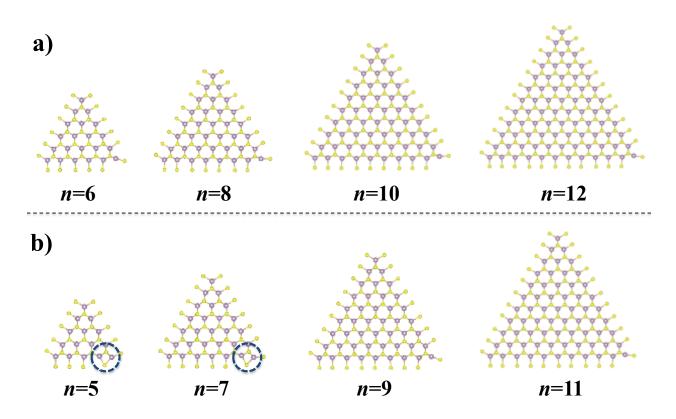
Supporting Information

First-Principles Studies of Energetics of MoS₂ Nanosheets: Size Effects and Odd-Even Effects


Paul H. Joo, Jianli Cheng, and Kesong Yang*

Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0448, United States

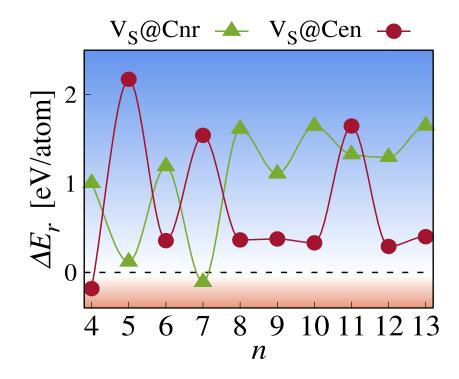

*E-mail: <u>kesong@ucsd.edu</u>. Tel: +1-858-534-2514.

Figure S1: Atomic ratio **a**) between the number of S and Mo atoms (N_S/N_{Mo}) and **b**) between the number of atoms on the edge and total atoms (N_{Edge}/N_{Total}) as a function of the size of the MoS₂ nanosheets, *n*.

Figure S2: Geometrical structures of the relaxed MoS₂ nanosheets with sulfur vacancy at the corner of the edge (V_S@Cnr) for **a**) even-number size (n = 6, 8, 10, and 12) and **b**) odd-number size (n = 5, 7, 9, and 11). The new formed S-Mo bonds between the coordinatively unsaturated sites (Mo atoms with dangling bonds) and its adjacent S dimer are highlighted by the blue circle.

Figure S3: Calculated HDS reaction energy (ΔE_r) on the ZZ-S2 type MoS₂ nanosheet as a function of the size (*n*) of the nanosheets. The dash line indicates the ΔE_r at zero. Note that calculated final ΔE_r shares the same magnitude under S-rich and S-poor conditions, and is independent of sulfur chemical potential.