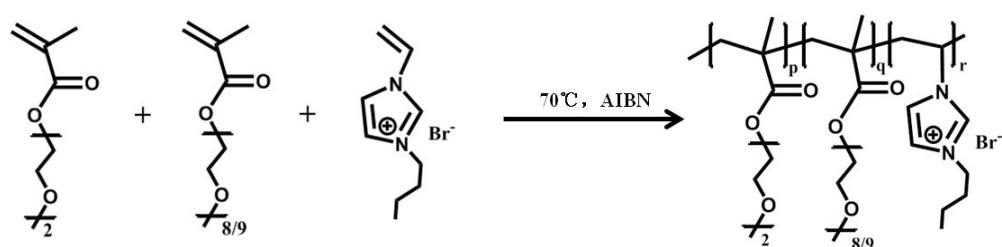
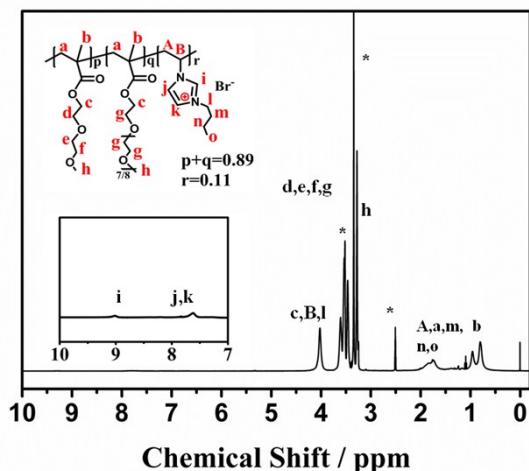


Supporting Information (SI)

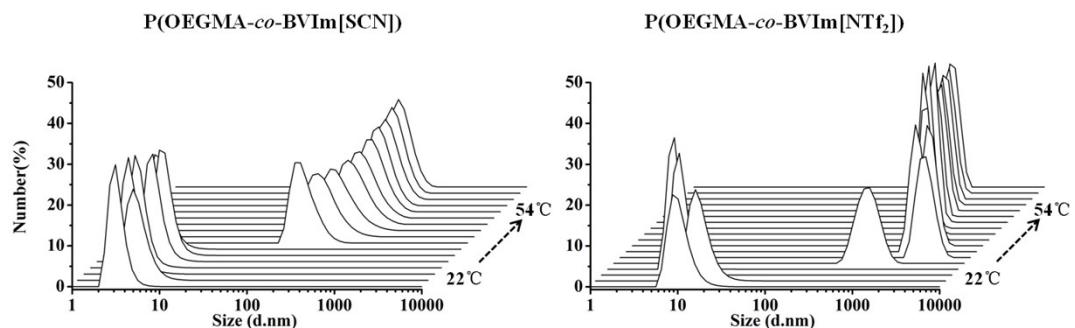

Multiple Interactions Regulated Phase Transition Behavior of Thermo-responsive Copolymers Containing Cationic Poly(ionic liquid)s

Yingna Zhang, Hui Tang* and Peiyi Wu*

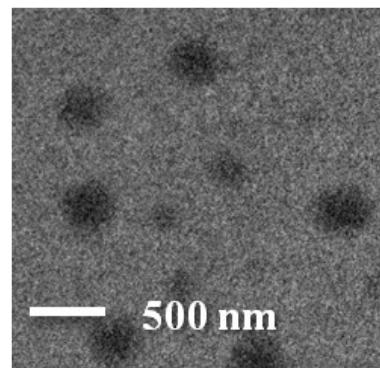

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China.

Synthesis of copolymers

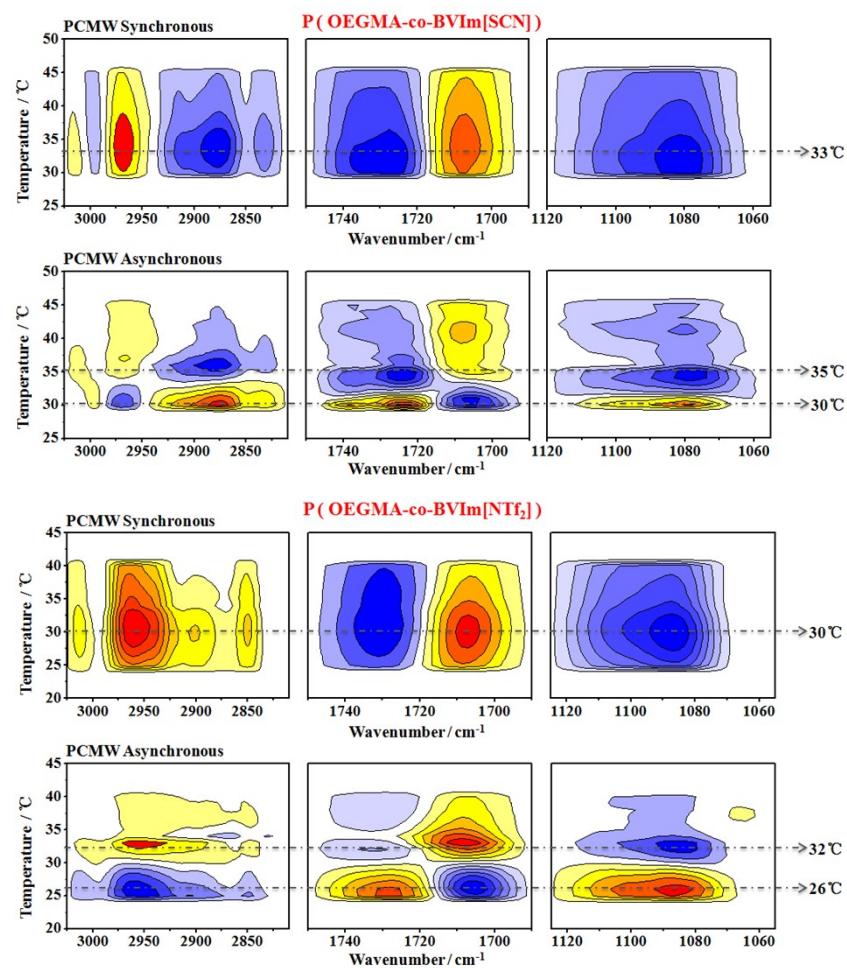
Scheme S1. Chemical structures and Synthesis of copolymers



¹H NMR


Figure S1. ^1H -NMR spectra of P(OEGMA-*co*-BVIm[Br]) copolymer (DMSO-*d*6).

DLS


Figure S2. Size distributions of P(OEGMA-*co*-BVIm[SCN]) and P(OEGMA-*co*-BVIm[NTf₂]) solutions with an interval of 2.0 °C during heating.

TEM

Figure S3. TEM image of P(OEGMA-*co*-BVIm[SCN]) at 50°C in air-dried state.

Perturbation Correlation Moving Window (PCMW)

Figure S4. PCMW synchronous and asynchronous spectra of P(OEGMA-*co*-BVIm[SCN]) solution between 25 to 50 °C and P(OEGMA-*co*-BVIm[NTf₂]) solution between 20 to 45 °C during heating.

Two-Dimensional Correlation Analysis (2Dcos).

Noda's rule: when the cross-peaks of ν_1 and ν_2 ($\nu_1 > \nu_2$) in synchronous and asynchronous spectra have the same symbol (both positive or negative), then the change at peak ν_1 has an earlier response than that at peak ν_2 , and vice versa.

Table S1. Final results of multiplication on the signs of each cross-peak in the synchronous and asynchronous spectra of P(OEGMA-*co*-BVIIm[SCN]).

1077	+	+	+	+	+	-	-	-	+	+	-	+	
1096	+	+	+	+	+	-	-	-	+	+	-	-	
1714	+	+	+	+	+	+	+	-	+	+	+	-	
1732	+	-	+	+	+	-	-	-	-	+			
2822	+	-	+	+	+	-	-	-	-				
2835	+	+	+	+	+	+	+						
2867	+	+	+	+	+	+							
2874	+	+	+	+	+								
2916	-	-	+	+									
2935	-	-	+										
2956	-	-											
2985	+												
2992	2992	2985	2956	2935	2916	2874	2867	2835	2822	1732	1714	1096	1077

Table S2. Final results of multiplication on the signs of each cross-peak in the synchronous and asynchronous spectra of P(OEGMA-*co*-BVIIm[NTf₂]).

1077	-	-	+	+	-	+	-	-	-	-	+	+	+	+		
1096	-	-	+	+	-	+	-	-	-	-	-	+	-	-		
1704	-	-	+	+	-	+	-	-	-	-	-	-	+	-		
1715	-	-	-	-	+	-	-	-	-	-	-	-	-	-		
1728	-	-	+	+	-	+	-	-	-	-	-	-	-	-		
1736	-	-	+	+	-	+	+	-	-	-	-	-	-	-		
1740	+	+	+	+	+	+	+	-	-	+						
2823	-	+	+	-	+	+	+	-								
2836	+	+	+	+	+	+	+									
2867	-	-	+	+	-	+										
2875	-	-	-	-	-	-										
2914	-	-	+	+												
2947	-	-	-													
2955	-	-	-													
2983	-															
2993	2993	2983	2955	2947	2914	2875	2867	2836	2823	1740	1736	1728	1715	1704	1096	1077