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Experimental section: 

The empty graphite rods were filled with a mixture of Y/Ni2 alloy and graphite powder in a 

weight ratio of 3:2. These rods were then vaporized in a Krätschmer-Huffman generator at 194 

Torr He and 6 Torr N2, the current was kept at 25 A. The resulting soot was Soxlet-extracted with 

toluene for 12 h. Then the pure Y3N@C2n (n = 40 - 44) were isolated by multi-stage HPLC 

separately.

For radicals’ ESR experiments, firstly, the Y3N@C2n (n = 40 - 44) radical samples were 

carefully dissolved in de-oxygenated tetrahydrofuran(THF) by the vacuum-pumping de-

aerating device with a nitrogen-flowing process within ESR tube. Then the tube was 

blocked by rubber seal and transferred to the ESR spectrometer and performed by repeated 

contact with K metal in a loop until the ESR signal was appeared. ESR spectra were 

measured at room temperature using X-band ESR spectrometer (Bruker E500) with 

continuous-wave X band, the measure power Attention is 13.0 dB, the Frequency is 9.848 

GHz. And the spectra were simulated with easyspin package encoded in MATLAB 

platform. 1

Computational section:

All conformers of Y3N@C2n (n = 40 - 44) and related anion radicals were firstly 

optimized using original pm6 and b3lyp/3-21g* to speed up the computational process, the 

final optimizations and spin distributions were carried out by B3LYP and TPSSh methods 

within lanl2de basis for Y and 6-31g* for C, N. The above calculations were performed 

using the Gaussian 09 quantum chemical program package.2 Computations of hfcc 

constants by ORCA package3 were performed with the open-shell method of UKS at the 

BP86/TZVP level using RI approximation. The BOMD (Born-Oppenheimer molecular 

dynamics) calculations were performed in CP2K code4,5 and employed Velocity Verlet 

algorithm with the time step of 1 fs at the temperature of 298 K. The trajectories and spin 

population distributions were computed by the PBE functional and employed Gaussian and 

Plane Wave (GPW) scheme with Goedecker-Teter-Hutter (GTH) pseudopotentials and 

DZVP basis set.5-7 The structures and isosurfaces were visualized with GaussView, the 

trajectories were visualized with VMD.8



Figure S1. The ESR spectra of the K metal-reduced anion radicals of Y3N@C2n (N = 40 - 44) in 

THF at room temperature.



Table S1. The calculated dN-Y/C-Y/Y-Y data. The dN-Y represents the distance of nitrogen atom 

and yttrium atom on the Y3N cluster; the dC-Y represents the distance of yttrium atom and 

the nearest carbon atom on the cage, the dY-Y represents the distance of yttrium atoms on 

the Y3N cluster.
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Figure S2. Molecular dynamics simulations (298K) of Y3N@C80 and Y3N@C80
－: Spin 

populations for the Y3, N, Y3N-cluster of neutral (black line) and anion radical (magenta line) of 

Y3N@C80; trajectories (red for Y, blue for N, gray for carbon cage and light blue for carbon net) 

of the Y3N-cluster is in the middle of chart, the central three-dimensional cage spread out to form 

a two-dimensional nets trajectories. Displacement of the carbon atoms is not shown.



Figure S3. The spin differences of the anion radicals of Sc3N@C80(Ih) and Y3N@C80(Ih).

Table S2. The dN-plane and △E of the clusters (Y3N)6+ in the optimized Y3N@C80 to 

Y3N@C88. 

Type Sc3N@C80 Y3N@C80 Y3N@C82 Y3N@C84 Y3N@C86 Y3N@C88

adN-plane(Å) 0.002 0.008 0.197 0.126 0.057 0.058

△E(kcal/mol) - 0 -5.07 -14.02 -18.61 -22.87 

adN-plane means the distance of N atom from the plane composed of the three Y atoms. 

References

1. S. Stoll and A. Schweiger, J. Magn. Reson., 2006, 178, 42-55.

2. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. 

Barone, B. Mennucci and G. Petersson, Journal, 2009.

3. F. Neese, Wires Comput. Mol. Sci., 2012, 2, 73-78.

4. CP2K: A general program to perform molecular dynamics simulations. Distributed under the 

terms of the GNU General Public Licence, https://www.cp2k.org/about).

5. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, Comput. 

Phys. Commun., 2005, 167, 103-128.

6. S. Goedecker, M. Teter and J. Hutter, Phys. Rev. B, 1996, 54, 1703-1710.

7. G. Lippert, J. Hutter and M. Parrinello, Theor. Chem. Acc., 1999, 103, 124-140.

8. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph. Model., 1996, 14, 33-38.

mailto:Y3N@c80
mailto:Y3N@c82
mailto:Y3N@c84
mailto:Y3N@c86
mailto:Y3N@c88
http://www.cp2k.org/about)

