SUPPORTING INFORMATION Interplay of Twist Angle and Solvents With Two-Photon Optical Channel Interference in Aryl-Substituted BODIPY Dyes

Md. Mehboob Alam,^{*,†} Ramprasad Misra,^{‡,¶} and Kenneth Ruud[†]

 †Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, The University of Tromsø- The Arctic University of Norway, Tromsø, Norway
 ‡Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India

¶Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel

E-mail: mehboob.cu@gmail.com

Contents

- Plot showing variation of different transition dipole moments in molecule 3 in vacuum and solvent phases
- Plot showing variation of *cosine* of the angle between different transition dipole moment vectors involved in 2SM for molecule 3 in vacuum and solvent phases
- Orbital pictures involved in most intense two-photon absorption in molecule 3 in three solvents
- Relative orientation of the ground- and excited-state dipole moment in molecule 3 in CH_2Cl_2 solvent
- Natural transition orbitals in molecule 3 in CH_2Cl_2 solvent
- Cartesian coordinates of ground state geometry of molecule 3 in solvent phases
- Vacuum phase OPA data for all the fourteen molecules.
- Vacuum phase 2SM and 3SM results for TPA in all the fourteen molecules
- OPA and TPA data for different dihedral angles in molecule 3
- Contribution of different optical channels involved in 2SM in molecule 3, for different dihedral angles

Figure S1: Variation of different μ terms involved in 2SM in vacuum (top left panel), in C₆H₁₂ (top right panel), in CH₂Cl₂ (bottom left panel) and in CH₃CN (bottom right panel).

Figure S2: Variation of different $\cos\theta$ terms involved in 2SM in vacuum (top left panel), in C₆H₁₂ (top right panel), in CH₂Cl₂ (bottom left panel) and in CH₃CN (bottom right panel).

Figure S3: Orbital pictures involved in most intense two-photon absorption in molecule 3 in three solvents.

Figure S4: Relative orientation of ground-state dipole moment, excited state dipole moment and the corresponding transition moment vectors in molecule 3 in CH_2Cl_2 solvent.

Figure S5: Natural transition orbitals in molecule 3 in $\rm CH_2Cl_2$ solvent.

		$\mathrm{CH}_{2}\mathrm{Cl}_{2}$	
Atoms	Х	Y	Ζ
Н	0.198484	2.840953	0.417100
Η	-1.989098	4.411625	0.540039
Η	0.198677	-2.840639	-0.418309
Η	3.525829	-1.564633	1.491554
Η	3.526082	1.564699	-1.491373
Η	-1.988803	-4.411415	-0.541957
Η	-4.118875	2.751477	0.262134
Η	1.107074	-1.561406	1.472725
Η	-4.118692	-2.751539	-0.263275
Η	1.107333	1.561477	-1.472964
Η	6.916809	0.793714	-0.680601
Η	5.602678	1.972301	-0.597195
Η	5.640865	0.768496	-1.903975
Η	6.916650	-0.793680	0.681482
Η	5.602685	-1.972407	0.596907
Η	5.640247	-0.769318	1.904362
В	-3.587561	-0.000107	0.000554
\mathbf{C}	0.902965	0.000061	-0.000109
\mathbf{C}	-0.560848	0.000051	-0.000192
\mathbf{C}	-1.275613	-1.210176	-0.104507
\mathbf{C}	-1.275688	1.210243	0.104004
\mathbf{C}	-0.830769	2.532658	0.312995
\mathbf{C}	-0.830600	-2.532478	-0.314024
\mathbf{C}	-1.957700	3.342963	0.385961
\mathbf{C}	3.015428	-0.881889	0.825389
\mathbf{C}	3.015569	0.881993	-0.825256
\mathbf{C}	-1.957474	-3.342825	-0.387367
\mathbf{C}	3.753559	0.000075	0.000157
\mathbf{C}	-3.066904	2.502003	0.239969
\mathbf{C}	-3.066738	-2.502001	-0.241022
\mathbf{C}	1.634050	-0.884926	0.808595
\mathbf{C}	1.634188	0.885031	-0.808704
\mathbf{C}	5.849105	0.932303	-0.840006
\mathbf{C}	5.848903	-0.932506	0.840388
Ν	-2.665960	1.233164	0.073238
Ν	-2.665879	-1.233207	-0.073771
Ν	5.118593	0.000113	0.000342
\mathbf{F}	-4.405923	-0.062673	1.139274
\mathbf{F}	-4.408078	0.062325	-1.136576

Table S1: Cartesian coordinates of ground state geometry of molecule 3

		$\rm CH_3CN$	
Atoms	Х	Y	Z
Η	0.19676900	-2.84280100	-0.41913000
Η	-1.99128700	-4.41167100	-0.53937600
Η	0.19728200	2.84222600	0.42047500
Η	3.52629700	1.58056500	-1.47544500
Η	3.52668500	-1.58070400	1.47503300
Η	-1.99051000	4.41142700	0.54171200
Η	-4.11988500	-2.75171000	-0.25940800
Η	1.10873600	1.57716100	-1.45690000
Η	-4.11941100	2.75197300	0.26103000
Η	1.10911900	-1.57732500	1.45707800
Η	6.91687600	-0.80080300	0.67169400
Η	5.60279900	-1.97871300	0.57557500
Η	5.64090700	-0.78931000	1.89535600
Η	6.91687700	0.80075100	-0.67216900
Η	5.60292000	1.97876100	-0.57519800
Η	5.64080800	0.79013900	-1.89568700
В	-3.58473500	0.00020000	-0.00064000
\mathbf{C}	0.90325100	-0.00013700	0.00005300
\mathbf{C}	-0.55910800	-0.00010700	0.00018200
\mathbf{C}	-1.27506700	1.21052700	0.10372300
\mathbf{C}	-1.27526200	-1.21065300	-0.10316600
\mathbf{C}	-0.83180800	-2.53286800	-0.31354400
\mathbf{C}	-0.83136300	2.53255800	0.31475500
\mathbf{C}	-1.95962000	-3.34301800	-0.38526100
\mathbf{C}	3.01595500	0.89095000	-0.81639900
\mathbf{C}	3.01616200	-0.89112500	0.81608000
\mathbf{C}	-1.95902900	3.34285800	0.38698500
\mathbf{C}	3.75457500	-0.00010000	-0.00025900
\mathbf{C}	-3.06788600	-2.50219700	-0.23789800
\mathbf{C}	-3.06745600	2.50229200	0.23931400
\mathbf{C}	1.63503300	0.89394600	-0.79926000
\mathbf{C}	1.63523700	-0.89415200	0.79925500
\mathbf{C}	5.84942200	-0.94168500	0.82990200
\mathbf{C}	5.84942100	0.94185300	-0.83016500
Ν	-2.66580400	-1.23274400	-0.07105200
Ν	-2.66560100	1.23285400	0.07187000
Ν	5.11827800	-0.00015900	-0.00040200
F	-4.40662200	0.06068500	-1.13943500

Table S2: Cartesian coordinates of ground state geometry of molecule 3

		C_6H_{12}	
Atoms	Х	Υ	Z
Η	0.20274500	2.83722800	0.41122900
Η	-1.98327200	4.41195300	0.53848600
Η	0.20291700	-2.83696200	-0.41220100
Η	3.52399700	-1.51946400	1.53551000
Η	3.52421700	1.51952200	-1.53533700
Η	-1.98300800	-4.41178000	-0.54005900
Η	-4.11661800	2.74922200	0.26813800
Η	1.10189700	-1.51594000	1.51632000
Η	-4.11645500	-2.74928000	-0.26907900
Η	1.10211700	1.51599300	-1.51650300
Η	6.91630700	0.77325100	-0.70572400
Η	5.60256700	1.95377700	-0.65503400
Η	5.63906600	0.71220100	-1.92624300
Η	6.91620500	-0.77319900	0.70637100
Η	5.60261400	-1.95388200	0.65470400
Η	5.63862700	-0.71294100	1.92654500
В	-3.59684800	-0.00009400	0.00045400
\mathbf{C}	0.90181900	0.00005300	-0.00007800
С	-0.56618900	0.00004400	-0.00014500
\mathbf{C}	-1.27698500	-1.20930200	-0.10673200
\mathbf{C}	-1.27705200	1.20935800	0.10633700
\mathbf{C}	-0.82813100	2.53267000	0.31107300
\mathbf{C}	-0.82797900	-2.53251700	-0.31190800
\mathbf{C}	-1.95267600	3.34309100	0.38585500
\mathbf{C}	3.01360800	-0.85589600	0.85011300
\mathbf{C}	3.01372900	0.85598900	-0.84997900
\mathbf{C}	-1.95247500	-3.34297600	-0.38700900
\mathbf{C}	3.75020100	0.00007000	0.00014400
\mathbf{C}	-3.06441900	2.50107200	0.24442700
\mathbf{C}	-3.06427100	-2.50107400	-0.24529300
\mathbf{C}	1.63093500	-0.85859100	0.83459600
\mathbf{C}	1.63105300	0.85867700	-0.83466700
\mathbf{C}	5.84771300	0.90618900	-0.86693500
\mathbf{C}	5.84758200	-0.90636500	0.86720300
Ν	-2.66642300	1.23431900	0.07917500
Ν	-2.66635100	-1.23435500	-0.07960900
Ν	5.11956200	0.00011600	0.00029100
F	-4.40222800	-0.06780400	1.13984900
F	-4 40399200	0.06750000	-1.13767200

Table S3: Cartesian coordinates of ground state geometry of molecule 3

Molecules	Ex. St.	ω_{0i}	$\delta^{1\mathrm{P}}$	μ^{0i}	Orbitals, weights	Λ
	(i)	(a.u.)	(a.u.)	(a.u.)	& contributions	
1	1	0.109	0.531	2.698	H-L 0.390 0.284	0.6973
	2	0.143	0.046	0.691	H-1–L 0.447 0.284	0.6250
	3	0.153	0.042	0.641	H-2–L 0.453 0.302	0.6571
	4	0.170	0.000	0.014	H-3–L 0.481 0.090	0.1922
	5	0.178	0.000	0.032	H–L+2 $0.457 \ 0.084$	0.1850
2	1	0.112	0.438	2.421	H–L 0.382 0.269	0.6769
	2	0.145	0.071	0.862	H-1–L 0.430 0.283	0.6433
	3	0.154	0.007	0.266	H-3–L 0.325 0.205	0.5954
	4	0.156	0.252	1.556	H-2–L 0.330 0.175	0.5514
	5	0.170	0.004	0.215	H-4–L 0.456 0.163	0.3760
3	1	0.113	0.419	2.367	H-1–L 0.388 0.267	0.6624
	2	0.117	0.341	2.090	H–L 0.451 0.185	0.4191
	3	0.146	0.060	0.793	H-2–L 0.438 0.283	0.6356
	4	0.156	0.048	0.681	H-3–L 0.454 0.283	0.6132
	5	0.166	0.017	0.441	H-4–L 0.211 0.069	0.3984
					H–L+3 0.148 0.068	
					H–L+4 0.108 0.047	
4	1	0.111	0.423	2.406	H–L 0.368 0.247	0.6351
	2	0.143	0.058	0.783	H-1–L 0.406 0.250	0.5902
	3	0.144	0.000	0.047	H-5-L+1 0.299 0.160	0.4962
					H-5-L 0.085 0.033	
	4	0.152	0.021	0.454	H-2-L 0.425 0.250	0.5681
	5	0.154	0.037	0.616	H–L+1 0.427 0.140	0.3417
5	1	0.110	0.522	2.674	H–L 0.391 0.284	0.6953
	2	0.128	0.000	0.003	H-1–L 0.471 0.062	0.1366
	3	0.143	0.043	0.670	H-2–L 0.446 0.283	0.6220
	4	0.154	0.040	0.621	H-3–L 0.453 0.303	0.6573
	5	0.169	0.033	0.545	H-1-L+5 0.425 0.249	0.5407
6	1	0.109	0.533	2.708	H–L 0.389 0.284	0.7007
	2	0.131	0.000	0.031	H–L+1 0.473 0.047	0.1020
	3	0.142	0.046	0.697	H-1–L 0.447 0.285	0.6271
	4	0.152	0.040	0.625	H-2–L 0.452 0.301	0.6551
	5	0.174	0.033	0.533	H-L+2 0.489 0.087	0.1815
7	1	0.113	0.429	2.389	H–L 0.387 0.268	0.6660
	2	0.126	0.283	1.832	H-1–L 0.455 0.197	0.4333
	3	0.146	0.064	0.820	H-2–L 0.438 0.284	0.6374
	4	0.155	0.049	0.687	H-3–L 0.453 0.284	0.6161
	5	0.170	0.007	0.271	H-4–L 0.295 0.092	0.3973
					H-1-L+2 0.156 0.091	

Table S4: Vacuum phase OPA data for molecules 1–7. The last column represent the involved orbitals, their weights and their contributions.

Molecules	Ex. St.	ω_{0i}	$\delta^{1\mathrm{P}}$	μ^{0i}	Orbitals, weights	Λ
	(i)	(a.u.)	(a.u.)	, (a.u.)	& contributions	
8	1	0.109	0.528	2.690	H-L 0.391 0.284	0.6974
	2	0.137	0.000	0.021	H-1–L 0.476 0.070	0.1556
	3	0.143	0.045	0.684	H-2–L 0.447 0.283	0.6242
	4	0.154	0.040	0.628	H-3–L 0.453 0.302	0.6574
	5	0.175	0.024	0.456	H-1-L+2 0.390 0.234	0.5179
9	1	0.111	0.432	2.422	H–L 0.378 0.265	0.6128
	2	0.143	0.071	0.865	H-1–L 0.434 0.279	0.5406
	3	0.152	0.015	0.390	H-3–L 0.446 0.278	0.1691
	4	0.161	0.367	1.846	H-2–L 0.447 0.245	0.7568
	5	0.172	0.016	0.399	$H-L+1 \ 0.446 \ 0.123$	0.7592
10	1	0.109	0.532	2.705	H–L 0.389 0.284	0.6546
	2	0.142	0.047	0.701	H-1–L 0.447 0.285	0.1798
	3	0.150	0.000	0.029	H–L+1 0.485 0.069	0.1824
	4	0.152	0.041	0.636	H-2–L 0.452 0.301	0.1535
	5	0.174	0.033	0.534	H–L+2 0.488 0.086	0.7658
11	1	0.113	0.434	2.411	H–L 0.383 0.269	0.6733
	2	0.145	0.069	0.851	H-2–L 0.430 0.282	0.6415
	3	0.148	0.214	1.474	H-1–L 0.449 0.222	0.4937
	4	0.155	0.080	0.880	H-3–L 0.441 0.278	0.6168
	5	0.169	0.003	0.198	H-4–L 0.450 0.163	0.3834
12	1	0.109	0.528	2.691	H–L 0.391 0.284	0.6975
	2	0.143	0.045	0.686	H-1–L 0.446 0.283	0.6245
	3	0.154	0.042	0.641	H-2–L 0.453 0.302	0.6569
	4	0.162	0.000	0.001	H-3–L 0.479 0.084	0.1807
	5	0.181	0.000	0.036	H-L+2 0.403 0.068	0.1693
13	1	0.111	0.428	2.412	H–L 0.377 0.261	0.6617
	2	0.138	0.000	0.041	H-4–L+1 0.323 0.142	0.3690
	3	0.144	0.067	0.843	H-1–L 0.424 0.274	0.6279
	4	0.152	0.011	0.323	H-3–L 0.442 0.273	0.6045
	5	0.160	0.393	1.922	H-2–L 0.448 0.263	0.5784
14	1	0.109	0.531	2.702	H–L 0.389 0.284	0.6972
	2	0.142	0.046	0.695	H-1–L 0.447 0.284	0.6262
	3	0.143	0.000	0.053	H–L+1 0.479 0.058	0.1264
	4	0.153	0.040	0.628	H-2–L 0.452 0.301	0.6550
	5	0.179	0.032	0.517	H–L+2 0.484 0.088	0.1866

Table S5: vacuum phase OPA data for molecules 8–14. The last column represent the involved orbitals, their weights and their contributions.

Molecules	Excited	$\delta^{2P}_{\text{Resp.}}$	$\delta^{2\mathrm{P}}_{2\mathrm{SM}}$	$\delta^{ m 2P}_{ m 3SM}$
	states	(a.u.)	(a.u.)	(a.u.)
1	1	155.0	47.892	59.0553(3)
	2	198.0	0.267	65.3676(3)
	3	0.197	3.003	2.9993(5)
	4	2.900	0.411	1.9393(1)
	5	0.662	0.892	0.7956(3)
2	1	217.0	90.412	161.0448(4)
	2	67.60	8.820	32.3049(4)
	3	659.0	2.250	355.7575(1)
	4	1140	1644.6	1648.5986(5)
	5	88.60	29.267	45.1965(1)
3	1	452.0	136.082	137.6860(5)
	2	15300	21405.679	20400.409(1)
	3	57.50	15.656	37.3414(2)
	4	143.0	43.155	283.3685(3)
	5	5.980	27.356	13.9539(2)
4	1	307.0	215.45	232.9139(2)
	2	3.970	29.370	0.5210(5)
	3	0.174	0.240	0.2250(1)
	4	198.0	18.443	266.2485(2)
	5	1630	734.99	799.4772(1)
5	1	179.0	56.302	67.6180(4)
	2	0.911	0.071	0.5081(1)
	3	215.0	0.528	42.8998(4)
	4	0.544	4.221	4.1587(5)
	5	6.940	14.618	14.6128(1)
6	1	160.0	50.451	62.0341(4)
	2	4.310	3.370	4.2948(5)
	3	190.0	0.549	44.4979(4)
	4	1.060	3.615	1.6618(5)
	5	484.0	872.59	794.5461(1)
7	1	351.0	112.655	213.3230 (2)
	2	7890.0	11364.5	10634.4478(1)
	3	57.900	13.339	30.9672(2)
	4	155.00	34.925	303.2511(3)
	5	5.990	14.709	4.5657(3)

Table S6: vacuum phase TPA data for molecules 1-7 obtained from quadratic response theory, two- and three-state model calculations.

Molecules	Excited	$\delta^{2P}_{\text{Resp.}}$	$\delta^{2\mathrm{P}}_{2\mathrm{SM}}$	$\delta^{ m 2P}_{ m 3SM}$
	states	(a.u.)	(a.u.)	(a.u.)
8	1	168.0	52.255	63.3981(4)
	2	2.490	2.273	2.3925(4)
	3	207.0	0.534	45.6911(4)
	4	0.128	3.591	3.5607~(5)
	5	9.050	2.014	2.0988(4)
9	1	271.00	137.0922	251.2609 (10)
	2	41.100	17.0057	47.5144(1)
	3	248.00	10.3182	417.8036(2)
	4	1940.0	5397.9685	2572.9906 (9)
	5	2060.0	151.1917	4019.7869(1)
10	1	163.00	51.5175	53.2357(5)
	2	192.00	0.5942	69.0204(4)
	3	1.92	1.4627	2.0968(10)
	4	0.76	3.9103	1.8400(5)
	5	499.00	900.8856	835.7074(4)
11	1	254.00	92.603	146.6651 (4)
	2	67.900	10.295	40.1996(3)
	3	2900.0	4204.05	3883.4643(1)
	4	207.00	30.055	312.1608(2)
	5	71.400	25.794	36.3587(1)
12	1	164.00	50.939	62.3500(3)
	2	202.00	0.340	48.4464(3)
	3	0.0873	3.496	3.4905(5)
	4	1.9900	0.001	0.9740(1)
	5	1.3500	1.192	1.2179(1)
13	1	293.00	163.547	231.0086(5)
	2	0.1060	0.242	0.1367~(4)
	3	33.400	18.222	17.8891(2)
	4	242.00	7.245	197.3966(5)
	5	1210.0	4334.78	3875.6902(1)
14	1	164.00	51.385	62.9732(4)
	2	195.00	0.5263	44.9126(4)
	3	13.300	15.566	14.1251(1)
	4	0.4220	3.736	2.2559(5)
	5	475.00	769.34	722.6227(4)

Table S7: vacuum phase TPA data for molecules 8–14 obtained from quadratic response theory, two- and three-state model calculations.

Table S8: OPA and TPA rotation data for molecule-3 in vacuum phase: variation of excitation energy (eV) and TP strength (10^3 a.u.) with the dihedral angle (in degree) between the two parts of the molecule.

θ	ω_{0i}	μ^{0i}	$\delta_i^{1\mathrm{P}}$	$\delta^{ m 2P}_{i,Res}$	$\delta^{\mathrm{2P}}_{i,2SM}$
0°	2.92	2.62	0.49	12.200	13.392
10°	2.93	2.59	0.48	11.100	13.893
20°	2.99	2.54	0.47	13.400	15.603
30°	3.07	2.45	0.45	14.400	17.990
40°	3.12	2.28	0.40	15.300	20.277
50°	3.12	2.00	0.31	15.200	20.896
60°	3.09	1.62	0.19	12.800	19.289
70°	3.04	1.11	0.09	7.900	11.097
80°	2.99	0.53	0.02	2.190	5.051
90°	2.98	0.08	0.00	0.056	0.077

Table S9: OPA and TPA rotation data for molecule 3 in CH_3CN solvent: variation of excitation energy (eV) and TP strength (10³ a.u.) with the dihedral angle (in degree) between the two parts of the molecule.

θ	ω_{0i}	μ^{0i}	$\delta^{1\mathrm{P}}_i$	$\delta^{ m 2P}_{i,Res}$	$\delta^{2\mathrm{P}}_{i,2SM}$
0°	2.60	3.24	0.67	24.600	27.390
10°	2.60	3.20	0.65	25.600	28.824
20°	2.63	3.12	0.63	28.400	32.975
30°	2.68	2.98	0.58	31.900	38.675
40°	2.70	2.77	0.51	35.600	44.684
50°	2.69	2.42	0.38	36.300	46.525
60°	2.64	1.94	0.24	32.100	41.480
70°	2.58	1.35	0.11	20.500	26.493
80°	2.54	0.65	0.03	5.720	7.404
90°	2.53	0.11	0.00	0.188	0.239

Table S10: OPA and TPA rotation data for molecule 3 in CH_2Cl_2 solvent: variation of excitation energy (eV) and TP strength (10³ a.u.) with the dihedral angle (in degree) between the two parts of the molecule.

$\overline{\theta}$	ω_{0i}	μ^{0i}	$\delta^{1\mathrm{P}}_{i}$	$\delta^{2P}_{i Pas}$	δ^{2P}_{i2SM}
	2.61	3.24	$\frac{0.67}{0.67}$	$\frac{27.300}{27.300}$	$\frac{30.827}{30.827}$
10°	2.62	3.20	0.66	28.400	32.314
20°	2.65	3.12	0.63	30.900	36.351
30°	2.71	2.99	0.59	34.100	41.824
41°	2.74	2.73	0.50	37.000	47.219
50°	2.73	2.42	0.39	37.200	48.426
60°	2.69	1.95	0.25	32.200	42.337
70°	2.64	1.35	0.12	20.200	26.577
80°	2.59	0.65	0.03	5.610	7.358
90°	2.58	0.11	0.00	0.176	0.225

Table S11: OPA and TPA rotation data for molecule 3 in C_6H_{12} solvent: variation of excitation energy (eV) and TP strength (10³ a.u.) with the dihedral angle (in degree) between the two parts of the molecule.

heta	ω_{0i}	μ^{0i}	$\delta_i^{1 ext{P}}$	$\delta^{ m 2P}_{i,Res}$	$\delta^{2\mathrm{P}}_{i,2SM}$
0°	2.73	3.08	0.63	30.038	27.755
10°	2.73	3.04	0.62	31.200	28.889
20°	2.79	2.97	0.60	34.133	31.732
30°	2.85	2.85	0.57	38.222	35.720
40°	2.90	2.64	0.49	41.101	38.673
50°	2.91	2.32	0.38	41.841	39.606
60°	2.88	1.87	0.25	35.487	33.805
70°	2.83	1.30	0.12	21.640	20.722
80°	2.79	0.62	0.03	5.904	5.669
90°	2.78	0.10	0.00	0.152	0.149

δ_{ff}
δ_{ff}
JJ
.194
.637
.390
.278
.057
.910
.445
.999
.781
.019

Table S12: Contribution of different optical channels (involved in 2SM) to TP activity of molecule 3, in gas phase

Table S13: Contribution of different optical channels (involved in 2SM) to TP activity of molecule 3 $\,$

θ		C_6H_{12}			CH_3CN			$\mathrm{CH}_{2}\mathrm{Cl}_{2}$	
	δ_{00}	$2 \times \delta_{0f}$	δ_{ff}	δ_{00}	$2 \times \delta_{0f}$	δ_{ff}	δ_{00}	$2 \times \delta_{0f}$	δ_{ff}
0°	64.593	-41.089	6.534	122.093	-128.529	33.826	109.180	-102.330	23.977
10°	62.199	-36.292	5.294	117.904	-119.215	30.135	104.300	-92.490	20.504
20°	56.338	-24.971	2.767	105.974	-93.719	20.720	94.967	-72.424	13.808
30°	48.008	-10.343	0.557	89.003	-60.665	10.338	79.736	-43.975	6.063
40°	37.155	3.846	0.099	69.718	-27.806	2.773	84.831	-6.398	0.142
50°	26.706	13.442	1.691	48.329	-1.821	0.017	43.444	4.847	0.135
60°	16.145	15.582	3.760	28.920	11.431	1.129	26.031	14.333	1.973
70°	7.366	10.518	3.755	13.043	11.092	2.358	11.767	11.834	2.975
80°	1.654	2.942	1.308	2.881	3.476	1.048	2.614	3.543	1.200
90°	0.040	0.076	0.035	0.087	0.115	0.038	0.075	0.110	0.040