Supplementary Information

A Novel Multimode Sensor Showing Cation-Dependent Fluorescence Colour

Sho Fujii, ^{a, b} Ryo Ishimura, ^a Atsushi Nakagawa, ^a and Noboru Kitamura ^{* a, b}

^{*a*} Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan.

^b Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita-10, Nishi-8, Kitaku, Sapporo, 060-0810

*E-mail: kitamura@sci.hokudai.ac.jp

Figure S1. Absorption (left) and fluorescence (right) spectra of compound 1 in *n*-hexane ($\varepsilon_r = 2.0$), chloroform (4.8), and acetonitrile (37). ε_r is the dielectric constant of the solvent.

Figure S2. Electron densities in the HOMO, LUMO, and LUMO+1 levels of the [1-Ca²⁺] and [1-Zn²⁺] complexes evaluated by DFT calculations (B3LYP/6-31G(d, p)).

Figure S3. (a, b, c) UV-vis absorption spectra of **1** upon titration by (a) Ca^{2+} ([**1**] = 2.4 x 10⁻⁶ M), (b) Ba^{2+} ([**1**] = 2.5 x 10⁻⁶ M), and (c) Zn^{2+} ([**1**] = 2.0 x 10⁻⁶ M) in acetonitrile. The blue and red curves show the spectra of **1** before and after ((6.0 ~ 7.0) x 10⁻⁶ M) an addition of M²⁺, respectively. (d, e, f) Titration curves monitored at several wavelengths (open circles) and their simulated curves (solid curves). (g, h, i) Concentration changes of [L], [ML], [ML₂], and [ML₃] during titration evaluated by spectral analysis.

Figure S4. Enlarged view of Fig.2a: UV-vis absorption spectra of **1** (2.1 x 10^{-6} M) upon titration by MgClO₄ in acetonitrile. Spectral changes around the isosbestic points (257, 273, 309, 330, 349, 424, and 433 nm) are also enlarged. The seven sharp isosbestic points were observed at [Mg²⁺] < 7.0 x 10^{-6} M. The isosbestic points except for those at 257 and 433 nm shifted to shorter wavelength with increasing in [Mg²⁺]. These data manifest the present system is a multi-component system.

	Mg^{2+}			Ca ²⁺			Ba^{2+}			Zn^{2+}		
	270	273	470	261	270	450	251	261	450	263	284	465
	nm	nm	nm	nm	nm	nm	nm	nm	nm	nm	nm	nm
\mathcal{E}_{L}	3.97	2.74	0.0123	6.14	3.97	0.181	5.79	6.64	0.181	7.00	2.40	0.0187
$\mathcal{E}_{\mathrm{ML}}$	3.29	3.31	0.751	4.65	4.23	1.25	7.40	5.13	0.997	4.59	4.65	1.78
$\mathcal{E}_{\mathrm{ML2}}$	5.72	5.76	1.81	7.68	6.65	2.23	13.4	11.3	1.26	6.90	6.79	1.80
\mathcal{E}_{ML3}	8.16	8.24	3.28	14.0	11.5	2.93	16.8	18.9	1.8	10.8	10.9	5.17

Table S1. Molar absorption coefficients ($\varepsilon_X / 10^4 \text{ M}^{-1}\text{cm}^{-1}$) of the $[1 - M^{2+}]$ complexes evaluated by the analysis of the titration curves in Figs. 5 and S3.