E* (highlighted one) was optimized with fine quality for S₈@bi-C₃N₄, LiPSs@bi-C₃N₄, DME@bi-C₃N₄, DOL@bi-C₃N₄ and THF@bi-C₃N₄, respectively. A cutoff energy of 500 eV and a Monkhorst-Pack k-point mesh of $2 \times 2 \times 1$ are used. The convergence threshold for self-consistent field (SCF) tolerance was set to 1.0×10^{-6} eV/atom. Atomic positions are relaxed with the maximum force on all atoms to be less than 0.03 eV/Å. The maximum displacement is 1.0×10^{-3} Å, and the stress is less than 0.05 GPa.

Table S2.	Relative energies E as a functio	on of the loading sites and the rotation for $S_8(2)$ of C_3N_4		
	Site No. 1	Site No. 2	Site No. 3	
Rot. 1				
	8008	****	85-58	
	 			
	S ₈ -1-R1	S ₈ -2-R1	S ₈ -3-R1	
<i>E</i> (eV/super-cell)	0.076	0.006	0.029	
Rot. 2				
	~~~	~~~		
	S ₈ -1-R2	S ₈ -2-R2	S ₈ -3-R2	
<i>E</i> (eV/super-cell)	0.073	0.000	0.014	

**Table S2.** Relative energies *E* as a function of the loading sites and the rotation for  $S_8$ @bi-C₃N₄



	Site No. 1	Site No. 2	Site No. 3
Rot. 1			
	્રેમ્ન્સ	્રેષ્ન્સ	્રેષ્સ
	<del>0-00-00-00-00 00-00-00</del>	<del></del>	<del></del>
	Li ₂ S ₈ -1-R1	Li ₂ S ₈ -2-R1	Li ₂ S ₈ -3-R1
<i>E</i> (eV/super-cell)	0.360	0.236	0.273
Rot. 2			
	Li ₂ S ₈ -1-R2	Li ₂ S ₈ -2-R2	Li ₂ S ₈ -3-R2
<i>E</i> (eV/super-cell)	0.446	0.327	0.000

D. ( )			
Rot. 3			
	5.00	\$ <del>```</del>	2.00
	<del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>	<del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>	<b>◆</b> −0
	Li ₂ S ₈ -1-R3	$Li_2S_8$ -2-R3	Li ₂ S ₈ -3-R3
<i>E</i> (eV/super-cell)	0.295	0.352	0.153

**Table S4.** Relative energies *E* as a function of the loading sites and the rotation for  $Li_2S_6@bi-C_3N_4$ Site No. 2 Site No. 1 Site No. 3 Rot. 1 <mark>%</mark>% 4~~ Li₂S₆-1-R1 Li₂S₆-2-R1 Li₂S₆-3-R1 Ε 0.193 0.366 0.150 (eV/super-cell) Rot. 2 1/2 Se 12 Li₂S₆-1-R2 Li₂S₆-2-R2  $Li_2S_6-3-R2$ Ε 0.300 0.417 0.000 (eV/super-cell) Rot. 3 **Pro** Pos  $Li_2S_6-1-R3$  $Li_2S_6-2-R3$  $Li_2S_6-3-R3$ Ε 0.249 0.388 0.012 (eV/super-cell)



**Table S5.** Relative energies *E* as a function of the loading sites and the rotation for  $Li_2S_4@bi-C_3N_4$ 

Table So.	Relative energies E as a function	of the loading sites and the ro	$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$
	Site No. 1	Site No. 2	Site No. 3
Rot. 1			
	$Li_2S_2$ -1-R1	$Li_2S_2$ -2-R1	Li ₂ S ₂ -3-R1
<i>E</i> (eV/super-cell)	0.265	0.647	0.000
Rot. 2			
	Li ₂ S ₂ -1-R2	Li ₂ S ₂ -2-R2	Li ₂ S ₂ -3-R2
<i>E</i> (eV/super-cell)	0.212	0.590	0.077
Rot. 3	Li ₂ S ₂ -1-R3	Li ₂ S ₂ -2-R3	Li ₂ S ₂ -3-R3
E	0.127	0.588	0.299
Rot. 4		Li ₂ S ₂ -2-R4	Li ₂ S ₂ -3-R4
<i>E</i> (eV/super-cell)		0.638	0.522

Table S6 Relativ cti f the la adir site d th for LisSa@bi-CaN F fi ntatio .

	Site No. 1	Site No. 2	Site No. 3
Rot 1			
Kot. 1	• •• •• •• •• •• •• ••	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •
E	0.000	$\begin{array}{c} L_{12}S-2-R1\\ 0.373\end{array}$	0.661
(eV/super-cell)	0.000	0.575	0.001
Rot. 2	Li ₂ S-1-R2	Li ₂ S-2-R2	Li ₂ S-3-R2
<i>E</i> (eV/super-cell)	0.004	0.419	0.624
Rot. 3	Li ₂ S-1-R3	Li ₂ S-2-R3	Li ₂ S-3-R3
<i>E</i> (eV/super-cell)	0.026	0.574	0.694
Rot. 4		Li ₂ S-2-R4	Li ₂ S-3-R4
<i>E</i> (eV/super-cell)		0.803	0.818

**Table S7.** Relative energies *E* as a function of the loading sites and the rotation for  $Li_2S@bi-C_3N_4$ 

Table S8.	Relative energies E as a function	of the loading sites and the ro	tation for DME( $a$ )bi-C ₃ N ₄
	Site No. 1	Site No. 2	Site No. 3
Rot. 1			
E	0 199		0.000
(eV/super-cell)	0.177		0.000
Rot. 2			DME 2 P2
	DME-1-R2		DME-3-R2
<i>E</i> (eV/super-cell)	0.238		0.063
Rot. 3	DME-1-R3		DME-3-R3
E	0.134		0 163
(eV/super-cell)	0.134		0.103
Rot. 4	DMF-1-R4		DMF-3-P4
F	DNE-1-K4		DME-3-K4
(eV/super-cell)	0.102		0.233

Table S9. R	elative energies E as a function of	of the loading sites and the rot	ation for $DOL(a)bi-C_3N_4$
	Site No. 1	Site No. 2	Site No. 3
Rot. 1	DOL-1-R1		DOL-3-R1
<i>E</i> (eV/super-cell)	0.132		0.134
Rot. 2			
F	• • • • • • • • • • • • • • • • • • •		DOL-3-R2
(eV/super-cell)	0.086		0.219
Rot. 3	DOL-1-R3		DOL-3-R3
E	0.024		0.290
Rot. 4			
	DOL-1-R4		DOL-3-R4
<i>E</i> (eV/super-cell)	0.000		0.313

Table S10. F	Relative energies E as a function	of the loading sites and the ro	tation for $THF(a)b1-C_3N_4$
	Site No. 1	Site No. 2	Site No. 3
Rot. 1			
E	0.136		0.062
(ev/super-cen)			
Rot. 2			
F	THF-1-K2		THF-3-R2
(eV/super-cell)	0.062		0.192
Rot. 3	• • • • • • • • • • • • • • • • • • •		THF-3-R3
E	0.000		0 267
(eV/super-cell)	0.000		0.201
Rot. 4	€ € 00 00 00 00 00 00 00 00		
E	THF-1-R4		THF-3-R4
<i>E</i> (eV/super-cell)	0.021		0.213

Table S11. Relative energies *E* and optimized structures for optimized S₈-1-R2, S₈-2-R2 and S₈-3-R2 with medium quality



**Table S12.** Relative energies E and optimized structures for optimized Li₂S₈-1-R3, Li₂S₈-2-R1 and Li₂S₈-3-R2 with medium quality



**Table S13.** Relative energies E and optimized structures for optimized Li₂S₆-1-R1, Li₂S₆-2-R1 and Li₂S₆-3-R2 with medium quality

	Site No. 1	Site No. 2	Site No. 3
Structures after optimization with medium quality			
	$Li_2S_6-1-R1$	$Li_2S_6-2-R1$	$Li_2S_6$ -3-R2
<i>E</i> (eV/super-cell)	0.019	0.433	0.000

**Table S14.** Relative energies *E* and optimized structures for optimized  $Li_2S_4$ -1-R2,  $Li_2S_4$ -2-R3 and  $Li_2S_4$ -3-R3 with medium quality

	Site No. 1	Site No. 2	Site No. 3
Structures after			
optimization with medium quality			
	$Li_2S_4$ -1-R2	Li ₂ S ₄ -2-R3	Li ₂ S ₄ -3-R3
<i>E</i> (eV/super-cell)	0.245	0.471	0.000

**Table S15.** Relative energies *E* and optimized structures for optimized  $Li_2S_2$ -1-R3,  $Li_2S_2$ -2-R3 and  $Li_2S_2$ -3-R1 with medium quality

	Site No. 1	Site No. 2	Site No. 3
Structures after			
optimization with medium quality			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Li_2S_2 -1-R3	Li_2S_2 -2-R3	Li_2S_2 -3-R1
<i>E</i> (eV/super-cell)	0.145	0.187	0.000

Table S16. Relative energies E and optimized structures for optimized Li₂S-1-R1, Li₂S-2-R1 and Li₂S-3-R2 with medium quality

Table S17. Relative energies *E* and optimized structures for optimized DME-1-R1 and DME-3-R2 with medium quality

51.0 Itonaul.0 01			
	Site No. 1	Site No. 2	Site No. 3
Structures after optimization with medium quality	DME-1-R1		DME-3-R2
E	0.000		0.012
(ev/super-cell)			

Table S18. Relative energies E and optimized structures for optimized DOL-1-R1 and DOL-3-R1 with medium quality

 Table S19.
 Relative energies E and optimized structures for optimized THF-1-R3 and THF-3-R1 with medium quality

	Site No. 1	Site No. 2	Site No. 3
Structures after optimization with medium quality	THF-1-R3		THF-3-R1
<i>E</i> (eV/super-cell)	0.000		0.059