Supporting Information

Awake N-hyperfine Couplings in Charged Yttrium Nitride Endohedral Fullerenes

Chong Zhao,^{ab} Taishan Wang,^a* Yongjian Li,^{ab} Haibing Meng,^{ab} Mingzhe Nie,^{ab} Jianlei Tian, ^{ac} Chunru Wang^a*

^aBeijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190 Beijing, China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

°Southwest University, School of Chemistry & Chemical Engineering, Beibei, Chongqing 400715, China

E-mail: wangtais@iccas.ac.cn; crwang@iccas.ac.cn

Contents

Experimental section: Preparation and characterization of $Y_3N@C_{2n}$ (n = 40 - 44); the preparation and the ESR measurement of K metal-reduced anion radical of $Y_3N@C_{2n}$ (n = 40 - 44); the simulation of the ESR spectra of $Y_3N@C_{80}$ and $Y_3N@C_{86}$ anion radicals.

Computational section: DFT-based computations about the structures, hfcc, BOMD, and spin distributions of $Y_3N@C_{2n}$ (n = 40 - 44).

Figure S1. Experimental ESR spectra of the K metal-reduced anion radicals of Y₃N@C_{2n} (n = 40-

44) in THF at room temperature.

Table S1. The calculated $d_{N-Y/C-Y/Y-Y}$ data.

Figure S2. Molecular dynamics simulations (298K) of $Y_3N@C_{80}$ and $Y_3N@C_{80}^-$.

Figure S3. The spin differences of the anion radicals of Sc₃N@C₈₀-I_h and Y₃N@C₈₀-I_h.

Table S2. The $d_{N-plane}$ and ΔE of the clusters $(Y3N)^{6+}$ from $Y_3N@C_{80}$ to $Y_3N@C_{88}$.

Experimental section:

The empty graphite rods were filled with a mixture of Y/Ni_2 alloy and graphite powder in a weight ratio of 3:2. These rods were then vaporized in a Krätschmer-Huffman generator at 194 Torr He and 6 Torr N₂, the current was kept at 25 A. The resulting soot was Soxlet-extracted with toluene for 12 h. Then the pure $Y_3N@C_{2n}$ (n = 40 - 44) were isolated by multi-stage HPLC separately.

For radicals' ESR experiments, firstly, the $Y_3N@C_{2n}$ (n = 40 - 44) radical samples were carefully dissolved in de-oxygenated tetrahydrofuran(THF) by the vacuum-pumping deaerating device with a nitrogen-flowing process within ESR tube. Then the tube was blocked by rubber seal and transferred to the ESR spectrometer and performed by repeated contact with K metal in a loop until the ESR signal was appeared. ESR spectra were measured at room temperature using X-band ESR spectrometer (Bruker E500) with continuous-wave X band, the measure power Attention is 13.0 dB, the Frequency is 9.848 GHz. And the spectra were simulated with easyspin package encoded in MATLAB platform. ¹

Computational section:

All conformers of $Y_3N@C_{2n}$ (n = 40 - 44) and related anion radicals were firstly optimized using original pm6 and b3lyp/3-21g* to speed up the computational process, the final optimizations and spin distributions were carried out by B3LYP and TPSSh methods within lanl2de basis for Y and 6-31g* for C, N. The above calculations were performed using the Gaussian 09 quantum chemical program package.² Computations of hfcc constants by ORCA package³ were performed with the open-shell method of UKS at the BP86/TZVP level using RI approximation. The BOMD (Born-Oppenheimer molecular dynamics) calculations were performed in CP2K code^{4,5} and employed Velocity Verlet algorithm with the time step of 1 fs at the temperature of 298 K. The trajectories and spin population distributions were computed by the PBE functional and employed Gaussian and Plane Wave (GPW) scheme with Goedecker-Teter-Hutter (GTH) pseudopotentials and DZVP basis set.⁵⁻⁷ The structures and isosurfaces were visualized with GaussView, the trajectories were visualized with VMD.⁸

Figure S1. The ESR spectra of the K metal-reduced anion radicals of $Y_3N@C_{2n}$ (N = 40 - 44) in THF at room temperature.

Table S1. The calculated $d_{N-Y/C-Y/Y-Y}$ data. The d_{N-Y} represents the distance of nitrogen atom and yttrium atom on the Y₃N cluster; the d_{C-Y} represents the distance of yttrium atom and the nearest carbon atom on the cage, the d_{Y-Y} represents the distance of yttrium atoms on the Y₃N cluster.

	B3LYP TPSSh										
	d _{N-Y1}	d _{N-Y2}	d _{N-Y3}	d _{C-Y1}	d _{C-Y2}	d _{C-Y3}	d _{¥1-¥2}	d _{Y2-Y3}	d _{¥1-¥3}		
Y ₃ N@C ₈	2.059 2.0	2.057	2.058 2.	2.434 2.	2.432 2.	2.431 2.	3.57 3.	3.57 3.	3.56 3.		
0	59	2.057	058	435	432	431	57	57	56		
Y ₃ N@C ₈	2.113 2.1	2.081	2.082 2.	2.477 2.	2.385 2.	2.381 2.	3.64 3.	3.61 3.	3.64 3.		
2	16	2.090	089	471	381	381	64	58	64		
Y ₃ N@C ₈	2.124 2.1	2.141	2. 127 2.	2.541 2.	2.473 2.	2.481 2.	3.83 3.	3.44 3.	3.82 3.		
4	37	2.149	137	530	469	477	81	43	80		
Y ₃ N@C ₈	2.135 2.1	2.150	2.157 2.	2.452 2.	2.474 2.	2.484 2.	3.86 3.	3.64 3.	3.68 3.		
6	43	2.160	160	441	469	481	83	64	68		
Y ₃ N@C ₈	2.196 2.2	2.172	2.175 2.	2.452 2.	2.474 2.	2.493 2.	3.74 3.	3.75 3.	3.85 3.		
8	03	2.181	179	451	470	491	73	75	85		

Figure S2. Molecular dynamics simulations (298K) of $Y_3N@C_{80}$ and $Y_3N@C_{80}^{-}$: Spin populations for the Y_3 , N, Y_3N -cluster of neutral (black line) and anion radical (magenta line) of $Y_3N@C_{80}$; trajectories (red for Y, blue for N, gray for carbon cage and light blue for carbon net) of the Y_3N -cluster is in the middle of chart, the central three-dimensional cage spread out to form a two-dimensional nets trajectories. Displacement of the carbon atoms is not shown.

Figure S3. The spin differences of the anion radicals of $Sc_3N@C_{80}(I_h)$ and $Y_3N@C_{80}(I_h)$.

Table S2. The $d_{N-plane}$ and ΔE of the clusters $(Y3N)^{6+}$ in the optimized $Y_3N@C_{80}$ to $Y_3N@C_{88}$.

Туре	Sc ₃ N@C ₈₀	Y ₃ N@C ₈₀	Y ₃ N@C ₈₂	Y_3 N@C ₈₄	Y ₃ N@C ₈₆	Y ₃ N@C ₈₈
$^{a}d_{N-plane}(\mathrm{\AA})$	0.002	0.008	0.197	0.126	0.057	0.058
$\triangle E(kcal/mol)$	_	0	-5.07	-14.02	-18.61	-22.87

^ad_{N-plane} means the distance of N atom from the plane composed of the three Y atoms.

References

- 1. S. Stoll and A. Schweiger, J. Magn. Reson., 2006, 178, 42-55.
- M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. Petersson, *Journal*, 2009.
- 3. F. Neese, Wires Comput. Mol. Sci., 2012, 2, 73-78.
- CP2K: A general program to perform molecular dynamics simulations. Distributed under the terms of the GNU General Public Licence, https://www.cp2k.org/about).
- J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, *Comput. Phys. Commun.*, 2005, 167, 103-128.
- 6. S. Goedecker, M. Teter and J. Hutter, *Phys. Rev. B*, 1996, 54, 1703-1710.
- 7. G. Lippert, J. Hutter and M. Parrinello, *Theor. Chem. Acc.*, 1999, 103, 124-140.
- 8. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph. Model., 1996, 14, 33-38.