Electronic Supplementary Information

Are scaling relations truly universal?

Vladimir Tripkovic ${ }^{1}$
${ }^{1}$ Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs.
Lyngby, Denmark.

Note 1: Differential adsorption energies for the $\mathbf{O H}$ and $\mathbf{O O H}$ intermediates

Only for $\operatorname{Pt}(111)$ and $\operatorname{Ir}(111)$, the lowest differential OH adsorption energy is at the $1 / 3 \mathrm{ML} \mathrm{OH}$ coverage, i.e. in a half dissociated water layer. ${ }^{30,32,33} \mathrm{On}$ all the other metals and alloys the OH is most stable in water bilayer at the $1 / 9 \mathrm{ML}$ OH coverage. As for OOH , the highest binding energy is obtained at $1 / 6 \mathrm{ML}$ coverage irrespective of the catalyst surface. For the strained $\operatorname{Pt}(111), \operatorname{Pd}(111)$ and $\mathrm{Ag}(111)$ we assume the same $\mathrm{OH} / \mathrm{OOH}$ coverages as those on pristine surfaces.

Figure S1 Differential adsorption energies of a) OH and b) OOH on the (111) surfaces of late transition metals. Snapshots show structures at different $\mathbf{O H} / \mathbf{O O H}$ coverages in the water bilayer.

Figure S2 Differential adsorption energies of $\mathbf{O H}$ on the (111) surfaces of selected Pt-alloys. For the OOH the $\mathbf{1 / 6}$ ML coverage found on metals was assumed.

Note 2: Calculated values of lattice constants and binding energies of different intermediates
Table S1 The RPBE optimized lattice constants.

Element	Lattice Constant	Element/alloy	Lattice Constant
Pt	3.991	Rh	3.865
Pd	3.980	Ru	3.850
Ag	4.172	$\mathrm{Pt}_{3} \mathrm{Ni}$	3.907
Au	4.186	$\mathrm{Pt}_{3} \mathrm{Co}$	3.911
Ir	3.883		

Table S2 Binding energies of O , 'dry' and 'hydrated' OH and OOH intermediates.

Surface	OH	OH-wl	O	OOH	OOH-wl
$\operatorname{Pt}(111)$	0.961	0.427	1.457	3.948	3.792
$+1 \%$	0.931	0.401	1.393	3.937	3.786
$+2 \%$	0.871	0.201	1.308	3.891	3.718
$\mathrm{Pt} / \mathrm{Cu} / \mathrm{Pt}(111)$	1.320	0.888	1.717	4.255	4.111
$\mathrm{Pd} @ \operatorname{Pt-skin}(111)$	1.045	0.581	1.513	4.009	3.862
$\mathrm{Pt}_{3} \mathrm{Ni}(111)$	1.080	0.660	1.719	4.075	3.987
$\mathrm{Pt}_{3} \mathrm{Co}(111)$	1.128	0.725	1.811	4.128	4.010
$\operatorname{Pd}(111)$	0.904	0.412	1.444	4.009	3.787
$+1 \%$	0.853	0.308	1.385	4.008	3.741
$+2 \%$	0.812	0.319	1.338	3.960	3.725
-1%	0.936	0.462	1.499	4.040	3.816
-2%	0.971	0.481	1.559	4.060	3.826
-3%	1.005	0.492	1.631	4.088	3.893
-4%	1.052	0.570	1.705	4.118	3.927
-5%	1.064	0.700	1.756	4.128	3.987
$\mathrm{Pt} @ \operatorname{Pd}-$-skin(111)	0.740	0.148	1.360	3.945	3.668
$\mathrm{Ag}(111)$	0.831	0.487	2.056	4.123	3.846
-1%	0.849	0.510	2.069	4.111	3.804
-2%	0.903	0.515	2.116	4.135	3.820
$+1 \%$	0.799	0.468	2.032	4.107	3.830

$+2 \%$	0.751	0.421	1.983	4.070	3.822
$+3 \%$	0.696	0.403	1.926	4.032	3.817
$+4 \%$	0.651	0.391	1.886	4.000	3.847
$+5 \%$	0.607	0.387	1.839	3.965	3.809
$\mathrm{Au}(111)$	1.482	1.057	2.610	4.677	4.35
$\operatorname{Ir}(111)$	0.291	-0.121	0.805	3.664	-
$\operatorname{Rh}(111)$	0.463	-0.049	0.697	3.716	3.575
$\operatorname{Ru}(0001)$	0.027	-0.497	-0.150	-	-

