Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Physical Chemistry Chemical Physics SUPPORTING INFORMATION

Molecular Dynamics Simulation of Geminal Dicationic Ionic Liquids $[C_n(mim)_2][NTf_2]_2$ - Structural and Dynamical Properties

Majid Moosavi*, Fatemeh Khashei, Elaheh Sedghamiz

Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran

*Corresponding author. Tel.: +98-313-7934942; Fax: +98-313-668-9732 E-mail: m.mousavi@sci.ui.ac.ir

Table S1 Electrostatic charges for the atoms of $[C_3(mim)_2][NTF_2]_2$ GDIL obtained at B3LYP/6-31++G(d,p) level of theory by CHELPG method (each ionic liquid has two anions: anion a and anion b)

	$[C_3(mim)]$	2] ²⁺		$[NTF_2]^-$	
Number	Atom	q/e	Number	Atom	q/e
1	С	0.376	1a	Na	-0.468
2	С	0.329	2a	Sa	0.831
3	С	-0.054	3a	Sa	0.898
4	С	0.051	4a	Oa	-0.460
5	С	0.170	5a	Oa	-0.484
6	С	-0.005	6a	Oa	-0.504
7	С	-0.096	7a	Oa	-0.515
8	С	-0.169	8a	Ca	0.564
9	С	-0.237	9a	Ca	0.464
10	Ν	-0.040	10a	Fa	-0.187
11	Ν	-0.112	11a	Fa	-0.174
12	Ν	0.150	12a	Fa	-0.242
13	Ν	0.106	13a	Fa	-0.194
14	С	-0.096	14a	Fa	-0.151
15	С	-0.135	15a	Fa	-0.127
16	Н	0.082	1b	Nb	-0.574
17	Н	0.051	2b	Sb	0.953
18	Н	0.155	3b	Sb	0.812
19	Н	0.182	4b	Ob	-0.479
20	Н	0.194	5b	Ob	-0.473
21	Н	0.198	6b	Ob	-0.531
22	Н	-0.011	7b	Ob	-0.468
23	Н	-0.055	8b	Cb	0.488
24	Н	-0.105	9b	Cb	0.591
25	Н	0.008	10b	Fb	-0.176
26	Н	0.005	11b	Fb	-0.220
27	Н	-0.005	12b	Fb	-0.200
28	Н	0.072	13b	Fb	-0.236
29	Н	0.123	14b	Fb	-0.134
30	Н	0.091	15b	Fb	-0.154
31	Н	0.118		Total	-1.55
32	Н	0.123			
33	Н	0.088			
	Total	1.55			

Table S2 Electrostatic charges for the atoms of $[C_5(mim)_2][NTF_2]_2$ GDIL obtained at B3LYP/6-31++G(d,p) level of theory by CHELPG method (each ionic liquid has two anions: anion a and anion b)

	[C ₅ (mim	$[1)_2]^{2+}$		$[NTF_2]^-$	
Number	Atom	q/e	Number	Atom	q/e
1	С	-0.092		Na	-0.564
2	С	-0.090	2a	Sa	0.971
3	С	0.009	3a	Sa	0.948
4	С	-0.067	4a	Oa	-0.500
5	С	0.133	5a	Oa	-0.496
6	С	-0.072	6a	Oa	-0.546
7	С	-0.037	7a	Oa	-0.575
8	С	-0.169	8a	Ca	0.496
9	С	-0.226	9a	Ca	0.486
10	С	-0.114	10a	Fa	-0.182
11	С	-0.150	11a	Fa	-0.172
12	Ν	0.124	12a	Fa	-0.189
13	Ν	0.189	13a	Fa	-0.187
14	Ν	0.123	14a	Fa	-0.156
15	Ν	0.141	15a	Fa	-0.150
16	С	-0.147	1b	Nb	-0.548
17	С	-0.168	2b	Sb	0.930
18	Н	0.163	3b	Sb	0.901
19	Н	0.190	4b	Ob	-0.494
20	Н	0.211	5b	Ob	-0.480
21	Н	0.185	6b	Ob	-0.543
22	Н	0.193	7b	Ob	-0.544
23	Н	0.174	8b	Cb	0.523
24	Н	0.072	9b	Cb	0.498
25	Н	0.124	10b	Fb	-0.191
26	Н	0.090	11b	Fb	-0.166
27	Н	0.086	12b	Fb	-0.197
28	Η	-0.004	13b	Fb	-0.196
29	Н	0.005	14b	Fb	-0.163
30	Н	0.015	15b	Fb	-0.160
31	Η	0.110		Total	-1.65
32	Н	-0.005			
33	Н	-0.020			
34	Н	0.112			
35	Н	0.078			
36	Н	0.140			
37	Η	0.086			
38	Н	0.153			
39	Η	0.098			

Total

1.65

T/K	$[C_3(mim)_2][NTf_2]_2$			$[C_5(mim)_2][NTf_2]_2$		
	Exp.	Simu.	% Dev.	Exp.	Simu.	% Dev.
298.15	1.6197	1.6699	-3.09	1.5695	1.5180	3.28
318.15	1.6016	1.6545	-3.30	1.5529	1.5062	3.01
333.15	1.5880	1.6433	-3.48	1.5405	1.4919	3.15
353.15	1.5801	1.6302	-3.19	1.5239	1.4813	2.79

Table S3 Comparison between the simulated densities (in g.cm⁻³) of the studied GDILs with experimental values²⁸ at different temperatures and 1 atm

Fig. S1 Calculated radial distribution functions of cation-cation, anion-anion, and cation-anion for (a) $[C_3(mim)_2][NTf_2]_2$ and (b) $[C_5(mim)_2][NTf_2]_2$ at 333.15 K and 1 atm.

Fig. S2 Radial distribution functions of anion $[NTf_2]^-$ around the CR carbon atom of the rings and also the carbon atom in the middle of the alkyl chain for (a) $[C_3(mim)_2][NTf_2]_2$ and (b) $[C_5(mim)_2][NTf_2]_2$ at 333.15 K and 1 atm. The labels are defined according to Figure 1.

Fig. S3 Distribution of the angles formed by two vectors pointing from the rings towards the center atom of linkage chain for $[C_5(mim)_2][NTf_2]_2$ at different temperatures.

Fig. S4 The log(MSD) versus log t and also β versus t plots for the cations and anions of the $[C_3(\min)_2][NTf_2]_2$ and $[C_5(\min)_2][NTf_2]_2$.

Fig. S5 The VACF plots for the cations and anions of the studied GDILs at 333.15 and 1 atm.

Fig. S6 Comparion among MSDs of the ring (the CR atom in the imidazolium cation), alkyl chain (the carbon atom in the middle of the alkyl chain), and anion (the nitrogen atom of the $[NTf_2]$ -), for (a) $[C_3(mim)_2][NTf_2]_2$ and (b) $[C_5(mim)_2][NTf_2]_2$ at 333.15 K and 1 atm.

Fig. S7 Mean square displacements (MSDs) of the carbon atoms of the alkyl chain in (a) $[C_3(mim)_2][NTf_2]_2$ and (b) $[C_5(mim)_2][NTf_2]_2$ at 333.15 K and 1 atm.

Fig. S8 Calculated viscosities for the studied GDILs as a function of simulation time at 333.15 K and 1 atm using Green-Kubo method. The plots of stress autocorrelation functions (SACFs) have been also shown.