Supplementary Information: Valence Orbitals and Local Bond Dynamics Around N Atoms of Histidine Under X-ray Irradiation

Sebastian Eckert,*^{*a,b*} Johannes Niskanen,^{*b*} Raphael M. Jay,^{*a*} Piter S. Miedema,^{*b*} Mattis Fondell,^{*b*} Brian Kennedy,^{*b*} Wilson Quevedo,^{*b*} Marcella Iannuzzi,^{*c*} and Alexander Föhlisch^{*a,b*}

The simulation of core excited state dynamics of histidine under basic conditions in Fig. 1 exhibits scattering duration spectral shifts and intensity changes equivalent to the ones of the neutral structure discussed in the main article. This statement holds for the N_{π}-protonated/N_{τ}-deprotonated tautomer under neutral conditions in Fig. 2 which exhibits energetically swapped energies for the X-ray absorption resonances of the N_{π} and N_{τ} site, which indicates that there is no impact of the coexistence of the two tautomers on the detected spectra. The simulations for the N_{π} protonated/N_r-deprotonated tautomer under basic conditions in Fig. 3 exhibit the same swap in X-ray absorption resonance energies. The overall agreement of the simulated emission spectra with the experimental data is worse than for the simulation of the other tautomer in Fig. 1 which supports the finding of Li and Hong ¹ who identify the N_{τ}-protonated/N_{π}-deprotonated tautomer as the dominant species at the studied pH.

References

1 S. Li and M. Hong, J. Am. Chem. Soc., 2011, 133, 1534-1544.

Fig. 2 N 1s core excited state dynamics in histidine under neutral conditions for the N_π-protonated/N_τ-deprotonated tautomer. The change in protonation is reflected in energetically swapped X-ray absorption resonances for the individual N sites. The fingerprint of protonation and dynamics on X-ray absorption (a) and resonant X-ray emission spectra (b) and (c) is equivalent to the one of the tautomer discussed in the article.

Fig. 1 N 1s core excited state dynamics in histidine under basic conditions. The fingerprint of protonation and dynamics on X-ray absorption (a) and resonant X-ray emission spectra (b) and (c) is equivalent to the one for histidine in a neutral environment.

Fig. 3 N 1s core excited state dynamics in histidine under basic conditions for the N_{π}-protonated/N_{τ}-deprotonated tautomer. The change in protonation is reflected in energetically swapped X-ray absorption resonances for the individual N sites. The resonant emission spectra in (b) and (c) exhibit changes similar to the ones for the other tautomer (Fig. 1) with an overall worse agreement with the experimental spectrum.

^a Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany. E-mail: sebeckert@uni-potsdam.de

^b Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany.

^c Physical-Chemistry Institute, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland.