Supporting Information:

Photophysical Dynamics of a Binuclear Cu(I)-Emitter on the fs to μ s Timescale, in Solid Phase and in Solution

Table of Contents

Tab. S1: Decadic molar extinction coefficient ε of **1** in solution.

Fig. S1: Absorbance and luminescence spectra of **1** in toluene and acetonitrile at room temperature.

Fig. S2: Absorbance spectrum of **1** in solid state as neat film at room temperature.

Fig. S3: Luminescence spectra of **1** in KBr matrix and as neat film at room temperature.

Fig. S4: Static excitation/emission spectrum of **1** in toluene at room temperature.

Fig. S5: Static excitation/emission spectrum of **1** in acetonitrile at room temperature.

Fig. S6: Static excitation/emission spectrum of **1** in dichloromethane at room temperature.

Fig. S7: Static excitation/emission spectrum of **1** as neat film at room temperature.

Fig. S8: Static excitation/emission spectrum of **1** as neat pellet at room temperature.

Fig. S9: HOMO and LUMO of $\mathbf{1}$; spin density in the T_1 state.

Fig. S10: Ground state FTIR spectrum in CCl₄ and KBr-pellet in comparison with calculated vibrational spectrum at room temperature; calculated molecular structure of **1** in the electronic ground state.

Fig. S11: Selected time traces of fs transient absorption (TA) and kinetic analysis on **1** in toluene and acetonitrile solution at room temperature.

Tab. S2: Luminescence lifetimes of **1** in toluene at room temperature.

Tab. S3: Luminescence lifetimes of **1** in acetonitrile at room temperature.

Fig. S12: Temporal evolution of step-scan FTIR absorbance changes of **1** as KBr-pellet at room temperature and biexponential fits.

Tab. S4: Characterization of vibrational modes of 1.

Tab. S5: Change of geometrical parameters with transition from the S_0 structure to the T_1 structure.

Fig. S13: Bond lengths and angles in the central Cu_2I_2 unit in the S_0 and T_1 electronic state.

Fig. S14: Ground state FTIR spectrum of **1** as KBr-pellet; step-scan FTIR difference spectrum in the first microsecond after excitation; change in absorbance through temperature rise.

Tab. S6: Luminescence lifetimes of **1** as KBr-pellet at room temperature.

Tab. S7: Luminescence lifetimes of **1** as neat film at room temperature.

Fig. S15: Ground state FTIR spectrum of **1** as KBr-pellet at room temperature and at 20 K.

Fig. S16: Step-scan FTIR spectrum of **1** as KBr-pellet in the first microsecond after excitation, at room temperature and at 20 K.

Fig. S17: Step-scan FTIR difference spectrum of **1** as KBr-pellet at 20 K in the first 500 ns after excitation; DFT calculation of T_1 state minus $2*S_0$ state; ground state FTIR spectrum (KBr-pellet at 20 K).

Fig. S18: Temporal evolution of step-scan FTIR absorbance changes and kinetic analysis of **1** as KBrpellet at 20 K.

Fig. S19: Selected transients of fs-TA and kinetic analysis on **1** as neat film at room temperature.

Fig. S20: Wavepackets: Fast Fourier transform of fs-TA data of **1** in neat film at room temperature; Representation of low-frequency vibrational modes in the electronic ground state of **1**.

Fig. S21: Step-scan FTIR difference spectrum of **1** as KBr pellet and as neat film at room temperature in the first 100 ns after excitation.

Tab. S8: Vertical excitation energies for the S₀ geometry and corresponding oscillator strengths.

Fig. S22: Calculated vertical excitation energies for $S_{0^{-}}$ and $T_{1^{-}}$ geometry.

Tab. S1: Decadic molar extinction coefficient ε (L mol⁻¹ cm⁻¹) of **1** at given wavelengths in solution.

Fig. S1: Absorbance (black) and luminescence (red) spectra of **1** in toluene (9 μ mol/L), acetonitrile (11 μ mol/L), dichloromethane (51 μ mol/L); solvent contributions subtracted (room temperature).

Fig. S2: Normalized static absorbance spectrum of **1** in solid state as neat film at room temperature; substrate contributions subtracted.

Fig. S3: Luminescence spectrum of **1** in KBr matrix (black) and luminescence spectrum of **1** as neat film (red) at room temperature.

Fig. S4: Static excitation/emission spectrum of **1** in toluene solution at room temperature, concentration set to 0.02 mg/mL (14 μ mol/L). Note that at high concentration used in Ref. [1] (ca. 1 mmol/L) (i) the apparent luminescence peak at 677 nm is blue-shifted to ca. 600 nm, and (ii) the excitation spectrum (for luminescence at 600 nm) is significantly red-shifted with respect to the peak at ca. 310 nm at low concentration.

Fig. S5: Static excitation/emission spectrum of **1** in acetonitrile solution at room temperature, concentration set to 0.014 mg/mL (11 μ mol/L). Note that at high concentration used in Ref. [1] (ca. 1 mmol/L) (i) the apparent luminescence peak at 500 nm is red-shifted to ca. 600 nm, and (ii) the excitation spectrum (for luminescence at 600 nm) peaks at ca. 350 nm.

Fig. S6: Static excitation/emission spectrum of **1** in dichloromethane solution at room temperature, concentration set to 0.07 mg/mL (51 μ mol/L). Note that at high concentration used in Ref. [1] (ca. 1 mmol/L) (i) the apparent luminescence peak at 685 nm is blue-shifted to ca. 600 nm, and (ii) the excitation spectrum (for luminescence at 600 nm) peaks at ca. 350 nm.

Fig. S7: Static excitation/emission spectrum of **1** as neat film at room temperature.

Fig. S8: Static excitation/emission spectrum of 1 as neat pellet at room temperature.

Fig. S9: Top: HOMO (left) and LUMO (right) of **1**. Bottom: Spin density in the T_1 state, calculated with DFT/B3LYP/def2-TZVP.

Fig. S10: Ground state FTIR spectrum of **1** in CCl_4 (red) and of **1** as KBr-pellet (black) at room temperature in comparison with calculated vibrational spectrum (blue) (S₀, DFT/B3LYP/def2-TZVP, x-axis scaled by 0.975, FWHM = 15 cm⁻¹); calculated molecular structure of **1** in the electronic ground state (right).

Fig. S11: Top: Selected time traces of fs transient absorption (TA) experiment on **1** in toluene solution at room temperature (excitation 350 nm) with triexponential fit (0.1, 25, 1500 ps). Bottom: Selected transients of fs-TA experiment on **1** in acetonitrile solution (excitation 350 nm) with biexponential fit (0.8, 59 ps).

Tab. S2: Luminescence lifetimes of 1 in toluene solution at room temperature.

$\lambda_{ ext{ex}}$ /nm	$\lambda_{ m em}$ /nm	τ_1 /ns	A ₁ /%	τ_2 /ns	A2 /%	$\tau_{\rm av}$ /ns
293	677	0.7	23.9	12.9	76.1	10.0

Tab. S3: Luminescence lifetimes of 1 in acetonitrile solution at room temperature.

$\lambda_{ ext{ex}}$ /nm	$\lambda_{\scriptscriptstyle ext{em}}$ /nm	τ_1 /ns	A ₁ /%	τ_2 /ns	A2 /%	$ au_{av}$ /ns
256	577	3.1	86.9	13.0	13.1	4.4
273	577	3.2	85.9	10.9	14.1	4.3

Fig. S12: Temporal evolution of step-scan FTIR absorbance changes of **1** as KBr-pellet at room temperature of 6 vibrational bands (dots) and biexponential fits (convolution with Gaussian pulse shape) (solid lines) that resulted in two decay times of $\tau_1 = 257 \pm 14$ ns and $\tau_2 = 3624 \pm 132$ ns.

$ ilde{ u}$ /cm ⁻¹ ground	$\tilde{\nu}$ /cm ⁻¹ excited	Character of the vibration
state	state	
1592		C_3 - C_4 / C_5 - C_6 stretching, accompanied with C-H scissoring, in the
		pyridine
1478	1471	C-H rocking in the tolyl moieties
1436	1427	C-H scissoring of the methyl groups of the tolyl moieties
1405		C-H scissoring in the tolyl moieties
1173	1165	C-H scissoring of tolyl and pyridine
1106		C-H scissoring of tolyl, coupled over all tolyl groups
1038		C-H twisting of the methyl group on the pyridine
998	976	Breathing of the phenyl groups

Tab. S4: Characterization of vibrational modes of 1.

Exclusive excited state vibrations

1570	C-C stretching, accompanied with C-H scissoring, in the tolyl moieties
1518	C_3-C_4/C_5-C_6 stretching, accompanied with C-H scissoring, in the
	pyridine
1267	Asymmetric N-C ₂ /N-C ₆ stretching vibration, accompanied with C-H
	scissoring, in the pyridine
1213	Breathing of the pyridine ring, accompanied with C ₆ -P stretching
	vibration

Tab. S5: Change of geometrical parameters concerning the copper – iodide core with transition from the S_0 structure to the T_1 structure, calculated with DFT/B3LYP/def2-TZVP. The numbers of the atoms are shown in the figure above.

parameter	difference
d(N1-C6)	+0.07 Å
<i>d</i> (Cu8-Cu9)	-0.25 Å
<i>d</i> (Cu9-N1)	-0.27 Å
∠(Cu9-I10-Cu8)	-6.5°
∠(Cu9-I11-Cu8)	-6.8°

Fig. S13: Bond lengths (in Å) and angles (in °) in the central Cu_2I_2 unit in the S₀ and T₁ electronic state, calculated with DFT/B3LYP/def2-TZVP.

Fig. S14: Ground state FTIR spectrum of **1** as KBr-pellet (black); step-scan FTIR difference spectrum (red) in the first microsecond after excitation with 355 nm (red); change in absorbance through temperature rise of 5 K (green).

Tab. S6: Luminescence lifetimes of **1** as KBr-pellet at room temperature.

$\lambda_{ m ex}/ m nm$	$\lambda_{\scriptscriptstyle{ ext{em}}}$ /nm	<i>τ</i> ₁ /μs
345	550	4.4
293	550	4.5
273	550	4.7

Tab. S7: Luminescence lifetimes of **1** as neat film at room temperature.

$\lambda_{ ext{ex}}$ /nm	$\lambda_{\scriptscriptstyle ext{em}}$ /nm	$\tau_1/\mu s$	A ₁ /%	<i>τ</i> ₂ /μs	A2 /%	$ au_{av}$ /µs
389	550	1.03	14	4.23	86	3.8
345	550	0.76	23	3.62	77	3.0
313	550	0.69	23	3.61	77	2.9
293	550	0.63	24	3.54	76	2.8
273	550	0.61	25	3.43	75	2.7
256	550	0.56	25	3.45	75	2.7

Fig. S15: Ground state FTIR spectrum of **1** as KBr-pellet at room temperature (295 K) (red) and at 20 K (blue).

Fig. S16: Step-scan FTIR difference spectrum of **1** as KBr-pellet in the first microsecond after excitation with 355 nm, at 295 K (red) and at 20 K (blue).

Fig. S17: Step-scan FTIR difference spectrum of **1** as KBr-pellet at 20 K in the first 500 ns after excitation with 355 nm (red); DFT calculation of T_1 state minus $2*S_0$ state (black); ground state FTIR spectrum as KBr-pellet at 20 K (blue); calculations: DFT/B3LYP/def2-TZVP, x-axis scaled by 0.975, FWHM = 15 cm⁻¹.

Fig. S18: Temporal evolution of step-scan FTIR absorbance changes of **1** as KBr-pellet at 20 K of 5 vibrational bands (dots) and biexponential fits (convolution with Gaussian pulse shape) (lines). τ_1 = 1291 ± 49 ns, τ_2 = 40 ± 1.2 µs.

Fig. S19: Selected transients of fs-TA experiment on **1** as neat film at room temperature (excitation 350 nm) with triexponential fit (0.3, 35, 670 ps).

Fig. S20: Top: Fast Fourier transform (FFT) of fs-TA data of **1** in neat film at room temperature indicates coherent nuclear oscillation between ca. 390-400 nm. For more information cf. main text. Bottom: Representation of low-frequency vibrational modes in the electronic ground state of **1** (calculated by DFT) with wavenumbers (129 cm⁻¹ left, 111 cm⁻¹ right) close to that (115 cm⁻¹) observed after photoexcitation of **1** as neat film.

Fig. S21: Step-scan FTIR difference spectrum of **1** as KBr pellet (black) and as neat film (red) at room temperature in the first 100 ns after excitation with 355 nm.

Excited state	Δ <i>E</i> /eV	ν̃/cm⁻¹	λ/nm	oscillator strength
S ₁	2.571	20738	482	0.0012
S ₂	2.867	23123	432	0.0041
S ₃	2.900	23387	428	0.0116
S_4	2.959	23868	419	0.0009
S ₅	3.128	25228	396	0.0028
S ₆	3.248	26193	382	0.0029
S ₇	3.271	26381	379	0.0021
S ₈	3.284	26488	378	0.0040
S ₉	3.304	26648	375	0.0166
S ₁₀	3.321	26792	373	0.0033
Excited state	Δ <i>E</i> /eV	$\tilde{\nu}/cm^{-1}$	λ/nm	oscillator strength
Excited state	ΔΕ/eV 2.554	ν̃/cm⁻¹ 20600	λ/nm 485	oscillator strength 0.0058
			-	
T ₁	2.554	20600	485	0.0058
T ₁ T ₂	2.554 2.770	20600 22341	485 447	0.0058 0.0495
T_1 T_2 T_3	2.554 2.770 2.835	20600 22341 22864	485 447 437	0.0058 0.0495 0.0216
$\begin{array}{c} T_1 \\ T_2 \\ T_3 \\ T_4 \end{array}$	2.554 2.770 2.835 2.946	20600 22341 22864 23765	485 447 437 421	0.0058 0.0495 0.0216 0.0043
$\begin{array}{c} T_1\\ T_2\\ T_3\\ T_4\\ T_5 \end{array}$	2.554 2.770 2.835 2.946 3.103	20600 22341 22864 23765 25026	485 447 437 421 400	0.0058 0.0495 0.0216 0.0043 0.0247

26016

26211

26341

384

382

380

0.1143

0.0268

0.0160

T₈

۲₉

 T_{10}

3.226

3.250

3.263

Tab. S8: Vertical excitation energies for the S_0 geometry and corresponding oscillator strengths, calculated with TD-DFT/B3LYP/def2-TZVP.

Fig. S22: Vertical excitation energies for $S_{0^{\text{-}}}$ and $T_{1}\text{-}geometry,$ calculated with TD-DFT/B3LYP/def2-TZVP.

References:

[1] Wallesch, M.; Verma, A.; Flechon, C.; Flügge, H.; Zink, D. M.; Seifermann, S. M.; Navarro, J. M.; Vitova, T.; Göttlicher, J.; Steininger, R. *et al.* Towards Printed Organic Light-Emitting Devices: A Solution-Stable, Highly Soluble Cul -NHetPHOS. *Chem. Eur. J.* **2016**, *22*, 16400–16405.