Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Electronic Supplementary Information

Note added after first publication: This file replaces the version published on 18th of September 2017, in which the figures were not accurately reproduced. The content of the file has not otherwise changed.

Double Salt Ionic Liquids Based on 1-Ethyl-3-Methylimidazolium Acetate and Hydroxyl-Functionalized Ammonium Acetates: Strong Effects of Weak Interactions

Jorge F. B. Pereira,^{a,b*} Patrick S. Barber,^{b,‡} Steven P. Kelley,^{b,c} Paula Berton,^c and Robin D. Rogers^{b,c,e**}

- ^a Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Câmpus Araraquara, Department of Bioprocesses and Biotechnology, 14800-903 – Araraquara, SP, Brazil.
- ^b Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487, United States.
- ^c Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal QC H3A 0B8 Canada.
- ^d 525 Solutions, Inc., 720 2nd Street, Tuscaloosa, AL 35401, United States.

Corresponding Authors:

- *J. F. B. Pereira, E-mail: jfbpereira@fcfar.unesp.br
- **R. D. Rogers; E-mail: <u>RDRogers@ua.edu</u>
- [‡] Current Address: Williams College, Department of Chemistry, Williamstown, MA 01267, United States.

Supplementary Figures

Figure S1. ¹H NMR spectra of $[N(CH_3)_4]_x[C_2mim]_{1-x}[OAc]$ at 25 °C using CDCl₃ as external lock (x corresponds to the molar ratio of $[N(CH_3)_4]^+/[OAc]^-$, in which zero corresponds to $[C_2mim][OAc]$).

Figure S2. ¹H NMR spectra of $[Ch]_x[C_2mim]_{1-x}[OAc]$ at 25 °C using CDCl₃ as external lock (x corresponds to the molar ratio of $[Ch]^+/[OAc]^-$, in which zero corresponds to $[C_2mim][OAc]$).

Figure S3. ¹H NMR spectra of $[NH_3CH_2CH_3]_x[C_2mim]_{1-x}[OAc]$ at 25 °C using CDCl₃ as external lock (x corresponds to the molar ratio of $[NH_3CH_2CH_3]^+/[OAc]^-$, in which zero corresponds to $[C_2mim][OAc]$).

Figure S4. ¹H NMR spectra of $[NH_3OH]_x[C_2mim]_{1-x}[OAc]$ at 25 °C using CDCl₃ as external lock (x corresponds to the molar ratio of $[NH_3OH]^+/[OAc]^-$, in which zero corresponds to $[C_2mim][OAc]$).

Figure S5. ¹H NMR spectra of $[NH_3(CH_2)_2OH]_x[C_2mim]_{1-x}[OAc]$ at 25 °C using CDCl₃ as external lock (x corresponds to the molar ratio of $[NH_3(CH_2)_2OH]^+/[OAc]^-$), in which zero corresponds to $[C_2mim][OAc]$).

Figure S6. ¹³C NMR spectra of $[N(CH_3)_4]_x[C_2mim]_{1-x}[OAc]$ at 25 °C using CDCl₃ as external lock (x corresponds to the molar ratio of $[N(CH_3)_4]^+/[OAc]^-$, in which zero corresponds to $[C_2mim][OAc]$).

Figure S7. ¹³C NMR spectra of $[Ch]_x[C_2mim]_{1-x}[OAc]$ at 25 °C using CDCl₃ as external lock (x corresponds to the molar ratio of $[Ch]^+/[OAc]^-$, in which zero corresponds to $[C_2mim][OAc]$).

Figure S8. ¹³C NMR spectra of $[NH_3CH_2CH_3]_x[C_2mim]_{1-x}[OAc]$ at 25 °C using CDCl₃ as external lock (x corresponds to the molar ratio of $[NH_3CH_2CH_3]^+/[OAc]^-$, in which zero corresponds to $[C_2mim][OAc]$).

Figure S9. ¹³C NMR spectra of $[NH_3OH]_x[C_2mim]_{1-x}[OAc]$ at 25 °C using CDCl₃ as external lock (x corresponds to the molar ratio of $[NH_3OH]^+/[OAc]^-$, in which zero corresponds to $[C_2mim][OAc]$).

Figure S10. ¹³C NMR spectra of $[NH_3(CH_2)_2OH]_x[C_2mim]_{1-x}[OAc]$ at 25°C using CDCl₃ as external lock (x corresponds to the molar ratio of $[NH_3(CH_2)_2OH]^+/[OAc]^-$), in which zero corresponds to $[C_2mim][OAc]$).

Figure S11. ¹H NMR chemical shifts of the $[C_2mim][OAc]$ ring protons of a) [NH₃CH₂CH₃]_x[C₂mim]_{1-x}[OAc], b) [NH₃OH]_x[C₂mim]_{1-x}[OAc], and c) [NH₃(CH₂)₂OH]_x[C₂mim]_{1-x}[OAc] (zero on the axis corresponds to [C₂mim][OAc]).

Figure S12. ¹³C NMR chemical shifts of the $[C_2mim][OAc]$ ring protons of a) $[NH_3CH_2CH_3]_x[C_2mim]_{1-x}[OAc]$, b) $[NH_3OH]_x[C_2mim]_{1-x}[OAc]$, and c) $[NH_3(CH_2)_2OH]_x[C_2mim]_{1-x}[OAc]$ (zero on the axis corresponds to $[C_2mim][OAc]$).

Figure S13. PXRD pattern of $[N(CH_3)_4][OAc]$ *vs.* simulated pattern from crystal structure. Unidentified peaks from the experimental pattern are labeled with positions.

Figure S14. IR spectrum of [N(CH₃)₄][OAc].

Figure S15: Optical micrographs at 50x magnification of [N(CH₃)₄][OAc] under ordinary transmitted light (*left*) and crossed polarizers (*right*).