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The HNC/MSA integral equation for an infinite planar electrode
According to Carnie et al.,! the singlet profiles of charged particles modeled in the re-

stricted primitive model around an impenetrable infinite charged wall can be written in

MSA(S)

terms of the mean electrostatic potential ¢)(x), and the direct correlation functions c;}

in the mean spherical approximations (MSA) as:

"1aq

gz-<x'>=exp{—ﬂziew<x'>+zpj [ s =) o) - dt'}7 0

—a

if 2/ > 0; and g;(2') = 0if 2’ < 0, where i, 7 = —, +, and the distances ' and t' are measured

from the Helmholtz plane. The interionic MSA direct correlation functions in the bulk are:

C?;[SA(S) _ CPYHS(S) + ZiZjCELEC<S), (2>

such as

PYHS () =0, if 5> a, (3)

and
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PYHS (g) — (1”_—‘:7)4 [—%n(l +2n)? (1 - Z—Z) +1n(n+2)° (1 - _3) — (1+2n)? <1 - CSL—Z ] :

if s < a, with n = %“Szipi, and

FLEC(5) =0, if s> a, (5)

and



2nBe? [ B? s3 52 S
) == al?, (1—5) ”(“@)*(1—5)1’

if s < a. Notice the misprint in the B? term in Eq.(3.5) of Carnie et al.! Also,

B = (14 ka — (1 + 2ka)"?)/ka,

with

47 Be? 9
= — Xi:plzl .

For 2’ > 0, the expression for g;(2’) can be formally written as:

gi(a') = eXP{ Briep(z’) + ZP]/ ciy "2 = 1)) [g;(t") — 1] dt'+

S [ el o)l dt'},

where M = Max(z' — a, 0). Notice that

0 if0<a2' <a
M =
r—a ifa<i <oo.
If we define
2mpa(x) = 3 / M0 — ) [g5(¢) — 1] dt,

such that p =, p;, we have
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D
~—

(10)

(11)



=P fmo,ﬂ e 54! =) dt! i 0 <2’ < a;

2rp () = (12)
0 if a <2’ < o0,

(observe that in the first case |2/ —¢/| = 2’ — t'). Thus, for 0 < 2’ < q,

0 0
2mp ay(2') = —{(ij) / PYHS (o — 1) dt/+zi<2pjzj> / FLEC (o — 1) dt/}.
j ' —a j z'—a
(13)
Using the electroneutrality condition, i pizi =0, we obtain, for 0 < 2’ < a,
2mp (') = 2mp A(a’), (14)

where

Alz') = — (%) / ,0_a PYHS (¢! 4y qt’ (15)

Be aware that the function A(2’) is independent of the ionic species. Inserting Y #5(z' —¢')

in the last expression,

.A(ZE,) — _/x/a {%[a2 o (:L', o t/)Q} + ;_Z[a?) o (ZE, _t/)3} . %[(f o (J]/ o t/)5]} dt,
(16)
where
(429
4T A "
_ (A +n/2)?
co = 67 1) (18)



and

3= —N—. (19)

Reordering the terms we have

/ 0 2\ [ €1 C2 C3 / 0 C1 / N2 74 0 C2 / N3 g4/

and, after a straightforward integration, we have that, for 0 < 2/ < a,

C2
12a

C3
30a3

(z'* = ah) + (z'° —a®), (21)

,4(:(;'):—(2 +———><a—x')a2—ﬁ(x'3—a3)

and A(z") =0, for a < 2’ < oco. Hence, for 2’ > 0, we finally obtain

ae") = e { ~ B @)+ 2mp A + Sy [ e =) g 1 dt’}. 2

Explicit kernels for the HNC/MSA integral equations in planar geometry

Let us introduce the kernel

(23)

such that



s+t it <
S+ it >

Eq. 22 can be written as

gi(a') = exp { et + 20pAw) ~ e 20 [T FE (i) ) s

z'+a <25)
S [ o) ) - 1 dt’}.

In this last equation we have used the definition of the mean electrostatic potential and
the electroneutrality condition. Employing the definitions of ¢y, ¢; and c3, it can be shown

that

IS (o —|) = 27K (', 1), (26)
where the kernel (2, 1) is
K1) %1[a2 — o' =]+ g—z[a?’ — |’ =t} - 5%[(15 — o' =] if |2 =t < a
x,t) =
0 if 2" —t'| > a.
(27)
Introducing the quantity
(1+2ka)/? -1
r=ttzd -l (28)
it can be proved that
la
B=—". 29
(1+Ta) (29)



Thus,

2 2
P! — ) = T el ), (30)
such that the kernel M(a/;t') is
2
a2 = ¥] - hgla? = o = P+ (e ) o — o =2 if - ¢ < a
M ) = (1+Ta) s\ 15T
0 if |2 —t'| > a.
(31)
Substituting all the kernels, and give Eq. 35, we obtain
gi(x') = exp{ — ez + 2mpA(x) + 27 > p; / hi(t') K2 t') dt'+
, 0
) ' (32)
27 Be2z, o0
mpe’z >z, / hy(t') [M(:p’,t’) —2]-"(m’,t’)] dt’}.
€ - 0
j
Defining the kernel L(2/,t") = M(2',t') — 2F (2, '), or equivalently,
—2t' —a if t/ <2’ —a
ﬁ(x/ t/): "y r 2 Y () 3 3] if o <t < g .
; —a' =1 — gl = [0 =P+ 3 (o ) @@ — 2" =P ifa’ —a <t <2’ +
—27" —a if ' +a <t
(33)

we arrive to



gi(x') = exp { — ez Sy + 2mpA(’) + 27 § p; / hi(t) K(2', ") dt'+
: 0
J

21 Be?z; o , ;o ,
0 hi(t t) dt
B Ej :Z]pj/o J(t)L(" 1) }7

for 2/ > 0.

If we now shift the origin of the coordinate system to coincide with the location of the
electrode’s surface (as it was considered in the present paper), the distances z = 2’ 4 a/2
and ¢t = ¢’ + a/2 are measured from the electrode’s surface. In these new variables, the
HNC/MSA integral equations for the single planar electric double layer of a binary RPM

electrolyte are:

gi(z) = exp { — ez 0 + 2mpA(z) + 27 Z pj /: [gj () — 1] K(x,t) dt+

. . (35)
: Zj:szj /a/2 l95(t) = 1] L(z,1) dt},

€

for x > ¢, vy = ¢(r = 0), and 7, j = —, +, where

’_ L G2 C3 3a_ 2 (1 a4y g
(2+3 5)(2 x)‘l 6[(‘” y) e

0 if%§x<oo,




Ala® — |z —tP]+ 2[a® — |z —t°] = Za® — |z —t]’] fz—a<t<z4a

K(z,t) =
0 ift<z—a or x+a<t,
(37)
and
(
—2t ift<z—a
2
L(z,t) = a—x—t—ﬁ[cﬁ— ]93—75|2]+%<1+Lra> [@® —|z—t])] ifr—a<t<z+a
—2x ifv+a<t.
\
(38)
Finally, in terms of the total correlation functions h;;(x):
1+ hi(x) —exp { — ez;8Yg + 2mpA(z) + 27 Z pj / h;(t) K(z,t) dt+
: a/2
’ (39)

21 fe?z; /°°
2ipj h;(t)L(z,t) dt p = 0.
- Z it [, hOL )

The last equation, along with the definitions of A(x), K(z,t) and L(z,t), coincide exactly
with the HNC/MSA expression for the single planar electric double layer of a binary elec-
trolyte in the restricted primitive model reported by Mier y Teran et al.?
Free energy of two charged plates in terms of the capacity compactness: a Gouy-
Chapman calculation

In a general calculation of the free energy of a planar electrical double layer the following

integral must be performed:?

/0 b (o) dot (40)



Consequently, if the relations 1y(0g) and 7.(0¢) (or equivalently og(7.)) are known, the
resulting free energy could be written, in principle, as a function of the capacity compactness.
Unfortunately, except for the case of the Gouy-Chapman theory, analytical forms of the
to(op) and og(7.) relationships are not available for any of the current approaches to the
electrical double layer, namely the mean electrostatic potential formalisms, integral equations
and density functional theories. However, for the non-linearized Poisson-Boltzmann equation
and the rest of the above mentioned approaches the free energy can still be obtained via a
numerical integration of the tabulated functions ¢ (og) and oo(7.).

For the well-known case of the Gouy-Chapman theory, the free energy per unit area for a
z 1 z electrolyte between two equally charged plates (in terms of the capacity compactness)

is given by

ACGCH — (64 kpTpiv?) 7 e D/me. (41)

where v = tanh(zewy/4kgT) and D is the interplanar separation. In the above expression

AGC’H

the weak overlap approximation has been made. is an essential ingredient in the

DLVO theory of colloidal stability.
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