Two-dimensional second order nonlinear optical spectra: landscape of second order nonlinear optics

Jiu Chen¹, Ming Qian Wang², Xin Zhou², Ling Yang^{2*}, Wei-Qi Li^{3*}, Wei Quan Tian^{1*}

¹College of Chemistry and Chemical Engineering, Chongqing University, HuxiCampus,

Chongqing, 401331, P. R. China

²MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and

Storage, Institute of Theoretical and Simulational Chemistry, School of Chemistry and

Chemical Engineering, Harbin Institute of Technology, Harbin 150080 P. R. China

³Department of Physics, Harbin Institute of Technology 150001 Harbin

*Corresponding author: yangling@hit.edu.cn, tccliweiqi@hit.edu.cn, tianwq@cqu.edu.cn

Supporting Information

Table of contents

1. Full citation of Gaussian09

2. The 2D 2nd NLO spectra of polymethine and oligo-thiophene chromophores(in $\times 10^5 \times 10^{-30}$ esu). The external fields (ω_1 , ω_2) range from -5.0 eV to 5.0eV. The 2D 2nd NLO spectra were plotted in two directions along the z axis [$\beta(\omega_1, \omega_2)$] for each structure and scanned with step size of 0.05eV. Only the 2D 2nd NLO spectra of ploymethine and cis-oligo-thiophene chromophores were predicted 3. The analysis of resonances in 2D 2nd NLO of polymethine (n=18) and cis-oligo-thiophene (n=10) chromophores(in $10^5 \times 10^{-30}$ esu, unless specified). The external fields (ω_1 , ω_2) are scanned in a step size of 0.005 eV. 4. The electronic spectra of polymethine and oligo-thiophene chromophores

5. The electronic properties and first hyperpolarizabilities of polymethine (Table S1) and oligothiophene chromophores (Tables S2 and S3)

6. The evolution of $[\beta_0(n)-\beta_0(2)]/(n-2)$ (in $10^2 \times 10^{-30}$ esu) with the π bridge length n, the increase of β_0 chromophores per bridge unit reaches maximum with n=8 for polymethine chromophores and n=4 for oligo-thiophene chromophores.

7. The evolution of β_0 (in $10^2 \times 10^{-30}$ esu) with electron excitation of polymethine and oligo-thiophene chromophores. The red line (β_0) is the total static first-hyperpolarizability. The blue broken line (β_{2L}) is the two-level model contribution to the static first-hyperpolarizability. The purple broken line (β_{3L}) is the three-level model contribution to the static first-hyperpolarizability (as described in Eq. 2). The β_0 and β_{2L} share the same red axis.

8. The analysis of the nature of the major contributions of electron excitations to the $\beta_0(\times 10^{-30}\text{esu})$ of polymethine (n=18) and cis-oligo-thiophene (n=10) chromophores.

9. The single electron transition from ground state involved in the low-lying excited states of polymethine chromophore (n=18) and cis-oligo-thiophene chromophore (n=10).

1. Gaussian09 full citation

Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,

M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.;

Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.;

Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;

Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.;

Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari,

K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene,

M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;

Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;

Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas,

Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

2. The 2D 2nd NLO spectra of polymethine and oligo-thiophene chromophores(in $\times 10^5 \times 10^{-30}$ esu). The external fields (ω_1 , ω_2) range from -5.0 eV to 5.0eV. The 2D 2nd NLO spectra were plotted in two directions along the z axis [$\beta(\omega_1, \omega_2)$] for each structure and scanned with step size of 0.05eV. Only the 2D 2nd NLO spectra of ploymethine and cis-oligo-thiophene chromophores were predicted.

Polymethine chromophores

n=2

n=6

n=10

Cis-polythiophene chromophores

n=3

n=4

n=10

Figure S1 The 2D 2nd NLO spectra of polymethine and cis-oligo-thiophene chromophores(in $\times 10^5 \times 10^{-30}$ esu)

3. The analysis of resonances in 2D 2nd NLO of polymethine (n=18) and cis-oligo-thiophene (n=10) chromophores(in $10^5 \times 10^{-30}$ esu, unless specified). The external fields (ω_1 , ω_2) are scanned in a step size of 0.005 eV.

Polymethine chromophore (n=18)

resonance at (1.970eV, 1.135eV)

resonance at (1.965eV, 0.005eV)

40 **-**40 -20 -20 ß β_{2L} β_{3L} 2 1 -0 0 0 2 Δ 10 6 8 12

resonance at (1.970eV, -1.965eV)

resonance of (3.105eV, -1.970eV)

resonance of (3.105eV, -1.135eV)

cis-oligo-thiophene chromophore (n=10)

resonance of (1.955eV, 1.200eV)

resonance of (1.955eV, 0.000eV)

resonance of (1.955eV, -1.955eV)

resonance of (3.155eV, -1.955eV)

resonance of (3.155eV, -1.200eV)

Figure S2 The location of resonances in 2D 2nd NLO of polymethine (n=18) and cis-oligo-thiophene (n=10) chromophores(in $10^5 \times 10^{-30}$ esu). The external fields (ω_1 , ω_2) are scanned in a step size of 0.005 eV

4. The predicted electronic spectra of polymethine and oligo-thiophene chromophores

polymethine chromophores

Energy (eV)

trans

Figure S3 The electronic spectra of polymethine and oligo-thiophene chromophores, n is the number of methine pairs or the number of thiophenes.

5. The electronic properties and first hyperpolarizabilities of polymethine (Table S1) and oligothiophene chromophores (Tables S2 and S3)

Table S1. The electronic properties and first hyperpolarizabilities ($\times 10^{-30}$ esu) of polymethine chromophores

n _{meth}	β ₀	β_{max}	Dip(B3)	ΔE_{H-L}	ΔD	E _{ex-l}	f_0	e _D	e _π	e _A
		(×10 ⁶)		(ΔE_{B3LYP})						
2	327.80	1.05	16.88	5.15	13.75	2.50	1.81	0.256	-0.037	-0.293
		(EOPE)	(21.59)	(2.10)						
4	627.55	3.83	19.06	4.82	16.57	2.31	2.42	0.210	0.091	-0.301
		(EOPE)	(25.72)	(1.81)						
6	952.75	2.06	19.80	4.59	19.01	2.17	3.00	0.183	0.124	-0.307
		(DFG)	(28.48)	(1.61)						
8	1274.48	3.12	20.38	4.43	21.19	2.09	3.58	0.154	0.156	-0.310
		(SFG)	(31.03)	(1.46)						
10	1505.07	3.72	19.72	4.30	23.21	2.04	4.19	0.151	0.159	-0.310
		(DFG)	(32.33)	(1.34)						
14	1830.04	5.03	20.13	4.14	26.56	1.99	5.33	0.133	0.178	-0.311
		(OR)	(35.84)	(1.16)						
18	1978.46	5.24	20.28	4.04	29.30	1.97	6.42	0.122	0.189	-0.311
		(EOPE)	(38.23)	(1.04)						
24	2030.69	5.73	20.01	3.98	32.39	1.96	7.80	0.110	0.201	-0.311
		(DFG)	(39.72)	(0.93)						
30	2049.42	6.40	20.30	3.93	35.27	1.96	9.25	0.108	0.200	-0.308
		(DFG)	(41.18)	(0.83)						

 n_{meth} : number of methine pairs, β_{max} : the largest NLO response; ΔD : the transition dipole of E_{ex-l} , Dip(B3): dipole moment from ZINDO(B3LYP), $\Delta E_{H-L}(\Delta E_{B3LYP})$: HOMO-LUMO gap from ZINDO(B3LYP), E_{ex-l} : lowest excitation, f_0 : oscillator strength of E_{ex-l} , $e_D(e_{\pi}, e_A)$: charge of donor(bridge, acceptor)

Table S2. The electronic properties and first hyperpolarizabilities ($\times 10^{-30}$ esu) of oligothiophene chromophores

		_	Dipole-							
n _{thio}	β ₀	β_{max}	(zindo)	ΔEur	ΔD	Eex-l	fo	en	e_{π}	e _A
		(×10 ⁶)	、 , -(DFT)	— – n-L	_0		50	-0		
2 41		0.86	17.27	4.86	14.39	2.22			0.023	0.221
	416	(SFG)	(19.95)	(1.84)			1.75	0.198		
3	F 2 4	1.16	19.43	4.67	45.07	2.01	2.04	0.170	0.046	0.216
	534	(EOPE)	(21.33)	(1.64)	15.87	2.01	2.01	0.170		
4	750	1.38	18.13	4.53	17.23	2.03	2 20	0.154	0.056	0.210
	/58	(DFG)	(20.81)	(1.51)			2.29	0.154		0.210
5	785	2.65	19.46	4.43	18.41	1.99	2 56	0.143	0.065	0.207
	785	(DFG)	(21.97)	(1.41)			2.30			
6	908	1.66	18.56	4.36	19.54	1.97	2 86	0 137	0.068	0.205
	500	(DFG)	(21.48)	(1.35)			2.00	0.157	0.000	
78	862	2.14	19.70	4.30	20.56	1.97	3 16	0 133	0.065	0.203
	802	(OR)	(22.9)	(1.28)			5.10	0.155		
0 (952	1.83	18.52	4.27	21.19	1.97	3 36	0 126	0.075	0 201
	552	(DFG)	(21.67)	(1.25)			5.50	0.120	0.075	0.201
0	840	3.55	21.16	4.23	22.11	1 96	3 65	0 1 2 5	0.076	0 201
	040	(EOPE)	(22.80)	(1.22)		1.90	5.05	0.125		0.201
10	950	4.05	19.29	4.20	22 99	1.96	3 93	0 1 2 5	0.075	0.200
10	930	(EOPE)	(22.45)	(1.20)	22.33		5.35	0.125		
17	990	4.73	19.06	4.16	24.20	1 96	4 35	0 125	0 075	0 200
	990	(EOPE)	(21.87)	(1.17)		1.50	4.55	0.125	0.075	0.200
14	977	14.41	19.92	4.13	25 20	1.95	4.77	0 122	0 077	0 199
		(OR)	(22.23)	(1.15)	23.33			0.122	0.077	0.133
16	988	2.03	18.39	4.09	28 07	1.93	5 77	0 124	0.075	0.199
	900	(SFG)	(21.92)	(1.14)	20.07		5.77	0.124		

cis-thiophene chromophores

trans-thiophene chromophores

		D		ΔE_{H-L}						
n_{thio}	β_0	p_{max}	Dip(B3)	(ΔE_{B3LYP})	E _{ex-l}	ΔD	f_0	e _D	e_{π}	e _A
		(~10))						
2	443	1.08	17.48	4.91	2 27	14.73	1.87	0.195	0.023	-0.218
		(OR)	(20.96)	(1.83)	2.27					
3	654	1.73	18.39	4.71	2 14	16.30	2.16	0.168	0.044	-0.212
		(EOPE)	(22.54)	(1.64)	2.17					
4	794	1.89	19.37	4.57	2.06	17.68	2.44	0.152	0.057	-0.209
		(DFG)	(22.92)	(1.51)	2.00					-0.209
5	907	1.79	19.13	4.47	2.03	18.81	2.73	0.143	0.061	-0.204
3		(DFG)	(23.37)	(1.40)	2.03					
6	954	12.20	19.61	4.39	2.00	19.95	3.03	0.137	0.065	-0.202
		(EOPE)	(23.35)	(1.34)						
7	987	12.4	19.65	4.34	2.00	20.97	3.34	0.133	0.067	-0.200
/		(OR)	(23.59)	(1.28)						
0	1023	2.09	19.88	4.28	1.98	22.02	3.64	0.130	0.069	-0.199
8		(DFG)	(23.62)	(1.24)						
0	1014	2.15	19.88	4.27	1 00	22 64	2 97	0 125	0.072	0 109
9		(DFG)	(23.57)	(1.21)	1.99	22.04	5.87	0.123		-0.198
10	1036	2.47	20.29	4.21	1.97	23.80	4.24	0.127	0.070	-0.198
		(EOPE)	(23.82)	(1.18)						
12	1012	2.36	21.14	4.18	1.97	25.07	4.70	0.123	0.074	-0.197
		(EOPE)	(24.14)	(1.15)						
14	1047	2.35	21.21	4.15	1.96	26.35	5.18	0.123	0.074	-0.197
		(DFG)	(24.15)	(1.13)						
16	1015	2.44	19.25	4.11	1.04	28.82	6.13	0.124	0.073	-0.197
		(DFG)	(23.40)	(1.12)	1.94					

n_{thio} : number of thiophene pairs, β_{max} : the largest NLO response; ΔD: the transition dipole of E_{ex-1}, Dip(B3): dipole moment from ZINDO(B3LYP), $\Delta E_{H-L}(\Delta E_{B3LYP})$: HOMO-LUMO gap from ZINDO(B3LYP), E_{ex-1}: lowest excitation, f_0 : oscillator strength of E_{ex-1}, $e_D(e_{\pi}, e_A)$: charge of donor(bridge, acceptor).

cis (n)	$\beta_{\rm x}$	r _{total}	r _x	r _y	r _z	$\beta_x \times r_x$
2	-507.407	17.268663	-14.6113	9.1390	1.0924	7413.876
3	-717.825	19.427690	-13.8212	-9.3182	-9.9790	9921.203
4	-891.011	18.126899	-15.6472	9.1084	0.8858	13941.83
5	-1001.92	19.455870	-14.8648	-10.0714	-7.4923	14893.34
6	-1069.41	18.564751	-15.8857	9.6067	-0.0770	16988.33
7	-1094.39	19.703598	-15.0542	-9.9746	-7.8811	16475.17
8	-1081.85	18.519662	-16.2678	8.6667	1.7957	17599.32
9	-1125.97	21.158739	-15.0286	-5.7082	-13.7568	16921.75
10	-1126.11	19.292169	-16.0179	10.6602	-1.4059	18037.92
12	-1117.69	19.061179	-16.4530	-5.5780	-7.8431	18389.35
14	-1140.97	19.916236	-16.0099	-8.9846	-7.7213	18266.82
16	-1208.97	18.394451	-15.1188	10.4260	1.0372	18278.18
trans(n)	β_x	r _{total}	r _x	r _y	r _z	$\beta_x \times r_x$
2	471.849	17.482773	-16.0530	-6.2557	-2.9688	7574.592
3	-669.356	18.392116	-17.9596	3.7340	-1.3337	12021.37
4	849.358	19.371923	-17.6303	-4.6644	-6.5336	14974.44
5	-934.335	19.134644	-18.4857	4.2827	-2.4643	17271.84
6	1012.20	19.605097	-18.1487	-4.5783	-5.8331	18370.11
7	-1029.01	19.648543	-18.6211	4.8253	-4.0045	19161.3
8	1088.22	19.883410	-18.4278	-4.2856	-6.1154	20053.5
9	-1049.68	19.875800	-18.7513	5.5273	-3.5895	19682.86
10	-1108.76	20.292735	-18.5941	-3.9806	-7.0858	20616.39
12	-1097.42	21.144973	-18.7792	-2.8407	9.2942	20608.67
14	1112.73	21.213629	-19.1953	-4.7821	7.6610	21359.19
16	1081 63	19 245099	-18 2185	-4 9051	-3 7950	-19705 7

Table S3 The β_x component, total dipole moment (debye) r_{total} , and $x(r_x)$, $y(r_y)$, $z(r_z)$ components of cis-oligo-thiophene and trans-oligo-thiophene chromophores

The odd-even fluctuation of β_0 with π bridge length n in oligo-thiophene chromophores is caused by the symmetry of the thiophene chains [Adv. Funct. Mater. 2011, 21, 897–910]. The β_x has dominant contribution to the average β in the donor- π -acceptor chromophores. The β_x related data were listed in Table S3. Thiophene-chains with even numbers have local C_{2h} symmetry and those with odd numbers have local C_{2v} symmetry. Those chain with different symmetries have different dipole moments (with odd-even fluctuation pattern) [Adv. Funct. Mater. 2011, 21, 897–910] as shown in Table S3. The relative position of acceptor to donor also has odd-even pattern with increase of thiophene chain. According to the calculation of average β (Eq. 4), the β_x has fluctuation pattern with dipole moment, thus the β_0 has the similar odd-even fluctuation pattern. However, as the chain elongates, the effect of symmetry gets weaker and such pattern eventually is negligible.

6. The evolution of $[\beta_0(n)-\beta_0(2)]/(n-2)$ (in $10^2 \times 10^{-30}$ esu) with the π bridge length n, the increase of β_0 chromophores per bridge unit reaches maximum with n=8 for polymethine chromophores and n=4 for oligo-thiophene chromophores.

Figure S4. The evolution of $[\beta_0(n)-\beta_0(2)]/(n-2)$ (in $10^2 \times 10^{-30}$ esu) with the π bridge length n, n is the number of methine pairs or thiophenes. (a) polymethine, (b) trans-thiophenes, (c) cis-thiophenes

7. The evolution of β_0 (in $10^2 \times 10^{-30}$ esu) with electron excitation of polymethine and oligo-thiophene chromophores. The red line (β_0) is the total static first-hyperpolarizability. The purple broken dash line (β_{2L}) is the two-level model contribution to the static first-hyperpolarizability. The blue broken line (β_{3L}) is the three-level model contribution to the static first-hyperpolarizability (as described in Eq. 2) . β_0 and β_{2L} share the same red axis.

polymethine chromophores

Oligo-thiophene chromophores

1. cis

2. trans

Figure S5. The evolution of β_0 (in $10^2 \times 10^{-30}$ esu) with electron excitation of polymethine and oligo-thiophene chromophores.

8. The analysis of the nature of the major contributions of electron excitations to the $\beta_0(\times 10^{-30}\text{esu})$ of polymethine (n=18) and cis-oligo-thiophene (n=10) chromophores

Polymethine chromophore (n=18)

The decomposition of static β_{xxx} into contributions from individual process calculated using equation,

$$\beta_{ijk}(\omega_{\sigma};\omega_{1},\omega_{2})_{m,n} = \mathbf{h}^{-2} \sum P_{ijk} \sum_{\substack{m,n \\ (\neq g)}} \frac{r_{gm}^{i} \bar{r}_{mn}^{k} r_{ng}^{j}}{(\omega_{ng} + \omega_{\sigma} - \mathbf{i}\Gamma_{m})(\omega_{ng} - \omega_{1} - \mathbf{i}\Gamma_{n})}$$

 $r_{m:}^{n}$ transition moment from state m to state n.

$$\frac{\beta_{\text{xxx}} (S_0 \rightarrow S_1) (E_1 = 1.97 \text{eV}),}{S_0 \rightarrow S_1 \rightarrow S_0}$$
$$\frac{r_0^1 (r_1^1 - r_0^0) r_1^0}{E_1^2} = 5601.1$$

$$\beta_{\text{xxx}} (S_0 \rightarrow S_2) (E_2 = 2.40 \text{eV})$$

$$S_0 \rightarrow S_2 \rightarrow S_0; S_0 \rightarrow S_1 \rightarrow S_2 \rightarrow S_0$$

$$\frac{r_0^2 (r_2^2 - r_0^0) r_2^0}{E_2^2} + \frac{r_0^1 r_1^2 r_2^0}{E_1 E_2} = 386.0 - 1005.1 = -619.1$$

$$\frac{\beta_{\text{xxx}} (S_0 \rightarrow S_3) (E_3 = 2.84 \text{eV})}{S_0 \rightarrow S_3 \rightarrow S_0; S_0 \rightarrow S_1 \rightarrow S_3 \rightarrow S_0; S_0 \rightarrow S_2 \rightarrow S_3 \rightarrow S_0}$$

$$\frac{r_0^3 (r_3^3 - r_0^0) r_3^0}{E_3^2} + \frac{r_0^1 r_1^3 r_3^0}{E_1 E_3} + \frac{r_0^2 r_2^3 r_3^0}{E_2 E_3} = 130.0 - 615.0 - 79.2 = -564.2$$

$$\beta_{xxx} (S_0 \rightarrow S_4) (E_4 = 3.11 \text{eV})$$

$$S_0 \rightarrow S_4 \rightarrow S_0; S_0 \rightarrow S_1 \rightarrow S_4 \rightarrow S_0; S_0 \rightarrow S_2 \rightarrow S_4 \rightarrow S_0; S_0 \rightarrow S_3 \rightarrow S_4 \rightarrow S_0$$

$$\frac{r_0^4 (r_4^4 - r_0^0) r_4^0}{E_4^2} + \frac{r_0^1 r_1^4 r_4^0}{E_1 E_4} + \frac{r_0^2 r_2^4 r_4^0}{E_2 E_4} + \frac{r_0^3 r_3^4 r_4^0}{E_3 E_4} = 20.3 - 1210.0 - 38.3 + 74.1 = -1153.9$$

$$\beta_{xxx} (S_0 \rightarrow S_5) (E_5 = 3.26 \text{eV}) S_0 \rightarrow S_5 \rightarrow S_0; S_0 \rightarrow S_1 \rightarrow S_5 \rightarrow S_0; S_0 \rightarrow S_2 \rightarrow S_5 \rightarrow S_0; S_0 \rightarrow S_3 \rightarrow S_5 \rightarrow S_0; S_0 \rightarrow S_4 \rightarrow S_5 \rightarrow S_0;$$

$$\frac{r_0^5 (r_5^5 - r_0^0) r_5^0}{E_5^2} + \frac{r_0^1 r_1^5 r_5^0}{E_1 E_5} + \frac{r_0^2 r_2^5 r_5^0}{E_2 E_5} + \frac{r_0^3 r_3^5 r_5^0}{E_3 E_5} + \frac{r_0^4 r_4^5 r_5^0}{E_4 E_5} = 56.0 - 681.7 - 377.0 + 63.4 + 6.0 = -933.3$$

$$\beta_{xxx} (S_0 \rightarrow S_6) (E_6 = 3.35 \text{eV}) S_0 \rightarrow S_6 \rightarrow S_0; S_0 \rightarrow S_1 \rightarrow S_6 \rightarrow S_0; S_0 \rightarrow S_2 \rightarrow S_6 \rightarrow S_0; S_0 \rightarrow S_3 \rightarrow S_6 \rightarrow S_0; S_0 \rightarrow S_4 \rightarrow S_6 \rightarrow S_0; S_0 \rightarrow S_5 \rightarrow S_6 \rightarrow S_0) \frac{r_0^6 (r_6^6 - r_0^0) r_6^0}{E_6^2} + \frac{r_0^1 r_1^6 r_6^0}{E_2 E_6} + \frac{r_0^2 r_2^6 r_6^0}{E_3 E_6} + \frac{r_0^4 r_4^6 r_6^0}{E_4 E_6} + \frac{r_0^5 r_5^6 r_6^0}{E_5 E_6} = 1.8 - 208.0 + 403.0 - 7.6 + 0.8 + 7.7 = 197.7$$

$$\beta_{xxx} (S_0 \rightarrow S_7) (E_7 = 3051 \text{eV}) S_0 \rightarrow S_7 \rightarrow S_0; S_0 \rightarrow S_1 \rightarrow S_7 \rightarrow S_0; S_0 \rightarrow S_2 \rightarrow S_7 \rightarrow S_0; S_0 \rightarrow S_3 \rightarrow S_7 \rightarrow S_0; S_0 \rightarrow S_4 \rightarrow S_7 \rightarrow S_0; S_0 \rightarrow S_5 \rightarrow S_7 \rightarrow S_0; S_0 \rightarrow S_6 \rightarrow S_7 \rightarrow S_0 S_0 \rightarrow S_6 \rightarrow S_7 \rightarrow S_0 \frac{r_0^7 (r_7^7 - r_0^0) r_7^0}{E_7^2} + \frac{r_0^1 r_1^7 r_7^0}{E_1 E_7} + \frac{r_0^2 r_2^7 r_7^0}{E_2 E_7} + \frac{r_0^3 r_3^7 r_7^0}{E_3 E_7} + \frac{r_0^4 r_4^7 r_7^0}{E_4 E_7} + \frac{r_0^5 r_5^7 r_7^0}{E_5 E_7} + \frac{r_0^6 r_6^7 r_7^0}{E_6 E_7} = 0.3 - 22.7 - 19.0 - 26.8 - 5.1 + 1.0 + 2.2 = -70.1$$

9. The single electron transition from ground state involved in the low-lying excited states of polymethine chromophore (n=18) and cis-oligo-thiophene chromophore (n=10)

L: LUMO; H: HOMO. **polymethine chromophore (n=18)** S_0 (ground state) $S_1: H-2 \rightarrow L$ (13.65%); H-1 $\rightarrow L$ (27.15%); H $\rightarrow L$ (21.65%); H $\rightarrow L+1$ (14.56%)

S₂: H→L+1 (41.58%); H→L+2 (12.16%)

S₃: H-3→L (10.71%); H-1→L+1 (18.43%); H→L+2 (27.74%)

S₄: H-1→L+1 (21.21%); H→L (19.81%)

S₅: H-4→L (11.27%); H-2→L (14.02%); H→L+3 (15.65%)

S₇: H-5→L (19.39%); H→L+3 (14.08%)

H-1

Oligo-thiophene chromophore (n=10)

The decomposition of static β_{xxx} into contributions from individual process calculated using equation,

$$\beta_{ijk}(\omega_{\sigma};\omega_{1},\omega_{2})_{m,n} = \mathbf{h}^{-2} \sum P_{ijk} \sum_{\substack{m,n \\ (\neq g)}} \frac{r_{gm}^{i} \overline{r}_{mn}^{k} r_{ng}^{j}}{(\omega_{mg} + \omega_{\sigma} - i\Gamma_{m})(\omega_{ng} - \omega_{1} - i\Gamma_{n})}$$

 r_m^n : transition moment from state m to state n.

$$\frac{\beta_{\text{xxx}} (S_0 \rightarrow S_1) (E_1 = 1.96\text{eV})}{S_0 \rightarrow S_1 \rightarrow S_0}$$
$$\frac{r_0^1 (r_1^1 - r_0^0) r_1^0}{E_1^2} = 2395.0$$

$$\begin{array}{l} \beta_{xxx} \left(S_0 {\rightarrow} S_2 \right) \left(E_2 {=} 2.29 eV \right) \\ S_0 {\rightarrow} S_2 {\rightarrow} S_0; \quad S_0 {\rightarrow} S_1 {\rightarrow} S_2 {\rightarrow} S_0 \end{array}$$

$$\frac{r_0^2 (r_2^2 - r_0^0) r_2^0}{E_2^2} + \frac{r_0^1 r_1^2 r_2^0}{E_1 E_2} = 155.3 + 509.5 = -443.5$$

$$\beta_{xxx} (S_0 \rightarrow S_3) (E_3 = 2.67 \text{eV})$$

$$S_0 \rightarrow S_3 \rightarrow S_0; S_0 \rightarrow S_1 \rightarrow S_3 \rightarrow S_0; S_0 \rightarrow S_2 \rightarrow S_3 \rightarrow S_0$$

$$\frac{r_0^3 (r_3^3 - r_0^0) r_3^0}{E_3^2} + \frac{r_0^1 r_1^3 r_3^0}{E_1 E_3} + \frac{r_0^2 r_2^2 r_3^0}{E_2 E_3} = 46.6 + 66.3 - 53.1 = 59.8$$

$$\beta_{xxx} (S_0 \rightarrow S_4) (E_4 = 3.03 \text{eV})$$

$$S_0 \rightarrow S_4 \rightarrow S_0; S_0 \rightarrow S_1 \rightarrow S_4 \rightarrow S_0; S_0 \rightarrow S_2 \rightarrow S_4 \rightarrow S_0; S_0 \rightarrow S_3 \rightarrow S_4 \rightarrow S_0$$

$$\frac{r_0^4 (r_4^4 - r_0^0) r_4^0}{E_4^2} + \frac{r_0^1 r_1^4 r_4^0}{E_1 E_4} + \frac{r_0^2 r_2^4 r_4^0}{E_2 E_4} + \frac{r_0^3 r_3^4 r_4^0}{E_3 E_4} = 5.4 + 146 - 1.9 - 13.9 = 135.6$$

$$\beta_{xxx} (S_0 \rightarrow S_5) (E_5 = 3.15 \text{eV})$$

$$S_0 \rightarrow S_5 \rightarrow S_0; S_0 \rightarrow S_1 \rightarrow S_5 \rightarrow S_0; S_0 \rightarrow S_2 \rightarrow S_5 \rightarrow S_0; S_0 \rightarrow S_3 \rightarrow S_5 \rightarrow S_0; S_0 \rightarrow S_4 \rightarrow S_5 \rightarrow S_0$$

$$\frac{r_0^5 (r_5^5 - r_0^0) r_5^0}{E_5^2} + \frac{r_0^1 r_1^5 r_5^0}{E_1 E_5} + \frac{r_0^2 r_2^5 r_5^0}{E_2 E_5} + \frac{r_0^3 r_3^5 r_5^0}{E_3 E_5} + \frac{r_0^4 r_4^5 r_5^0}{E_4 E_5}$$

$$= 52.5 - 1250.5 + 32.1 + 52.7 - 18.8 = -1132.0$$

$$\beta_{xxx} (S_0 \to S_6) (E_6 = 3.32 \text{eV}) S_0 \to S_6 \to S_0; S_0 \to S_1 \to S_6 \to S_0; S_0 \to S_2 \to S_6 \to S_0; S_0 \to S_3 \to S_6 \to S_0; S_0 \to S_4 \to S_6 \to S_0; S_0 \to S_5 \to S_6 \to S_0) \frac{r_0^6 (r_6^6 - r_0^0) r_6^0}{E_6^2} + \frac{r_0^1 r_1^6 r_6^0}{E_1 E_6} + \frac{r_0^2 r_2^6 r_6^0}{E_3 E_6} + \frac{r_0^4 r_6^7 r_6^0}{E_4 E_6} + \frac{r_0^5 r_5^6 r_6^0}{E_4 E_6} \\ = 4.8 + 123.1 + 153.0 - 19.6 - 5.0 - 10.1 = 246.2$$

S₀ (ground state) S1: H-2 \rightarrow L (16.8%); H-1 \rightarrow L(23.9%); H \rightarrow L+1 (14.8%)

S2: $H \rightarrow L+1(30.9\%)$; $H \rightarrow L+2 (21.8\%)$ L+1 L S3: $H-1 \rightarrow L+1 (23.9\%)$; $H \rightarrow L+2 (20.7\%)$; $H \rightarrow L+3 (13.7\%)$

H-1

Contraction of the local data