Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Note added 15th January 2018: This version of the Electronic Supplementary Information including the accompanying script files replaces the previous version first published on-line on the 30th November 2017.

Solution and gas phase evidence of anion binding through the secondary bonding interactions of

a bidendate antimony(III) compound.

Jinchun Qiu,<sup>†</sup> Bo Song, <sup>§</sup> Xiaopeng Li, <sup>§</sup> and Anthony F. Cozzolino <sup>†</sup>\*

Supplementary Information

<sup>†</sup>Department of Chemistry and Biochemistry, Texas Tech University, Box 1061, Lubbock, Texas 79409-

1061, United States

<sup>§</sup>Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States

| Tabl | le of | Con | tents |
|------|-------|-----|-------|
|      |       |     |       |

| <b>S</b> 1 | Experin  | ental Details                                                                              | S3   |
|------------|----------|--------------------------------------------------------------------------------------------|------|
| S1.1       | Gene     | ral Methods                                                                                | S3   |
| S1.2       | NMR      | Titrations of 2 with Anions                                                                | S4   |
| S          | 1.2.1    | <sup>1</sup> H NMR Test of chemical reversibility of interaction of <b>2</b> with chloride | S4   |
| S          | 1.2.2    | <sup>1</sup> H NMR Titration Procedure                                                     | S4   |
| S          | 1.2.3    | Data Processing and Extraction                                                             |      |
| S          | 1.2.4    | Data Analysis and Fitting                                                                  |      |
|            | S1.2.4.1 | Model for 1:1 binding of H:G                                                               | S5   |
|            | S1.2.4.2 | Model for 1:1, 1:2 and 1:3 binding of H:G                                                  |      |
|            | S1.2.4.3 | Model for 1:1, 1:2 and 2:1 binding of H:G.                                                 |      |
|            | S1.2.4.4 | Model for 1:1, 2:1 and 3:1 binding of H:G.                                                 |      |
|            | S1.2.4.5 | Fitting Procedure                                                                          | S16  |
|            | S1.2.4.6 | Selecting the correct model for the bromide and chloride titrations                        | S17  |
|            | S1.2.4.7 | Fitting of data from titration of <b>2</b> with TBAI.                                      | S22  |
|            | S1.2.4.8 | Fitting of data from titration of <b>2</b> with TBABr                                      | S22  |
|            | S1.2.4.9 | Fitting of data from titration of <b>2</b> with TBAC1                                      | S24  |
| S1.3       | ESI-N    | AS Details                                                                                 | S25  |
| S1.4       | - Comj   | putational Details                                                                         | S26  |
| S          | 1.4.1    | Methods and Functionals                                                                    | S26  |
| S          | 1.4.2    | Geometry of 1 and X <sup>-</sup> Complexes                                                 | S26  |
| S2         | Spectro  | scopic ( <sup>1</sup> H NMR) and Spectrometric (ESI-MS) Data                               | S31  |
| <b>S</b> 3 | DFT En   | ergetics                                                                                   | S46  |
| S4         | Cartesia | n Coordinates of Optimized Structures                                                      | S52  |
| S4.1       | Gas-1    | bhase Structures                                                                           | S52  |
| S1 0       | Struo    | tures with solution model (CPCM) in DMSO                                                   | 560  |
| S4.2       | Suuc     | tures with solvation model (CPCM) in DMSO                                                  |      |
| 54.5       | Struc    |                                                                                            |      |
| S4.4       | Struc    | tures with solvation model (CPCM) in chloroform                                            |      |
| S5         | Referen  | ces                                                                                        | S103 |

### S1 Experimental Details

## S1.1 General Methods

The starting materials, antimony(III) trichloride (99%, Strem Chemicals), catechol (99%, Alfa Aesar), and 4-tert-butyl-catechol (99%, Acros Organics) were used as purchased. Methanol (99.9%, Fisher Chemicals) was used as purchased without any further drying. Potassium hydroxide (86%, Fisher Chemicals) for synthesis was heated to 100 °C, dried under vacuum and transferred inside a N2 purged glovebox before being ground into a powder. Anhydrous toluene was obtained by passing HPLC grade toluene over a bed of activated molecular sieves in a commercial (LC Technologies Solutions Inc.) solvent purification system (SPS). Pyridine (99%, EMD Chemicals) was dried over calcium hydride, distilled under nitrogen, transferred onto pre-activated 4 Å molecular sieves and allowed to sit for two days before being used in synthesis. Compounds 1 (2,2'-bi-(1,3,2-benzodioxastibole) oxide) and 2 (2,2'-bi-(1,3-dioxa-4tertbutylbenzo-2-stibole) oxide) were prepared according to published literature procedure.<sup>1</sup> Salts tetrabutylammonium chloride (TBACl, 95%), tetraphenylphosphonium chloride (TPPCl, 98%), and tetrabutylammonium bromide (TBABr, 98%) were purchased from Acros Organics. Tetrabutylammonium iodide (TBAI, 98%) was purchased from Alfa Aesar, and tetrabutylammonium hexafluorophosphate was purchased from Oakwood Chemicals. The salts (TBACl, TBABr, and TPPCl) were dried under high vacuum for more than 8 hours prior to use. Tris(pentafluorophenyl)borane (BCF, 97%) was purchase from Strem Chemicals. Deuterated solvent  $d_{\delta}$ -DMSO (99.9% Deuterium), purchased from Cambridge Isotopes Laboratory, was degassed using the freeze-pump-thaw cycles before being transferred onto freshly activated 4 Å molecular sieves. After sitting on the sieves for two days it was again transferred onto freshly activated sieves for storage. Air sensitive manipulations were performed either in an N2 purged inert atmosphere box (LC Technology Solutions Inc.) or on a glass inert atmosphere line with N<sub>2</sub> purge. All NMR spectra were collected on a JEOL ECS 400 MHz NMR spectrometer.

## S1.2 NMR Titrations of 2 with Anions

# S1.2.1 <sup>1</sup>H NMR Test of chemical reversibility of interaction of **2** with chloride

A 0.40 mL  $d_6$ -DMSO solution of **2** (0.010 g, 0.017 mmol) and TPPCl (0.0064 g, 0.017 mmol) was made and its <sup>1</sup>H NMR spectrum was recorded (See Figure S12 in Section S2). Two equivalents (0.018 g, 0.035 mmol) of BCF was then added to the solution and the <sup>1</sup>H NMR spectrum was recorded again. An additional aliquot of BCF was added to the solution and a final <sup>1</sup>H NMR spectrum was recorded.

# S1.2.2 <sup>1</sup>H NMR Titration Procedure

<sup>1</sup>H NMR titration were performed by adding stock solutions of tetrabutylammonium salts (1.0 M in  $d_6$ -DMSO) to 0.50 mL of a solution of **2** in  $d_6$ -DMSO (0.0340 M) up to 20 equivalents (where 1.0 eq. = 17.0  $\mu$ L) of salt solutions. Data points were collected at 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 4.0, 5.0, 10.0, 15.0, and 20.0 equivalents of halide solutions added. All halide titrations were performed in triplicate.

## S1.2.3 Data Processing and Extraction

MestReNova 10.0.2<sup>2</sup> was used for all data processing and extraction. FIDs were treated with an exponential multiplication value of 0.3 prior to Fourier transformation. Phasing was performed manually and a multipoint baseline correction was applied. All peaks were fit with a minimal number of Laurentian-Gaussian functions. Initially, one function per feature (peak or shoulder) was added and the fit was refined until no change was observed. If a significant residual remained than an additional function was added. Peak positions were determined from the center of the multiplet or peak according to the Laurentian-Gaussian function positions. Peak areas were determined by summing the areas of the Laurentian-Gaussian functions.

### S1.2.4 Data Analysis and Fitting

Peak positions (and intensities) for the aromatic peaks of 2 (and complexes) were recorded as a function of added concentration. Various models were used to fit this data by varying parameters such as binding constants and chemical shifts. The models, including parameters, are described below for the various likely systems that could be represented in the data (corresponding to equations 1-6 in the manuscript). Maple  $2016^3$  was used to simplify the equations. The host/guest terminology is used here. Host (H) represents 2 and guest (G) represents that halide anion. It is assumed that cation/anion pairing of the tert-butyl ammonium cation with the halide is negligible in DMSO. The binding of DMSO to 2 is also not explicitly modelled.

S1.2.4.1 Model for 1:1 binding of H:G

 $H + G \rightleftharpoons HG$   $(H = 2, G = X^-, HG = 2 \cdot X^-)$ 



Scheme S1. Proposed 1:1 binding model of  $H + G \rightleftharpoons HG$ .

- (S1.1)  $K = \frac{[HG]}{[H][G]}$
- (S1.2)  $[H_0] = [H] + [HG], [HG] = [H_0] [H]$

(S1.3)  $[G_0] = [G] + [HG], [G] = [G_0] - [HG]$ 

Solve for [G], [H], or [HG] with Maple 2016 using equations S1.1-S1.3.

 $\textit{eliminate}(\{K \cdot H \cdot G - HG, H + HG - H0, G + HG - G0\}, \{HG, G\});$ 

(S1.4)  $[\{G = H - H0 + G0, HG = -H + H0\}, \{G0 HK + H^2 K - HH0 K + H - H0\}]$ 

 $\textit{eliminate}(\{K \cdot H \cdot G - HG, H + HG - H0, G + HG - G0\}, \{HG, H\});$ 

(S1.5)  $[ \{ H = G - G0 + H0, HG = -G + G0 \}, \{ G^2 K - G G 0 K + G H 0 K + G - G0 \} ]$ 

 $eliminate(\{K \cdot H \cdot G - HG, H + HG - H0, G + HG - G0\}, \{H, G\});$ 

(S1.6)  $[\{G = -HG + G0, H = -HG + H0\}, \{G0 H0 K - G0 HG K - H0 HG K + HG^2 K - HG\}]$ 

From equation set S1.4:

$$[H]^{2} + \left([G_{0}] - [H_{0}] + \frac{1}{K}\right)[H] - \frac{[H_{0}]}{K} = 0$$
$$[H] = \frac{-\left([G_{0}] - [H_{0}] + \frac{1}{K}\right) \pm \sqrt{\left([G_{0}] - [H_{0}] + \frac{1}{K}\right)^{2} + 4\frac{[H_{0}]}{K}}{2}$$

[H<sub>0</sub>] - known experimental quantity (original concentration of host)

[G<sub>0</sub>] - known experimental quantity (original concentration of guest)

K - 1:1 binding constant, a refined parameter

NMR - Fast exchange of resonances associated with host compound

$$\delta_{obs} = \frac{\delta_{\mathrm{H}}[\mathrm{H}]}{[\mathrm{H}_{0}]} + \frac{\delta_{\mathrm{HG}}[\mathrm{HG}]}{[\mathrm{Sb}_{0}]}$$

 $\delta_{\rm H}$  is the chemical shift of the host, a known experimental quantity

 $\delta_{\text{HG}}$  is the chemical shift of the complex, a refined parameter

S1.2.4.2 Model for 1:1, 1:2 and 1:3 binding of H:G H + G  $\rightleftharpoons$  HG (H = 2, G = X<sup>-</sup>, HG = 2·X<sup>-</sup>)

 $\mathrm{HG} + \mathrm{G} \rightleftharpoons \mathrm{HG}_2 \ (\mathrm{HG}_2 = \mathbf{2} \cdot 2\mathrm{X}^{-})$ 

 $HG_2 + G \rightleftharpoons HG_3 \ (HG_3 = 2 \cdot 3X^-)$ 



Scheme S2. Proposed 1:1, 1:2, and 1:3 binding model of H, G, HG, HG<sub>2</sub>, and HG<sub>3</sub>.

(S2.1)  $K_{11} = \frac{[HG]}{[H][G]}$ (S2.2)  $K_{12} = \frac{[HG_2]}{[HG][G]}$ 

(S2.3) 
$$K_{13} = \frac{[HG_3]}{[HG_2][G]}$$
  
(S2.4)  $\beta_{12} = \frac{[HG_2]}{[H][G]^2} = K_{11} \cdot K_{12}$   
(S2.5)  $\beta_{13} = \frac{[HG_3]}{[H][G]^3} = K_{11} \cdot K_{12} \cdot K_{13}$   
(S2.6)  $[H_0] = [H] + [HG] + [HG_2] + [HG_3]$   
(S2.7)  $[G_0] = [G] + [HG] + 2[HG_2] + 3[HG_3]$ 

Solve for [G] with Maple 2016 using equations S2.1-S2.3, S2.6-S2.7.

$$\begin{array}{l} \textit{eliminate}(\{K11 \cdot H \cdot G - HG, K12 \cdot HG \cdot G - HGG, K13 \cdot HGG \cdot G - HGGG, H + HG + HGG + HGGG - H0, G + HG + 2 \cdot HGG + 3 \cdot HGGG - G0\}, \{HG, HGG, HGGG, H\}); \end{array}$$

$$\begin{cases} \mathbf{S2.8} \\ \left[ \left\{ H = -\frac{G - G0}{\left(3 \, G^2 \, K12 \, K13 + 2 \, G \, K12 + 1\right) \, G \, K11}, HG = -\frac{G - G0}{3 \, G^2 \, K12 \, K13 + 2 \, G \, K12 + 1}, HGG \\ = -\frac{G \, K12 \, (G - G0)}{3 \, G^2 \, K12 \, K13 + 2 \, G \, K12 + 1}, HGGG = -\frac{G^2 \, K12 \, K13 \, (G - G0)}{3 \, G^2 \, K12 \, K13 + 2 \, G \, K12 + 1} \right], \\ \left\{ G^4 \, K11 \, K12 \, K13 - G^3 \, G0 \, K11 \, K12 \, K13 + 3 \, G^3 \, H0 \, K11 \, K12 \, K13 + G^3 \, K11 \, K12 \\ - G^2 \, G0 \, K11 \, K12 + 2 \, G^2 \, H0 \, K11 \, K12 + G^2 \, K11 - G \, G0 \, K11 + G \, H0 \, K11 + G - G0 \right\} \right]$$

From equation set S2.8:

$$\begin{aligned} (K_{11}K_{12}K_{13})[G]^4 + (K_{11}K_{12} - [G_0]K_{11}K_{12}K_{13} + 3[H_0]K_{11}K_{12}K_{13})[G]^3 \\ &+ (K_{11} - [G_0]K_{11}K_{12} + 2[H_0]K_{11}K_{12})[G]^2 + (1 - [G_0]K_{11} + [H_0]K_{11})[G] - [G_0] \\ &= 0 \end{aligned}$$

for: 
$$a[G]^4 + b[G]^3 + c[G]^2 + d[G] + e$$
  
 $a = (K_{11}K_{12}K_{13})$   
 $b = (K_{11}K_{12} - [G_0]K_{11}K_{12}K_{13} + 3[H_0]K_{11}K_{12}K_{13})$   
 $c = (K_{11} - [G_0]K_{11}K_{12} + 2[H_0]K_{11}K_{12})$   
 $d = (1 - [G_0]K_{11} + [H_0]K_{11})$   
 $e = -[G_0]$ 

[H<sub>0</sub>] - known experimental quantity (original concentration of host)

[G<sub>0</sub>] - known experimental quantity (original concentration of guest)

 $K_{11}-1:1$  stepwise binding constant, a refined parameter

 $K_{12}-1:2$  stepwise binding constant, a refined parameter

 $K_{13}$  – 1:3 stepwise binding constant, a refined parameter

NMR - 4 species, 2 sets in fast exchange of resonances associated with host compound

H/HG and HG<sub>2</sub>/ HG<sub>3</sub> in fast exchange

$$\delta(\text{H/HG})_{obs} = \frac{\delta_{\text{H}}[\text{H}]}{[\text{H}] + [\text{HG}]} + \frac{\delta_{\text{HG}}[\text{HG}]}{[\text{H}] + [\text{HG}]}$$

$$\delta(\text{HG}_2/\text{HG}_3)_{obs} = \frac{\delta_{\text{HG}_2}[\text{HG}_2]}{[\text{HG}_2] + [\text{HG}_3]} + \frac{\delta_{\text{HG}_3}[\text{HG}_3]}{[\text{HG}_2] + [\text{HG}_3]}$$

$$\frac{I(\text{H/HG})_{obs}}{I_{total}} = \frac{[\text{H}]}{[\text{H}_0]} + \frac{[\text{HG}]}{[\text{H}_0]}$$

$$\frac{I(\text{HG}_2/\text{HG}_3)_{obs}}{I_{total}} = \frac{[\text{HG}_2]}{[\text{H}_0]} + \frac{[\text{HG}_3]}{[\text{H}_0]}$$

H/HG2 and HG/HG3 in fast exchange

$$\delta(\text{H/HG}_{2})_{obs} = \frac{\delta_{\text{H}}[\text{H}]}{[\text{H}] + [\text{HG}_{2}]} + \frac{\delta_{\text{HG}_{2}}[\text{HG}_{2}]}{[\text{H}] + [\text{HG}_{2}]}$$

$$\delta(\text{HG/HG}_{3})_{obs} = \frac{\delta_{\text{HG}}[\text{HG}]}{[\text{HG}] + [\text{HG}_{3}]} + \frac{\delta_{\text{HG}_{3}}[\text{HG}_{3}]}{[\text{HG}] + [\text{HG}_{3}]}$$

$$\frac{I(\text{H/HG}_{2})_{obs}}{I_{total}} = \frac{[\text{H}]}{[\text{H}_{0}]} + \frac{[\text{HG}_{2}]}{[\text{H}_{0}]}$$

$$\frac{I(\text{HG/HG}_{3})_{obs}}{I_{total}} = \frac{[\text{HG}]}{[\text{H}_{0}]} + \frac{[\text{HG}_{3}]}{[\text{H}_{0}]}$$

 $H\!/HG_3$  and  $HG\!/HG_2$  in fast exchange

$$\delta(\text{H/HG}_{3})_{obs} = \frac{\delta_{\text{H}}[\text{H}]}{[\text{H}] + [\text{HG}_{3}]} + \frac{\delta_{\text{HG}_{3}}[\text{HG}_{3}]}{[\text{H}] + [\text{HG}_{3}]}$$
$$\delta(\text{HG/HG}_{2})_{obs} = \frac{\delta_{\text{HG}}[\text{HG}]}{[\text{HG}] + [\text{HG}_{2}]} + \frac{\delta_{\text{HG}_{2}}[\text{HG}_{2}]}{[\text{HG}] + [\text{HG}_{2}]}$$
$$\frac{I(\text{H/HG}_{3})_{obs}}{I_{total}} = \frac{[\text{H}]}{[\text{H}_{0}]} + \frac{[\text{HG}_{3}]}{[\text{H}_{0}]}$$

$$\frac{I(\mathrm{HG/HG}_2)_{obs}}{I_{total}} = \frac{[\mathrm{HG}]}{[\mathrm{H}_0]} + \frac{[\mathrm{HG}_2]}{[\mathrm{H}_0]}$$

 $\delta_{\rm H}$  is the chemical shift of the host, a known experimental quantity  $\delta_{\rm HG}$  is the chemical shift of the 1:1 complex, a refined parameter  $\delta_{\rm HG_2}$  is the chemical shift of the 1:2 complex, a refined parameter  $\delta_{\rm HG_3}$  is the chemical shift of the 1:3 complex, a refined parameter *I* is the experimental integrated intensity

S1.2.4.3 Model for 1:1, 1:2 and 2:1 binding of H:G H + G  $\rightleftharpoons$  HG (H = 2, G = X<sup>-</sup>, HG = 2·X<sup>-</sup>) HG + G  $\rightleftharpoons$  HG<sub>2</sub> (HG<sub>2</sub> = 2·2X<sup>-</sup>)

 $\mathrm{HG} + \mathrm{H} \rightleftharpoons \mathrm{H}_2\mathrm{G} \ (\mathrm{H}_2\mathrm{G} = \mathbf{2}_2 \cdot \mathrm{X}^{-})$ 



Scheme S3. Proposed 1:1, 1:2, and 2:1 binding model of H, G, HG, HG<sub>2</sub>, and H<sub>2</sub>G.

(S3.1) 
$$K_{11} = \frac{[HG]}{[H][G]}$$

(S3.2) 
$$K_{12} = \frac{[HG_2]}{[HG][G]}$$
  
(S3.3)  $K_{21} = \frac{[H_2G]}{[HG][H]}$   
(S3.4)  $\beta_{12} = \frac{[HG_2]}{[H][G]^2} = K_{11} \cdot K_{12}$   
(S3.5)  $\beta_{21} = \frac{[H_2G]}{[H]^2[G]} = K_{11} \cdot K_{21}$   
(S3.6)  $[H_0] = [H] + [HG] + [HG_2] + 2[H_2G]$   
(S3.7)  $[G_0] = [G] + [HG] + 2[HG_2] + [H_2G]$ 

Solve for [H] with Maple 2016 using equations S3.1-S3.3, S3.6-S3.7.

 $\begin{array}{l} eliminate(\{K11 \cdot H \cdot G - HG, K12 \cdot HG \cdot G - HGG, K21 \cdot HG \cdot H - HHG, H + HG + HGG + 2 \\ \cdot HHG - H0, G + HG + 2 \cdot HGG + HHG - G0\}, \{HG, HHG, HGG, G\});\end{array}$ 

$$\left[ \left\{ G = -\frac{G0 + 2H - 2H0}{3H^2 K11 K21 + HK11 - 1}, HG = -\frac{HK11 (G0 + 2H - 2H0)}{3H^2 K11 K21 + HK11 - 1}, HGG \right. \\ \left. = \frac{1}{3H^2 K11 K21 + HK11 - 1} \left( 2 G0 H^2 K11 K21 + H^3 K11 K21 - H^2 H0 K11 K21 \right. \\ \left. + G0 HK11 + H^2 K11 - HH0 K11 + H - H0 \right), HHG = \right. \\ \left. -\frac{H^2 K11 K21 (G0 + 2H - 2H0)}{3H^2 K11 K21 + HK11 - 1} \right\}, \left\{ -6 G0 H^4 K11^2 K21^2 - 3H^5 K11^2 K21^2 \right. \\ \left. + 3 H^4 H0 K11^2 K21^2 - 5 G0 H^3 K11^2 K21 - 4H^4 K11^2 K21 + 4H^3 H0 K11^2 K21 \right. \\ \left. + G0^2 HK11 K12 - G0 H^2 K11^2 + 4 G0 H^2 K11 K12 + 2 G0 H^2 K11 K21 \right. \\ \left. - 4 G0 HH0 K11 K12 - H^3 K11^2 + 4H^3 K11 K12 - 2H^3 K11 K21 + H^2 H0 K11^2 \\ \left. - 8 H^2 H0 K11 K12 + 2H^2 H0 K11 K21 + 4 HH0^2 K11 K12 + G0 HK11 + H - H0 \right\} \right]$$

From equation set S3.8:

$$\left\{ -3 H^5 K I I^2 K 2 I^2 - 6 \left( \frac{2}{3} + \left( G 0 - \frac{1}{2} H 0 \right) K 2 I \right) K 2 I K I I^2 H^4 - 5 K I I \left( \left( \frac{1}{5} + \left( G 0 - \frac{4}{5} H 0 \right) K 2 I \right) K I I - \frac{4}{5} K I 2 + \frac{2}{5} K 2 I \right) H^3 - K I I \left( (G 0 - H 0) K I I + (-2 G 0 - 2 H 0) K 2 I - 4 (G 0 - 2 H 0) K I 2) H^2 + \left( 1 + \left( G 0^2 K I 2 + (-4 H 0 K I 2 + 1) G 0 + 4 H 0^2 K I 2 \right) K I I \right) H - H 0 \right\}$$

for:  $a[H]^5 + b[H]^4 + c[H]^3 + d[H]^2 + e[H] + f$ 

$$a = (-3K_{11}{}^{2}K_{21}{}^{2})$$

$$b = (-6(\frac{2}{3} + ([G_{0}] - \frac{1}{2}[H_{0}])K_{21})K_{11}{}^{2}K_{21})$$

$$c = (-5K_{11}((\frac{1}{5} + ([G_{0}] - \frac{4}{5}[H_{0}])K_{21})K_{11} - \frac{4}{5}K_{12} + \frac{2}{5}K_{21}))$$

$$d = (-K_{11}(([G_{0}] - [H_{0}])K_{11} + (-2[G_{0}] - 2[H_{0}])K_{21} - 4([G_{0}] - 2[H_{0}])K_{12}))$$

$$e = (1 + ([G_{0}]^{2}K_{12} + (-4[H_{0}]K_{12} + 1)[G_{0}] + 4[H_{0}]^{2}K_{12})K_{11})$$

$$f = -[H_{0}]$$

[H<sub>0</sub>] - known experimental quantity (original concentration of host)

[G<sub>0</sub>] – known experimental quantity (original concentration of guest)

 $K_{11}$  – 1:1 stepwise binding constant, a refined parameter

 $K_{12}\!-\!1\!:\!2$  stepwise binding constant, a refined parameter

 $K_{21}-2:1$  stepwise binding constant, a refined parameter

NMR-4 species, 2 sets in fast exchange of resonances associated with host compound

H/HG and HG<sub>2</sub>/H<sub>2</sub>G in fast exchange

$$\delta(\text{H/HG})_{obs} = \frac{\delta_{\text{H}}[\text{H}]}{[\text{H}] + [\text{HG}]} + \frac{\delta_{\text{HG}}[\text{HG}]}{[\text{H}] + [\text{HG}]}$$

$$\delta(\text{HG}_2/\text{H}_2\text{G})_{obs} = \frac{\delta_{\text{HG}_2}[\text{HG}_2]}{[\text{HG}_2] + 2[\text{H}_2\text{G}]} + 2\frac{\delta_{\text{H}_2\text{G}}[\text{H}_2\text{G}]}{[\text{HG}_2] + 2[\text{H}_2\text{G}]}$$

$$\frac{I(\text{H/HG})_{obs}}{I_{total}} = \frac{[\text{H}]}{[\text{H}_0]} + \frac{[\text{HG}]}{[\text{H}_0]}$$

$$\frac{I(\text{HG}_2/\text{H}_2\text{G})_{obs}}{I_{total}} = \frac{[\text{HG}_2]}{[\text{H}_0]} + 2\frac{[\text{H}_2\text{G}]}{[\text{H}_0]}$$

H/HG2 and HG/H2G in fast exchange

$$\delta(\text{H/HG}_2)_{obs} = \frac{\delta_{\text{H}}[\text{H}]}{[\text{H}] + [\text{HG}_2]} + \frac{\delta_{\text{HG}_2}[\text{HG}_2]}{[\text{H}] + [\text{HG}_2]}$$
$$\delta(\text{HG/H}_2\text{G})_{obs} = \frac{\delta_{\text{HG}}[\text{HG}]}{[\text{HG}] + 2[\text{H}_2\text{G}]} + 2\frac{\delta_{\text{H}_2\text{G}}[\text{H}_2\text{G}]}{[\text{HG}] + 2[\text{H}_2\text{G}]}$$

$$\frac{I(H/HG_2)_{obs}}{I_{total}} = \frac{[H]}{[H_0]} + \frac{[HG_2]}{[H_0]}$$
$$\frac{I(HG/H_2G)_{obs}}{I_{total}} = \frac{[HG]}{[H_0]} + 2\frac{[H_2G]}{[H_0]}$$

H/H<sub>2</sub>G and HG/HG<sub>2</sub> in fast exchange

$$\delta(\text{H/H}_{2}\text{G})_{obs} = \frac{\delta_{\text{H}}[\text{H}]}{[\text{H}] + 2[\text{H}_{2}\text{G}]} + 2\frac{\delta_{\text{H}_{2}\text{G}}[\text{H}_{2}\text{G}]}{[\text{H}] + 2[\text{H}_{2}\text{G}]}$$
$$\delta(\text{HG/HG}_{2})_{obs} = \frac{\delta_{\text{HG}}[\text{HG}]}{[\text{HG}] + [\text{HG}_{2}]} + \frac{\delta_{\text{HG}_{2}}[\text{HG}_{2}]}{[\text{HG}] + [\text{HG}_{2}]}$$
$$\frac{I(\text{H/H}_{2}\text{G})_{obs}}{I_{total}} = \frac{[\text{H}]}{[\text{H}_{0}]} + 2\frac{[\text{H}_{2}\text{G}]}{[\text{H}_{0}]}$$
$$\frac{I(\text{HG/HG}_{2})_{obs}}{I_{total}} = \frac{[\text{HG}]}{[\text{H}_{0}]} + \frac{[\text{HG}_{2}]}{[\text{H}_{0}]}$$

 $\delta_{\rm H}$  is the chemical shift of the host, a known experimental quantity  $\delta_{\rm HG}$  is the chemical shift of the 1:1 complex, a refined parameter  $\delta_{\rm HG_2}$  is the chemical shift of the 1:2 complex, a refined parameter  $\delta_{\rm H_2G}$  is the chemical shift of the 2:1 complex, a refined parameter *I* is the experimental integrated intensity

S1.2.4.4 Model for 1:1, 2:1 and 3:1 binding of H:G  $H + G \rightleftharpoons HG$  ( $H = 2, G = X^-, HG = 2 \cdot X^-$ )  $HG + G \rightleftharpoons H_2G$  ( $H_2G = 2_2 \cdot X^-$ )  $H_2G + G \rightleftharpoons H_3G$  ( $H_3G = 2_3 \cdot X^-$ )



Scheme S4. Proposed 1:1, 2:1, and 3:1 binding model of H, G, HG, H<sub>2</sub>G, and H<sub>3</sub>G.

- (S4.1)  $K_{11} = \frac{[HG]}{[H][G]}$ (S4.2)  $K_{21} = \frac{[H_2G]}{[HG][H]}$
- (S4.3)  $K_{31} = \frac{[H_3G]}{[H_2G][H]}$
- $(S4.4) \quad \beta_{21} = \frac{[H_2G]}{[H]^2[G]} = K_{11} \cdot K_{21}$

(S4.5) 
$$\beta_{31} = \frac{[H_3G]}{[H]^3[G]} = K_{11} \cdot K_{21} \cdot K_{31}$$

- (S4.6)  $[H_0] = [H] + [HG] + 2[H_2G] + 3[H_3G]$
- (S4.7)  $[G_0] = [G] + [HG] + [H_2G] + [H_3G]$

Solve for [H] with Maple 2016 using equations S4.1-S4.3, S4.6-S4.7.

 $\begin{array}{l} \textit{eliminate}(\{K11 \cdot H \cdot G - HG, K21 \cdot HG \cdot H - HHG, K31 \cdot HHG \cdot H - HHHG, H + HG + 2 \cdot HHG + 3 \cdot HHHG - H0, G + HG + HHG + HHHG - G0\}, \{HG, HHG, HHHG, G\}); \end{array}$ 

From equation set S4.8:

$$\begin{split} (K_{11}K_{21}K_{31})[H]^4 + (K_{11}K_{21} + 3[G_0]K_{11}K_{21}K_{31} - [H_0]K_{11}K_{21}K_{31})[H]^3 \\ &+ (K_{11} + 2[G_0]K_{11}K_{21} - [H_0]K_{11}K_{12})[H]^2 + (1 + [G_0]K_{11} - [H_0]K_{11})[H] - [H_0] \\ &= 0 \end{split}$$

for: 
$$a[H]^4 + b[H]^3 + c[H]^2 + d[H] + e$$
  
 $a = (K_{11}K_{21}K_{31})$   
 $b = (K_{11}K_{21} + 3[G_0]K_{11}K_{21}K_{31} - [H_0]K_{11}K_{21}K_{31})$   
 $c = (K_{11} + 2[G_0]K_{11}K_{21} - [H_0]K_{11}K_{12})$   
 $d = (1 + [G_0]K_{11} - [H_0]K_{11})$   
 $e = -[H_0]$   
 $[H_0] - known experimental quantity (original concentration of host)$   
 $[G_0] - known experimental quantity (original concentration of guest)$ 

 $K_{11}$  – 1:1 stepwise binding constant, a refined parameter

 $K_{21}-2:1$  stepwise binding constant, a refined parameter

 $K_{31}$  – 3:1 stepwise binding constant, a refined parameter

NMR-4 species in fast exchange of resonances associated with host compound

$$\delta_{obs} = \frac{\delta_{\rm H}[{\rm H}]}{[{\rm H}_0]} + \frac{\delta_{\rm HG}[{\rm HG}]}{[{\rm H}_0]} + 2\frac{\delta_{\rm H_2G}[{\rm H_2G}]}{[{\rm H}_0]} + 3\frac{\delta_{\rm H_3G}[{\rm H_3G}]}{[{\rm H}_0]}$$

 $\delta_{\rm H}$  is the chemical shift of the host, a known experimental quantity  $\delta_{\rm HG}$  is the chemical shift of the 1:1 complex, a refined parameter  $\delta_{\rm H_2G}$  is the chemical shift of the 2:1 complex, a refined parameter  $\delta_{\rm H_2G}$  is the chemical shift of the 3:1 complex, a refined parameter

NMR-4 species, 2 sets in fast exchange of resonances associated with host compound

H/HG and H<sub>2</sub>G/ H<sub>3</sub>G in fast exchange

$$\delta(\text{H/HG})_{obs} = \frac{\delta_{\text{H}}[\text{H}]}{[\text{H}] + [\text{HG}]} + \frac{\delta_{\text{HG}}[\text{HG}]}{[\text{H}] + [\text{HG}]}$$

$$\delta(\text{H}_{2}\text{G/H}_{3}\text{G})_{obs} = 2\frac{\delta_{\text{H}_{2}\text{G}}[\text{H}_{2}\text{G}]}{2[\text{H}_{2}\text{G}] + 3[\text{H}_{3}\text{G}]} + 3\frac{\delta_{\text{H}_{3}\text{G}}[\text{H}_{3}\text{G}]}{2[\text{H}_{2}\text{G}] + 3[\text{H}_{3}\text{G}]}$$

$$\frac{I(\text{H/HG})_{obs}}{I_{total}} = \frac{[\text{H}]}{[\text{H}_{0}]} + \frac{[\text{HG}]}{[\text{H}_{0}]}$$

$$\frac{I(\text{H}_{2}\text{G/H}_{3}\text{G})_{obs}}{I_{total}} = 2\frac{[\text{H}_{2}\text{G}]}{[\text{H}_{0}]} + 3\frac{[\text{H}_{3}\text{G}]}{[\text{H}_{0}]}$$

H/HG<sub>2</sub> and HG/HG<sub>3</sub> in fast exchange

$$\delta(H/H_2G)_{obs} = \frac{\delta_H[H]}{[H] + 2[H_2G]} + 2\frac{\delta_{H_2G}[H_2G]}{[H] + 2[H_2G]}$$
$$\delta(HG/H_3G)_{obs} = \frac{\delta_{HG}[HG]}{[HG] + 3[H_3G]} + 3\frac{\delta_{H_3G}[H_3G]}{[HG] + 3[H_3G]}$$
$$\frac{I(H/H_2G)_{obs}}{I_{total}} = \frac{[H]}{[H_0]} + 2\frac{[H_2G]}{[H_0]}$$
$$\frac{I(HG/H_3G)_{obs}}{I_{total}} = \frac{[HG]}{[H_0]} + 3\frac{[H_3G]}{[H_0]}$$

H/HG<sub>3</sub> and HG/HG<sub>2</sub> in fast exchange

$$\delta(H/H_{3}G)_{obs} = \frac{\delta_{H}[H]}{[H] + 3[H_{3}G]} + 3\frac{\delta_{H_{3}G}[H_{3}G]}{[H] + 3[H_{3}G]}$$
$$\delta(HG/H_{2}G)_{obs} = \frac{\delta_{HG}[HG]}{[HG] + 2[H_{2}G]} + 2\frac{\delta_{H_{2}G}[H_{2}G]}{[HG] + 2[H_{2}G]}$$
$$\frac{I(H/H_{3}G)_{obs}}{I_{total}} = \frac{[H]}{[H_{0}]} + 3\frac{[H_{3}G]}{[H_{0}]}$$
$$\frac{I(HG/H_{2}G)_{obs}}{I_{total}} = \frac{[HG]}{[H_{0}]} + 2\frac{[H_{2}G]}{[H_{0}]}$$

 $\delta_{\rm H}$  is the chemical shift of the host, a known experimental quantity  $\delta_{\rm HG}$  is the chemical shift of the 1:1 complex, a refined parameter

 $\delta_{HG_2}$  is the chemical shift of the 1:2 complex, a refined parameter  $\delta_{H_3G}$  is the chemical shift of the 3:1 complex, a refined parameter *I* is the experimental integrated intensity

## S1.2.4.5 Fitting Procedure

Scripts were written in R (version 3.4.0)<sup>4</sup> to minimize the above models against the data by varying the parameters. A bootstrapping method was implemented to obtain deviations. Within R, the nlminb routine in the optimx<sup>5,6</sup> package was used for the minimization and the rootSolve<sup>7,8</sup> package was used to find the lowest positive roots. For each dataset, initial guesses were performed until a set of real roots were obtained. A set number of initial guesses (100 in the final runs) were performed and the best guess was passed on to the optimization routine which minimized the sum of the square of the differences between the modelled and experimental values. The peak position data was weighted more heavily than the integrated intensity data due to the inherent inaccuracies in obtaining good intensities (particularly under intermediate exchange conditions).9 This process was repeated a set number of times (1000 in the final runs) with the different randomly selected bootstrapping datasets. Bounding conditions were given for both the initial guesses and the minimization. The binding constants were restricted to being non-negative. The bounding conditions for the chemical shift were set to be chemically reasonable. The aromatic resonances had a lower bound of 4 ppm and an upper bound of 10 ppm. For the final average and standard deviations, 1000 bootstrapping cycles were run (each with 20 initial guesses). Only the results that were within 10% of the lowest sum of square of differences were used as the remainder were deemed to likely be local minima. It should be noted that including all the data did not change the order of magnitude of any of the binding constants.

S1.2.4.6 Selecting the correct model for the bromide and chloride titrations.

Preliminary fitting runs over the 9 possible models for each of the TBABr and TBACl titrations were performed. During each run 100 minimizations with 20 initial guess cycles were performed. Data of all three replicates are displayed below with the exception of TBABr, where the aromatic peaks in one of the trials could not be resolved. The different stepwise equilibria are reiterated in equations S5.1-S5.5.

| $2 + 2_2 \cdot \mathbf{X}^- \rightleftharpoons 2_3 \cdot \mathbf{X}^-$                   | K <sub>3:1</sub> | (S5.1)  |
|------------------------------------------------------------------------------------------|------------------|---------|
| $2 + 2 \cdot \mathbf{X}^{-} \rightleftharpoons 2_{2} \cdot \mathbf{X}^{-}$               | K <sub>2:1</sub> | (\$5.2) |
| $2 + \mathbf{X}^{-} \rightleftharpoons 2 \cdot \mathbf{X}^{-}$                           | K <sub>1:1</sub> | (\$5.3) |
| $2 \cdot \mathbf{X}^{-} + \mathbf{Br} - \rightleftharpoons 2 \cdot [\mathbf{X}^{-}]_{2}$ | K <sub>1:2</sub> | (\$5.4) |
| $2 \cdot [X^{-}]_2 + Br \rightarrow 2 \cdot [X^{-}]_3$                                   | K <sub>1:3</sub> | (\$5.5) |

Table S1. Data fitting from modelling titration of **2** with TBABr according to equations 3-5 from manuscript (S5.3-S5.5 from above). The 3 different possible pairings of species for fast exchange are shown.

| Fast exchange pairs                                                | Trial # | Fit*   | <b>K</b> <sub>11</sub> | <b>K</b> <sub>12</sub> | K <sub>13</sub> | $\delta_2$ | $\delta_{2\cdot\mathbf{Br}^{-}}$ | $\delta_{2 \cdot [\mathrm{Br}^-]_2}$ | $\delta_{2 \cdot [\mathrm{Br}^-]_3}$ |
|--------------------------------------------------------------------|---------|--------|------------------------|------------------------|-----------------|------------|----------------------------------|--------------------------------------|--------------------------------------|
|                                                                    | 1       | 1.3980 | 5.1428                 | 68.7971                | 1.1942          | 6.6327     | 6.6034                           | 6.6041                               | 6.3140                               |
| $2/2 \cdot Br^-$ and $2 \cdot [Br^-]_2/2 \cdot [Br^-]_3$           | 2       | 1.6109 | 7.5172                 | 84.9627                | 1.5295          | 6.6316     | 6.6077                           | 6.6063                               | 6.3538                               |
|                                                                    | Average | 1.5044 | 6.3300                 | 76.8799                | 1.3619          | 6.6321     | 6.6055                           | 6.6052                               | 6.3339                               |
|                                                                    | 1       | 0.4653 | 12.8183                | 5.4227                 | 12.4273         | 6.6305     | 6.6021                           | 6.6122                               | 6.5149                               |
| $2/2 \cdot [Br^-]_2$ and $2 \cdot Br^-/2 \cdot [Br^-]_3$           | 2       | 0.9966 | 15.1896                | 3.6046                 | 15.2391         | 6.6290     | 6.6035                           | 6.6113                               | 6.5107                               |
|                                                                    | Average | 0.7310 | 14.0039                | 4.5137                 | 13.8332         | 6.6297     | 6.6028                           | 6.6118                               | 6.5128                               |
|                                                                    | 1       | 0.4254 | 9.5411                 | 5.8392                 | 1.3073          | 6.6288     | 6.6177                           | 6.4816                               | 6.6064                               |
| $2/2 \cdot [Br^{-}]_{3}$ and $2 \cdot [Br^{-}]_{2}/2 \cdot Br^{-}$ | 2       | 0.9734 | 12.1346                | 4.5335                 | 1.0568          | 6.6276     | 6.6169                           | 6.4678                               | 6.6053                               |
|                                                                    | Average | 0.6994 | 10.8378                | 5.1864                 | 1.1821          | 6.6282     | 6.6173                           | 6.4747                               | 6.6058                               |

\* Evaluated from sum of square of differences

| Fast exchange pairs                                    | Trial # | Fit    | <b>K</b> <sub>11</sub> | <b>K</b> <sub>12</sub> | <b>K</b> <sub>21</sub> | $\delta_2$ | $\delta_{2\cdot\mathrm{Br}^{-}}$ | $\delta_{2 \cdot [\mathrm{Br}^-]_2}$ | $\delta_{2_2 \cdot \mathrm{Br}^-}$ |
|--------------------------------------------------------|---------|--------|------------------------|------------------------|------------------------|------------|----------------------------------|--------------------------------------|------------------------------------|
|                                                        | 1       | 0.4347 | 0.6233                 | 71.7231                | 331.6848               | 6.6314     | 6.5272                           | 6.5213                               | 6.6096                             |
| $2/2 \cdot Br^-$ and $2_2 \cdot Br^-/2 \cdot [Br^-]_2$ | 2       | 0.4326 | 0.8082                 | 56.0102                | 257.2867               | 6.6315     | 6.5476                           | 6.5206                               | 6.6098                             |
|                                                        | Average | 0.4337 | 0.7157                 | 63.8667                | 294.4858               | 6.6314     | 6.5374                           | 6.5210                               | 6.6097                             |
|                                                        | 1       | 0.6475 | 1.7192                 | 0.2048                 | 153.2082               | 6.6288     | 6.2602                           | 6.2629                               | 6.6452                             |
| $2/2 \cdot [Br^-]_2$ and $2_2 \cdot Br^-/2 \cdot Br^-$ | 2       | 0.3807 | 11.5576                | 0.4056                 | 0.8807                 | 6.6291     | 6.5212                           | 6.5838                               | 8.4110                             |
|                                                        | Average | 0.5141 | 6.6384                 | 0.3052                 | 77.0445                | 6.6290     | 6.3907                           | 6.4233                               | 7.5281                             |
|                                                        | 1       | 1.1853 | 14.0822                | 0.5067                 | 23.3115                | 6.6399     | 6.6035                           | 6.0791                               | 6.5940                             |
| $2/2_2 \cdot Br^-$ and $2 \cdot Br^-/2 \cdot [Br^-]_2$ | 2       | 1.1082 | 11.4577                | 0.2741                 | 5.0030                 | 6.6365     | 6.6036                           | 5.6865                               | 6.5245                             |
|                                                        | Average | 1.1467 | 12.7700                | 0.3904                 | 14.1572                | 6.6382     | 6.6035                           | 5.8828                               | 6.5593                             |

Table S2. Data fitting from modelling titration of **2** with TBABr according to equations 2-4 from manuscript (S5.2-S5.4 from above). The 3 different possible pairings of species for fast exchange are shown.

Table S3. Data fitting from modelling titration of **2** with TBABr according to equations 1-3 from manuscript (S5.1-S5.3 from above). The 3 different possible pairings of species for fast exchange are shown.

| Fast exchange pairs                                                        | Trial # | Fit    | $K_{11}$ | K <sub>21</sub> | K <sub>31</sub> | $\delta_2$ | $\delta_{2\cdot\mathrm{Br}^{-}}$ | $\delta_{2_2 \cdot \mathrm{Br}^-}$ | $\delta_{2_3 \cdot \mathrm{Br}^-}$ |
|----------------------------------------------------------------------------|---------|--------|----------|-----------------|-----------------|------------|----------------------------------|------------------------------------|------------------------------------|
|                                                                            | 1       | 0.8333 | 0.4248   | 570.2641        | 9.9973          | 6.6312     | 6.4988                           | 6.4861                             | 6.9314                             |
| $2/2 \cdot Br^-$ and $2_2 \cdot Br^-/2_3 \cdot Br^-$                       | 2       | 1.5533 | 0.2860   | 884.5654        | 15.8699         | 6.6297     | 6.4593                           | 6.4772                             | 6.8404                             |
|                                                                            | Average | 1.1933 | 0.3554   | 727.4147        | 12.9336         | 6.6304     | 6.4791                           | 6.4817                             | 6.8859                             |
|                                                                            | 1       | 0.7361 | 6.2092   | 0.7524          | 764.6840        | 6.6351     | 6.5209                           | 5.7966                             | 6.6790                             |
| $2/2_2 \cdot Br^-$ and $2 \cdot Br^-/2_3 \cdot Br^-$                       | 2       | 1.5345 | 9.8475   | 6.2707          | 78.1411         | 6.6347     | 6.5340                           | 6.5386                             | 6.6999                             |
|                                                                            | Average | 1.1353 | 8.0283   | 3.5115          | 421.4126        | 6.6349     | 6.5275                           | 6.1676                             | 6.6894                             |
|                                                                            | 1       | 1.1330 | 31.5232  | 17.0084         | 568.8184        | 6.5904     | 6.5215                           | 6.8426                             | 6.6497                             |
| $2/2_3$ ·Br <sup>-</sup> and $2$ ·Br <sup>-</sup> / $2_2$ ·Br <sup>-</sup> | 2       | 1.5708 | 39.4896  | 11.0608         | 832.6499        | 6.5950     | 6.5293                           | 6.9606                             | 6.6450                             |
|                                                                            | Average | 1.3519 | 35.5064  | 14.0346         | 700.7342        | 6.5927     | 6.5254                           | 6.9016                             | 6.6474                             |

| Fast exchange pairs                                                | Trial # | Fit    | <b>K</b> <sub>11</sub> | K <sub>12</sub> | <b>K</b> <sub>13</sub> | $\delta_2$ | $\delta_{2\cdot\mathrm{Cl}^{-}}$ | $\delta_{2 \cdot [\mathrm{Cl}^-]_2}$ | $\delta_{2 \cdot [\mathrm{Cl}^-]_3}$ |
|--------------------------------------------------------------------|---------|--------|------------------------|-----------------|------------------------|------------|----------------------------------|--------------------------------------|--------------------------------------|
|                                                                    | 1       | 2.6932 | 36.9381                | 10980.7079      | 55.6620                | 6.6368     | 6.5854                           | 6.5742                               | 6.4769                               |
| $2/2 \cdot Cl^-$ and $2 \cdot [Cl^-]_2/2 \cdot [Cl^-]_3$           | 2       | 2.2699 | 9.0504                 | 5317.4456       | 24.8384                | 6.6362     | 6.5647                           | 6.5847                               | 6.4620                               |
|                                                                    | 3       | 8.4157 | 32.8355                | 25701.9169      | 96.3963                | 6.6361     | 6.5850                           | 6.5785                               | 6.4901                               |
|                                                                    | Average | 4.4596 | 26.2746                | 14000.0235      | 58.9656                | 6.6364     | 6.5784                           | 6.5791                               | 6.4763                               |
|                                                                    | 1       | 0.9263 | 116.9299               | 1.0960          | 6.0949                 | 6.6360     | 6.5580                           | 6.5834                               | 6.3477                               |
| $2/2 \cdot [Cl^{-}]_{2}$ and $2 \cdot Cl^{-}/2 \cdot [Cl^{-}]_{3}$ | 2       | 1.0119 | 108.3735               | 1.6384          | 211.7847               | 6.6358     | 6.5811                           | 6.5825                               | 6.4738                               |
|                                                                    | 3       | 1.9804 | 136.1477               | 1.8173          | 5.1370                 | 6.6374     | 6.5625                           | 6.5909                               | 6.3769                               |
|                                                                    | Average | 1.3062 | 120.4837               | 1.5172          | 74.3389                | 6.6364     | 6.5672                           | 6.5856                               | 6.3995                               |
|                                                                    | 1       | 0.4455 | 107.4845               | 10.6799         | 1.2874                 | 6.6337     | 6.5825                           | 6.4415                               | 6.5843                               |
| $2/2 \cdot [CI^-]_3$ and $2 \cdot [CI^-]_2/2 \cdot CI^-$           | 2       | 0.5955 | 94.0712                | 12.8443         | 1.1847                 | 6.6341     | 6.5945                           | 6.4451                               | 6.5853                               |
|                                                                    | 3       | 1.8342 | 113.3564               | 4.6042          | 1.9860                 | 6.6340     | 6.5798                           | 6.3950                               | 6.5844                               |
|                                                                    | Average | 0.9584 | 104.9707               | 9.3762          | 1.4860                 | 6.6339     | 6.5856                           | 6.4272                               | 6.5847                               |

Table S4 . Data fitting from modelling titration of **2** with TBACl according to equations 3-5 from manuscript (S5.3-S5.5 from above). The 3 different possible pairings of species for fast exchange are shown.

| Fast exchange pairs                                          | Trial # | Fit     | <b>K</b> <sub>11</sub> | K <sub>12</sub> | K <sub>21</sub> | $\delta_2$ | $\delta_{2\cdot\mathrm{Cl}^{-}}$ | $\delta_{2\cdot [\mathrm{Cl}^-]_2}$ | $\delta_{2_2\cdot\mathrm{Cl}^-}$ |
|--------------------------------------------------------------|---------|---------|------------------------|-----------------|-----------------|------------|----------------------------------|-------------------------------------|----------------------------------|
|                                                              | 1       | 3.5782  | 0.9845                 | 968.5116        | 397.0708        | 6.6364     | 6.3972                           | 6.4976                              | 6.6267                           |
| $2/2 \cdot Cl^-$ and $2_2 \cdot Cl^-/2 \cdot [Cl^-]_2$       | 2       | 2.6291  | 0.9563                 | 839.3614        | 361.4960        | 6.6372     | 6.3840                           | 6.5031                              | 6.6337                           |
|                                                              | 3       | 5.1197  | 0.9879                 | 640.1485        | 935.7188        | 6.6293     | 6.4620                           | 6.5429                              | 6.5264                           |
|                                                              | Average | 3.7756  | 0.9762                 | 816.0072        | 564.7619        | 6.6343     | 6.4144                           | 6.5145                              | 6.5956                           |
|                                                              | 1       | 3.2480  | 25.4771                | 0.1697          | 3.9976          | 6.6314     | 6.4999                           | 6.4756                              | 6.9019                           |
| $2/2 \cdot [Cl^{-}]_2$ and $2_2 \cdot Cl^{-}/2 \cdot Cl^{-}$ | 2       | 2.2171  | 23.7147                | 0.0441          | 4.0824          | 6.6318     | 6.4765                           | 6.1514                              | 7.1189                           |
|                                                              | 3       | 10.2343 | 16.2089                | 0.1642          | 12.2975         | 6.6313     | 6.4479                           | 6.4286                              | 6.8093                           |
|                                                              | Average | 5.2332  | 21.8002                | 0.1260          | 6.7925          | 6.6315     | 6.4747                           | 6.3519                              | 6.9434                           |
|                                                              | 1       | 3.5969  | 28.1164                | 33.0500         | 1.2842          | 6.5845     | 6.6093                           | 6.4751                              | 8.7625                           |
| $2/2_2 \cdot Cl^-$ and $2 \cdot Cl^-/2 \cdot [Cl^-]_2$       | 2       | 3.4829  | 32.1948                | 9.6208          | 0.0148          | 6.6242     | 6.5977                           | 6.4319                              | 6.7343                           |
|                                                              | 3       | 7.7392  | 48.6449                | 25.3860         | 0.0110          | 6.6238     | 6.5318                           | 6.5480                              | 6.6180                           |
|                                                              | Average | 4.9397  | 36.3187                | 22.6856         | 0.4367          | 6.6108     | 6.5796                           | 6.4850                              | 7.3716                           |

Table S5. Data fitting from modelling titration of **2** with TBACl according to equations 2-4 from manuscript (S5.2-S5.4 from above). The 3 different possible pairings of species for fast exchange are shown.

| Fast exchange pairs                                | Trial # | Fit    | <b>K</b> <sub>11</sub> | K <sub>21</sub> | K <sub>31</sub> | $\delta_2$ | $\delta_{2 \cdot Cl^{-}}$ | $\delta_{2_2\cdot Cl^-}$ | $\delta_{2_3 \cdot Cl^-}$ |
|----------------------------------------------------|---------|--------|------------------------|-----------------|-----------------|------------|---------------------------|--------------------------|---------------------------|
|                                                    | 1       | 0.6999 | 1.6182                 | 1373.2497       | 16.2057         | 6.6391     | 6.4817                    | 6.4539                   | 6.9104                    |
| 2/2 C1- and 2. C1-/2. C1-                          | 2       | 0.4576 | 0.5580                 | 3037.8711       | 17.2147         | 6.6378     | 6.2990                    | 6.4479                   | 6.9037                    |
| $2/2 \cdot C1$ and $2_2 \cdot C1 / 2_3 \cdot C1$   | 3       | 0.7092 | 1.2301                 | 1796.5293       | 19.8428         | 6.6391     | 6.4529                    | 6.4470                   | 6.8886                    |
|                                                    | Average | 0.6222 | 1.1354                 | 2069.2167       | 17.7544         | 6.6387     | 6.4112                    | 6.4496                   | 6.9009                    |
|                                                    | 1       | 1.2620 | 16.1638                | 3.0796          | 2329.0098       | 6.6494     | 6.4507                    | 6.0350                   | 6.5985                    |
| 2/2 C1- and 2 C1-/2 C1-                            | 2       | 1.0235 | 13.4021                | 3.0287          | 2245.3761       | 6.6474     | 6.4380                    | 6.0258                   | 6.6087                    |
| $2/2_2 \cdot C1$ and $2 \cdot C1 / 2_3 \cdot C1$   | 3       | 1.5794 | 15.4759                | 15.1372         | 719.8104        | 6.6517     | 6.4392                    | 6.4710                   | 6.6001                    |
|                                                    | Average | 1.2883 | 15.0139                | 7.0818          | 1764.7321       | 6.6495     | 6.4426                    | 6.1773                   | 6.6024                    |
|                                                    | 1       | 0.8110 | 56.1467                | 39.5547         | 22.8395         | 6.5679     | 6.4669                    | 6.6769                   | 6.8708                    |
| 2/2 C1-and 2 C1-/2 C1-                             | 2       | 0.8584 | 114.2117               | 32.1380         | 84.3343         | 6.5766     | 6.4864                    | 6.7234                   | 6.7152                    |
| $2/2_3 \cdot CI$ and $2 \cdot CI^2/2_2 \cdot CI^2$ | 3       | 2.0631 | 58.2844                | 67.7166         | 21.6099         | 6.5675     | 6.4589                    | 6.6552                   | 6.8267                    |
|                                                    | Average | 1.2442 | 76.2142                | 46.4697         | 42.9279         | 6.5707     | 6.4707                    | 6.6852                   | 6.8042                    |

Table S6. Data fitting from modelling titration of **2** with TBACl according to equations 1-3 from manuscript (S5.1-S5.3 from above). The 3 different possible pairings of species for fast exchange are shown.

S1.2.4.7 Fitting of data from titration of **2** with TBAI.



Figure S1. Fit of modelled chemical shift from for 1:1 binding (eq. 3/eq. S4.3) of **2**:I<sup>-</sup> (line) to the experimental chemical shift (open circles) from titration of **2** with TBAI. Difference shown below.

S1.2.4.8 Fitting of data from titration of **2** with TBABr.



Figure S2. Fit of modelled chemical shift from for 1:1, 1:2 and 1:3 binding (eq. 1-3/eq. S4.1-S4.3) of **2**:Br<sup>-</sup> (line) to the experimental chemical shift (black represents fast exchange between **2** and **2**·[Br<sup>-</sup>]<sub>3</sub>, grey represents fast exchange between **2**·Br<sup>-</sup> and **2**·[Br<sup>-</sup>]<sub>2</sub>) (open circles, chart on the left) and intensity data (open circles for **2**/**2**·[Br<sup>-</sup>]<sub>3</sub>, chart on the right) from titration of **2** with TBABr. Differences shown below each graph.



Figure S3. Fit of modelled chemical shift from for 1:1, 1:2 and 2:1 binding (eq. 2-4/eq. S4.2-S4.4) of **2**:Br<sup>-</sup> (line) to the experimental chemical shift (black represents fast exchange between **2** and **2**·Br<sup>-</sup>, grey represents fast exchange between **2**·[Br<sup>-</sup>]<sub>2</sub>and **2**<sub>2</sub>·Br<sup>-</sup>) (open circles, chart on the left) and intensity data (open circles for **2**/**2**·Br<sup>-</sup>, chart on the right) from titration of **2** with TBABr. Differences shown below each graph.



Figure S4. Fit of modelled chemical shift from for 1:1, 2:1 and 3:1 binding (eq. 3-5/eq. S4.3-S4.5) of 2:Br<sup>-</sup> (line) to the experimental chemical shift (black represents fast exchange between 2 and  $2 \cdot Br^-$ , grey represents fast exchange between  $2_2 \cdot Br^-$  and  $2_3 \cdot Br^-$ ) (open circles, chart on the left) and intensity data (open circles for  $2/2 \cdot Br^-$ , chart on the right) from titration of 2 with TBABr. Differences shown below each graph.

S1.2.4.9 Fitting of data from titration of 2 with TBACl



Figure S5. Fit of modelled chemical shift from for 1:1, 1:2 and 1:3 binding (eq. 1-3/eq. S4.1-S4.3) of 2:Cl<sup>-</sup> (line) to the experimental chemical shift (black represents fast exchange between 2 and  $2 \cdot [Cl^-]_3$ , grey represents fast exchange between  $2 \cdot Cl^-$  and  $2 \cdot [Cl^-]_2$ ) (open circles, chart on the left) and intensity data (open circles for  $2/2 \cdot [Cl^-]_3$ , chart on the right) from titration of 2 with TBACl. Differences shown below each graph.



Figure S6. Fit of modelled chemical shift from for 1:1, 1:2 and 2:1 binding (eq. 2-4/eq. S4.2-S4.4) of 2:Cl<sup>-</sup> (line) to the experimental chemical shift (black represents fast exchange between 2 and 2·Cl<sup>-</sup>, grey represents fast exchange between  $2 \cdot [Cl^-]_2$  and  $2_2 \cdot Cl^-$ ) (open circles, chart on the left) and intensity data (open circles for  $2/2 \cdot Cl^-$ , chart on the right) from titration of 2 with TBACl. Differences shown below each graph.



Figure S7. Fit of modelled chemical shift from for 1:1, 2:1 and 3:1 binding (eq. 3-5/eq. S4.3-S4.5) of 2:Cl<sup>-</sup> (line) to the experimental chemical shift (black represents fast exchange between 2 and  $2 \cdot Cl^-$ , grey represents fast exchange between  $2_2 \cdot Cl^-$ , and  $2_3 \cdot Cl^-$ ) (open circles, chart on the left) and intensity data (open circles for  $2/2 \cdot Cl^-$ , chart on the right) from titration of 2 with TBACl. Differences shown below each graph.

#### S1.3 ESI-MS Details

ESI-MS experiments were performed on Waters Synapt G2 mass spectrometer under the following conditions: ESI capillary voltage, 3.0 kV; sample cone voltage, 20 V; extraction cone voltage, 0.1 V; cone gas flow, 10 L/h; desolvation gas flow, 700 L/h (N<sub>2</sub>); source gas control, 0 mL/min; trap gas control, 2 mL/min; Helium cell gas control, 100 mL/min; sample flow rate, 5 µL/min. Source temperature and desolvation temperature were used at 100 °C and 120 °C, respectively.

All the initial solutions were prepared at concentration of 0.5 mg/mL in acetonitrile. The samples were prepared by mixing **2** with TBAX (X = Cl or Br) in 1:1, 1:2 and 1:3 molar ratios, respectively. Some precipitates formed after the mixing. A 100 uL aliquot of each was taken, filtered, diluted to 500 uL using acetonitrile and was used directly for ESI test. The data were recorded under negative mode. In both cases a base peak that corresponds to the m/z of the spirocyclic anion  $[Sb(O_2C_6H_3C(CH_3)_3)_2]^-$  which likely results from fragmentation of the parent ion(s).<sup>10</sup>

### S1.4 Computational Details

# S1.4.1 Methods and Functionals

Calculations were performed using the ORCA 4.0 quantum chemistry program package from the development team at the Max Planck Institute for Bioinorganic Chemistry.<sup>11</sup> The starting geometry for optimization of the neutral **1** and its complexes with X<sup>-</sup> were based on our previous computational studies.<sup>1</sup> All calculations were carried out with the Zero-Order Regular Approximation (ZORA).<sup>12,13</sup> For geometry optimizations, frequencies, and thermochemistry the B97-D3 functional<sup>14</sup> and def2-TZVPP<sup>15,16</sup> with SARC/J basis sets<sup>17</sup> were used for hydrogen atoms and all other atoms respectively. Spin-restricted Kohn–Sham determinants<sup>18</sup> were chosen to describe the closed shell wavefunctions, employing the RI approximation<sup>19</sup> and the tight SCF convergence criteria provided by ORCA. The basis set superposition error (BSSE) was corrected using the Boys and Bernardi procedures.<sup>20</sup> The conductor-like polarizable continuum model (CPCM)<sup>21</sup> was adopted to evaluate the dielectric effects of solvents (DMSO, THF, and chloroform). All reported secondary bonding distances were obtained from gas-phase calculations.

#### S1.4.2 Geometry of 1 and $X^-$ Complexes

Complex stoichiometries of 2:1, 1:1, and 1:2 for  $1:X^-$  were probed. For the 2:1 complex, over 15 starting geometric conformations were considered for Cl<sup>-</sup>, but none converged with all positive vibrational frequencies, which indicated that the global minima was not located likely due to a rather flat potential energy surface. Given the rotation flexibility of 1 at the Sb—O—Sb bridge centre, many possible structures could be constructed, and the effort spent in searching for the true global minimal could be well beyond the purpose of this paper. Although 3:1 complexes were possible according to <sup>1</sup>H NMR data fitting, they were not probed by DFT calculations. We report two possible conformations for  $1_2 \cdot Cl^-$  (Figure S8) that converged with the lowest energies and their five lowest calculated vibrational frequencies (See Section S3). Note that the structure with self-assembled dimeric 1 and Cl<sup>-</sup> interacting with only one of the two molecules of 1 gave large negative  $\Delta G$  values (Section S3). Other geometries that contain one or more

solvent molecules explicitly bound through SBIs might lead to more appropriate energetics. The second structure, gave more positive  $\Delta G$  values.



Figure S8 DFT minimized structures of  $1_2 \cdot Cl^-$ . Intermolecular SBIs are depicted with black dotted lines. Left: structure of dimeric, self-assembled 1 units and  $Cl^-$  interacting with only one of the two molecules of 1 units (denoted as  $1_{2(dimer)} \cdot Cl^-$ ). Right: structure of  $Cl^-$  interacting with both molecules of 1.

|                                 | SBI distances (in Å) |                   |                   |                   |                                |  |  |  |
|---------------------------------|----------------------|-------------------|-------------------|-------------------|--------------------------------|--|--|--|
| Geometry                        | $Sb_1 \cdots X_1$    | $Sb_2 \cdots X_1$ | $Sb_3 \cdots X_1$ | $Sb_4 \cdots X_1$ | Average Intermolecular<br>Sb…O |  |  |  |
| $1_{2(dimer)}$ ·Cl <sup>-</sup> | 2.49                 |                   |                   |                   | 2.40                           |  |  |  |
| $1_2 \cdot Cl^-$                | 2.62                 |                   | 3.10              | 3.70              | 2.47                           |  |  |  |

Table S7. SBI distances (in Å) of DFT-minimized  $1_2 \cdot X^-$  complexes.

Three possible geometries were considered for the  $1 \cdot X^-$  complexes (Figure S9): 1)  $X^-$  interacting with two Sb(III) centres (forming a bridge) and the catecholate rings in a cis arrangement (denoted as cis- $1 \cdot X_b^-$ ); 2)  $X^-$  interacting with two Sb(III) centres (forming a bridge) with the catecholate rings in a trans arrangement (denoted as trans- $1 \cdot X_b^-$ ); 3)  $X^-$  interacting with only one Sb(III) centre (in a terminal position) and the other Sb(III) forming an intramolecular SBI with one oxygen atom on the opposite catecholate ring (denoted as  $1 \cdot X_t^-$ ). For the cis- $1 \cdot Cl_b^-$  structure, one negative vibrational frequency still existed in the minimized structure indicating that it does not represent a global minimum. As a result, the energetics and bond distances for cis- $1 \cdot Cl_b^-$  were not reported.



Figure S9. DFT-probed structures of  $1 \cdot X^-$  (Cl<sup>-</sup> shown). Intermolecular SBIs are shown in black dotted lines, while intramolecular SBIs are shown in red dotted lines. Left: cis- $1 \cdot X_b^-$ ; middle: trans- $1 \cdot X_b^-$ ; right:  $1 \cdot X_t^-$ .

| Gaamatru                                    | SBI distances (in Å)              |                                     |                     |  |  |  |  |
|---------------------------------------------|-----------------------------------|-------------------------------------|---------------------|--|--|--|--|
| Geometry                                    | $\mathbf{Sb}_1\cdots\mathbf{X}_1$ | $\mathbf{Sb}_2 \cdots \mathbf{X}_1$ | Intramolecular Sb…O |  |  |  |  |
| cis- <b>1</b> •Br <sub>b</sub> <sup>-</sup> | 3.04                              | 3.04                                |                     |  |  |  |  |
| $cis-1\cdot I_b^-$                          | 3.32                              | 3.32                                |                     |  |  |  |  |
| $1 \cdot Cl_t^-$                            | 2.49                              |                                     | 2.38                |  |  |  |  |
| $1 \cdot Br_t^-$                            | 2.67                              |                                     | 2.39                |  |  |  |  |
| $1 \cdot I_t^-$                             | 2.94                              |                                     | 2.41                |  |  |  |  |
| trans-1·Cl <sub>b</sub> <sup>-</sup>        | 2.85                              | 2.85                                |                     |  |  |  |  |
| trans- $1 \cdot Br_b^-$                     | 3.03                              | 3.03                                |                     |  |  |  |  |
| trans- $1 \cdot I_b^-$                      | 3.32                              | 3.31                                |                     |  |  |  |  |

Table S8. SBI distances (in Å) of DFT-minimized  $1 \cdot X^{-1}$  complexes.

In the same manner, three possible geometries were considered for the  $1 \cdot [Cl^{-}]_2$  complexes (Figure S10): 1) both X<sup>-</sup> interacting with two Sb(III) centres (forming two bridges) and the catecholate rings in a cis arrangement (denoted as  $1 \cdot [Cl_b^{-}]_2$ ); 2) one X<sup>-</sup> interacting with two Sb(III) centres (forming two bridge) but the other X<sup>-</sup> interacts only one Sb(III) (in terminal position); the catecholate rings were in a trans arrangement (denoted as  $1 \cdot Cl_b^{-} \cdot Cl_t^{-}$ ); 3) both X<sup>-</sup> interacting with only one Sb(III) centre (in terminal positions); each Sb(III) forms intramolecular SBI with one oxygen atom on the opposite catecholate ring (denoted as  $1 \cdot [Cl_t^{-}]_2$ ). Only  $1 \cdot [Cl_t^{-}]_2$  gave all positive vibrational frequencies according to the calculation results, thus the energetics and bond distances of the other two alternative structures were not reported. Both Sb····Cl<sup>-</sup> SBI distances were 2.63 Å, with two additional intramolecular Sb····O SBI of 3.13 Å in  $1 \cdot [Cl_t^{-}]_2$ . Because no  $1 \cdot [Br^{-}]_2$  complex was observed by ESI-MS and that it was not favourable structure in solution according to <sup>1</sup>H NMR fitting,  $1 \cdot [Br^-]_2$  was not studied by DFT calculations. The  $1 \cdot [I^-]_2$  complex, was also not studied, since it showed simple binding forming only  $1 \cdot I^-$  in solutions according to <sup>1</sup>H NMR data.



Figure S10. DFT-probed structures of  $1 \cdot [Cl^-]_2$  (Cl<sup>-</sup> shown). Intermolecular SBIs are shown in black dotted lines, while intramolecular SBIs are shown in red dotted lines. Left:  $1 \cdot [Cl_b^-]_2$ ; middle:  $1 \cdot Cl_b^- \cdot Cl_t^-$ ; right:  $1 \cdot [Cl_t^-]_2$ .

The  $1 \cdot [DMSO]_2$  and  $1 \cdot DMSO \cdot X^-$  were constructed according to the reported crystal structure of  $1 \cdot [pyridine]_2$  (Figure S11).<sup>10</sup> The  $1 \cdot [DMSO]_2$  structure was analogous to the  $1 \cdot [X_t^-]_2$ , where the DMSO molecules were in terminal positions with respect to the Sb(III) centres and each of the Sb(III) centres formed one pair of SBI with the oxygen on the opposite catecholate ring. The structure of  $1 \cdot DMSO \cdot X^-$  had the DMSO and  $X^-$  both at terminal positions and only one pair of intermolecular SBIs. The  $1 \cdot DMSO \cdot I^-$  yielded one small negative vibrational frequency (See Section S3 for details) consistent with a very flat potential energy surface for a weak SBI.



Figure S11. DFT minimized structures of  $1 \cdot [DMSO]_2$  (left) and  $1 \cdot DMSO \cdot X^-$  (right; Cl<sup>-</sup> shown). Intermolecular SBIs are shown in black dotted lines, while intramolecular SBIs are shown in red dotted lines.

Table S9. SBI distances (in Å) of DFT-minimized 1 · [DMSO]<sub>2</sub> and 1 · DMSO · X<sup>-</sup> complexes.

| Coomotavi                      | SBI distances (in Å)              |                        |                        |                     |  |  |  |  |
|--------------------------------|-----------------------------------|------------------------|------------------------|---------------------|--|--|--|--|
| Geometry                       | $\mathbf{Sb}_1\cdots\mathbf{X}_1$ | $Sb_1 \cdots O_{DMSO}$ | $Sb_2 \cdots O_{DMSO}$ | Intramolecular Sb…O |  |  |  |  |
| $1 \cdot [DMSO]_2$             |                                   | 2.43                   | 2.42                   | 2.91                |  |  |  |  |
| <b>1</b> •DMSO•Cl <sup>−</sup> | 2.55                              |                        | 2.58                   | 2.71                |  |  |  |  |
| <b>1</b> •DMSO•Br <sup>−</sup> | 2.75                              |                        | 2.56                   | 2.76                |  |  |  |  |
| <b>1</b> •DMSO•I⁻              | 3.14                              |                        | 2.43                   | 3.45                |  |  |  |  |

# S2 Spectroscopic (<sup>1</sup>H NMR) and Spectrometric (ESI-MS) Data



Figure S12. <sup>1</sup>H NMR spectra (2.0-7.5 ppm; peak positions are denoted on spectra) of a) 1:1 mix of **2** (0.010 g) and tetraphenylphosphonium chloride (TPPCl; 0.0064 g) in 0.40 mL  $d_6$ -DMSO, showing a pattern of two sets of fast exchange pairs in solution; b) 2 equivalents (0.018 g) of BCF added to the 1:1 mixture of **2** and TPPCl to competitively bind Cl<sup>-</sup>. c) excess (>>2 eq.) of BCF added to the 1:1 mixture of **2** and TPPCl. d) 0.6 eq. of TPPCl (10.2  $\mu$ L, 1.0 M) added to **2** (0.034 M) in  $d_6$ -DMSO to illustrate the similar peak positions to b); e) 0.4 eq. of TPPCl (6.8  $\mu$ L, 1.0 M) added to **2** (0.034 M) in  $d_6$ -DMSO to illustrate the similar peak positions are assigned according to line fitting in MestReNova); f) free **2** (0.034 M) in  $d_6$ -DMSO.



Figure S13. <sup>1</sup>H NMR spectra (0.0-7.0 ppm) of titration of 0.50 mL 0.034 M solution of **2** in  $d_6$ -DMSO with  $d_6$ -DMSO (1 equiv. added = 17.0 µL). Added amounts are provided on figure.



Figure S14. <sup>1</sup>H NMR spectra (6.0-7.0 ppm) of titration of 0.50 mL 0.034 M solution of **2** in  $d_6$ -DMSO with  $d_6$ -DMSO (1 equiv. added = 17.0 µL). Added amounts are provided on figure.



Figure S15. <sup>1</sup>H NMR spectra (0.0-7.0 ppm) of titration of 0.50 mL 0.034 M solution of **2** in  $d_6$ -DMSO with a 1.0 M solution of TBA(PF<sub>6</sub>) in  $d_6$ -DMSO. Added equivalents of anion are provided on figure.



Figure S16. <sup>1</sup>H NMR spectra (6.0-7.0 ppm) of titration of 0.50 mL 0.034 M solution of **2** in  $d_6$ -DMSO with a 1.0 M solution of TBA(PF<sub>6</sub>) in  $d_6$ -DMSO. Added equivalents of anion are provided on figure.



Figure S17 <sup>1</sup>H NMR spectra (0.0-7.0 ppm) of titration of 0.50 mL 0.034 M solution of **2** in  $d_6$ -DMSO with a 1.0 M solution of TBAI in  $d_6$ -DMSO. Added equivalents of anion are provided on figure.
|               | $\sim$               | $\sim$ | 20.0 eq. |
|---------------|----------------------|--------|----------|
|               |                      | $\sim$ | 15.0 eq. |
|               |                      |        | 10.0 eq. |
|               | $\overline{\Lambda}$ |        | 5.0 eq.  |
|               |                      |        | 4.0 eq.  |
|               | A                    |        | 3.0 eq.  |
|               |                      | - A    | 2.5 eq.  |
|               |                      | M      | 2.0 eq.  |
|               |                      | M      | 1.8 eq.  |
|               |                      | - M    | 1.6 eq.  |
|               |                      | - And  | 1.4 eq.  |
|               |                      |        | 1.2 eq.  |
|               |                      | M      | 1.0 eq.  |
| -             |                      | M      | 0.9 eq.  |
|               |                      | ~~~~   | 0.8 eq.  |
|               |                      | - M    | 0.7 eq.  |
|               |                      | - Mark | 0.6 eq.  |
| N N ULMARY BU |                      | - Mark | 0.5 eq.  |
|               | A                    | Mah    | 0.4 eq.  |
|               |                      | Man    | 0.3 eq.  |
| _             | M                    | Mah    | 0.2 eq.  |
|               |                      | Mich   | 0.1 eq.  |
|               |                      |        | 0.0 eg   |

# 6.95 6.85 6.75 6.65 6.55 6.45 6.35 6.25 6.15 6.05

Figure S18 <sup>1</sup>H NMR spectra (6.0-7.0 ppm) of titration of 0.50 mL 0.034 M solution of **2** in  $d_6$ -DMSO with a 1.0 M solution of TBAI in  $d_6$ -DMSO. Added equivalents of anion are provided on figure.



Figure S19. <sup>1</sup>H NMR spectra (0.0-7.0 ppm) of titration of 0.50 mL 0.034 M solution of **2** in  $d_6$ -DMSO with a 1.0 M solution of TBABr in  $d_6$ -DMSO. Added equivalents of anion are provided on figure.



Figure S20. <sup>1</sup>H NMR spectra (6.0-7.0 ppm) of titration of 0.50 mL 0.034 M solution of **2** in  $d_6$ -DMSO with a 1.0 M solution of TBABr in  $d_6$ -DMSO. Added equivalents of anion are provided on figure.



Figure S21. <sup>1</sup>H NMR spectra (0.0-7.0 ppm) of titration of 0.50 mL 0.034 M solution of **2** in  $d_6$ -DMSO with a 1.0 M solution of TBACl in  $d_6$ -DMSO. Added equivalents of anion are provided on figure.



Figure S22. <sup>1</sup>H NMR spectra (6.0-7.0 ppm) of titration of 0.50 mL of a 0.034 M solution of **2** in  $d_6$ -DMSO with a 1.0 M solution of TBACl in  $d_6$ -DMSO. Added equivalents of anion are provided on figure.



Figure S23. ESI-MS of TBACl with 1, 2 or 3 equivalents of 2 - full window.



Figure S24. Theoretical modelling (a) and isotopic distribution of  $2 \cdot Cl^-$  when mixing TBACl with 1 (b),2 (c) or 3 (d) equivalents of 2 from ESI-MS.



Figure S25. Theoretical modelling (a) and isotopic distribution of  $2_2 \cdot Cl^-$  when mixing TBACl with 1 (b), 2 (c) or 3 (d) equivalents of 2 from ESI-MS.



Figure S26. Theoretical modelling (a) and isotopic distribution of  $2_3 \cdot Cl^-$  when mixing TBACl with 1 (b), 2 (c) or 3 (d) equivalents of 2 from ESI-MS.



Figure S27. ESI-MS of TBABr with 1 (a), 2 (b) or 3 (c) equivalents of 2 -full window.



Figure S28. Theoretical modelling (a) and isotopic distribution of  $2 \cdot Br^-$  when mixing TBABr with 1 (b) ,2 (c) or 3 (d) equivalents of **2** from ESI-MS.



Figure S29. Theoretical modelling (a) and isotopic distribution of  $2_2 \cdot Br^-$  when mixing TBABr with 1 (b), 2 (c) or 3 (d) equivalents of 2 from ESI-MS.

### **S3 DFT Energetics**

Table S10. Final DFT single point energies (in Hartree) of proposed equilibrium structures. The lowest-energy isomers (those discussed in the manuscript) are highlighted in yellow.

|                                               | Final Single Point Energy (Hartree) |              |              |                          |  |  |  |
|-----------------------------------------------|-------------------------------------|--------------|--------------|--------------------------|--|--|--|
|                                               | Gas-phase                           | CPCM(DMSO)   | CPCM(THF)    | CPCM(CHCl <sub>3</sub> ) |  |  |  |
| 1                                             | -13989.65051                        | -13989.67708 | -13989.67324 | -13989.67112             |  |  |  |
| $1_{2(dimer)} \cdot \mathbf{Cl}^{-} *$        | -28442.01184                        | -28442.09312 |              |                          |  |  |  |
| <b>1</b> <sub>2</sub> •Cl <sup>-</sup> *      | -28442.00337                        | -28442.08780 |              |                          |  |  |  |
| $1 \cdot Cl_t^-$                              | -14452.29226                        | -14452.37151 | -14452.36095 | -14452.35516             |  |  |  |
| trans-1·Cl <sub>b</sub> <sup>-</sup>          | -14452.29162                        | -14452.37126 | -14452.36083 | -14452.35505             |  |  |  |
| $1 \cdot [Cl_t]_2$                            | -14914.81167                        | -14915.05455 |              |                          |  |  |  |
| cis- <b>1</b> ·Br <sub>b</sub> <sup>-</sup>   | -16615.45742                        | -16615.53871 | -16615.52805 | -16615.52216             |  |  |  |
| $1 \cdot Br_t^-$                              | -16615.46037                        | -16615.53885 | -16615.52841 | -16615.52261             |  |  |  |
| trans- <b>1</b> •Br <sub>b</sub> <sup>-</sup> | -16615.46029                        | -16615.53886 | -16615.52853 | -16615.52286             |  |  |  |
| cis-1·I <sub>b</sub> -                        | -21216.91519                        | -21216.99521 | -21216.98470 | -21216.97890             |  |  |  |
| $1 \cdot I_t^-$                               | -21216.91764                        | -21216.99491 | -21216.98454 | -21216.97888             |  |  |  |
| trans- $1 \cdot I_b^-$                        | -21216.91776                        | -21216.99517 | -21216.98497 | -21216.97942             |  |  |  |
| 1·[DMSO] <sub>2</sub>                         | -15099.88486                        | -15099.92405 |              |                          |  |  |  |
| <b>1</b> •DMSO•Cl <sup>−</sup>                | -15007.40164                        | -15007.49018 |              |                          |  |  |  |
| 1·DMSO·Br <sup>-</sup>                        | -17170.57062                        | -17170.65791 |              |                          |  |  |  |
| 1•DMSO•I⁻ *                                   | -21772.03001                        | -21772.11607 |              |                          |  |  |  |

\*not global minima (negative vibrational frequencies obtained). For  $\mathbf{1}_2(\text{dimer})\cdot\text{Cl}^-$  the five lowest vibrational frequencies were: -20.23 cm<sup>-1</sup> (imaginary mode), -10.20 cm<sup>-1</sup> (imaginary mode), 7.64 cm<sup>-1</sup>, 20.57 cm<sup>-1</sup>, and 25.18 cm<sup>-1</sup>. For  $\mathbf{1}_2\cdot\text{Cl}^-$  the five lowest vibrational frequencies were: -26.11 cm<sup>-1</sup> (imaginary mode), -21.30 cm<sup>-1</sup> (imaginary mode), -14.94 cm<sup>-1</sup> (imaginary mode), -12.17 cm<sup>-1</sup> (imaginary mode), and 16.76 cm<sup>-1</sup>. For **1**·DMSO·I<sup>-</sup>, the the five lowest vibrational frequencies were: -10.59 (imaginary mode), 22.20 cm<sup>-1</sup>, 34.25 cm<sup>-1</sup>, and 37.43 cm<sup>-1</sup>.

|                                             |              | H (Hartree,  | with BSSE)   |                          | T*S (Hartree) |
|---------------------------------------------|--------------|--------------|--------------|--------------------------|---------------|
|                                             | Gas-phase    | CPCM(DMSO)   | CPCM(THF)    | CPCM(CHCl <sub>3</sub> ) | Gas-phase     |
| 1                                           | -13989.45632 | -13989.4829  | -13989.47905 | -13989.47694             | 0.06197       |
| $1_{2(dimer)}$ •Cl <sup>-</sup>             | -28441.62156 | -28441.70284 |              |                          | 0.10100       |
| 1₂•Cl <sup>−</sup>                          | -28441.61518 | -28441.69962 |              |                          | 0.09698       |
| $1 \cdot Cl_t^-$                            | -14452.09616 | -14452.1754  | -14452.16485 | -14452.15906             | 0.06655       |
| trans- $1 \cdot Cl_b^-$                     | -14452.09553 | -14452.17517 | -14452.16474 | -14452.15896             | 0.06723       |
| 1·2Cl <sub>t</sub> <sup>−</sup>             | -14914.61425 | -14914.8571  |              |                          | 0.07361       |
| cis- <b>1</b> •Br <sub>b</sub> <sup>-</sup> | -16615.2614  | -16615.3427  | -16615.33203 | -16615.32614             | 0.06843       |
| $1 \cdot Br_t^-$                            | -16615.26435 | -16615.34283 | -16615.33239 | -16615.32659             | 0.06748       |
| trans- $1 \cdot Br_b^-$                     | -16615.26424 | -16615.34282 | -16615.33249 | -16615.32682             | 0.06817       |
| cis-1·I <sub>b</sub> -                      | -21216.71915 | -21216.79918 | -21216.78867 | -21216.78287             | 0.06932       |
| $1 \cdot I_t^-$                             | -21216.72159 | -21216.79886 | -21216.78849 | -21216.78283             | 0.06842       |
| trans- $1 \cdot I_b^-$                      | -21216.72171 | -21216.79911 | -21216.78891 | -21216.78336             | 0.06924       |
| 1·2DMSO                                     | -15099.51566 | -15099.55485 |              |                          | 0.09118       |
| <b>1</b> •DMSO•Cl <sup>−</sup>              | -15007.11828 | -15007.20682 |              |                          | 0.08140       |
| <b>1</b> •DMSO•Br <sup>−</sup>              | -17170.2873  | -17170.37459 |              |                          | 0.08246       |
| <b>1</b> •DMSO•I <sup>−</sup>               | -21771.74753 | -21771.83358 |              |                          | 0.08055       |

Table S11. Calculated enthalpy (with BSSE) and T\*S (gas-phase) in Hartree.

|                                             |              | G (Hartree, with BSSE) |              |                          |  |  |  |
|---------------------------------------------|--------------|------------------------|--------------|--------------------------|--|--|--|
|                                             | Gas-phase    | CPCM(DMSO)             | CPCM(THF)    | CPCM(CHCl <sub>3</sub> ) |  |  |  |
| 1                                           | -13989.51829 | -13989.54487           | -13989.54102 | -13989.53891             |  |  |  |
| $1_{2(dimer)}$ ·Cl <sup>-</sup>             | -28441.72256 | -28441.80385           |              |                          |  |  |  |
| $1_2 \cdot Cl^-$                            | -28441.71217 | -28441.7966            |              |                          |  |  |  |
| $1 \cdot Cl_t^-$                            | -14452.16271 | -14452.24195           | -14452.2314  | -14452.22561             |  |  |  |
| trans-1·Cl <sub>b</sub> -                   | -14452.16276 | -14452.24240           | -14452.23197 | -14452.22619             |  |  |  |
| $1 \cdot [Cl_t]_2$                          | -14914.68786 | -14914.93071           |              |                          |  |  |  |
| cis- <b>1</b> ·Br <sub>b</sub> <sup>-</sup> | -16615.32983 | -16615.41112           | -16615.40046 | -16615.39457             |  |  |  |
| $1 \cdot Br_t^-$                            | -16615.33183 | -16615.41031           | -16615.39987 | -16615.39407             |  |  |  |
| trans- $1 \cdot Br_b^-$                     | -16615.33241 | -16615.41098           | -16615.40066 | -16615.39498             |  |  |  |
| cis-1·I <sub>b</sub> -                      | -21216.78847 | -21216.8685            | -21216.85799 | -21216.85219             |  |  |  |
| $1 \cdot I_t^-$                             | -21216.79001 | -21216.86728           | -21216.85692 | -21216.85125             |  |  |  |
| trans- $1 \cdot I_b^-$                      | -21216.79095 | -21216.86835           | -21216.85815 | -21216.8526              |  |  |  |
| 1·2DMSO                                     | -15099.60684 | -15099.64603           |              |                          |  |  |  |
| <b>1</b> •DMSO•Cl <sup>−</sup>              | -15007.19967 | -15007.28821           |              |                          |  |  |  |
| <b>1</b> •DMSO•Br <sup>−</sup>              | -17170.36975 | -17170.45705           |              |                          |  |  |  |
| <b>1</b> •DMSO•I <sup>−</sup>               | -21771.82808 | -21771.91414           |              |                          |  |  |  |

Table S12. Calculated Gibbs free energy (in Hartree).

Table S13. Binding energy  $\Delta E$ ,  $\Delta H$ , T\* $\Delta S$  (gas-phase), and  $\Delta G$  (in KJ/mol). Calculated according to Equation 6 in manuscript:  $1 \cdot [DMSO]_2 + X^- \rightleftharpoons 1 \cdot DMSO \cdot X^- + DMSO$ .

|                                | Binding Energy (kJ/mol, with BSSE) |      | $\Delta H$ (kJ/mol, with BSSE) |      | $T^*\Delta S (kJ/mol)$ | $\Delta G$ (kJ/mol, v | with BSSE) |
|--------------------------------|------------------------------------|------|--------------------------------|------|------------------------|-----------------------|------------|
|                                | Gas-phase                          | DMSO | Gas-phase                      | DMSO | Gas-phase              | Gas-phase             | DMSO       |
| 1•DMSO•Cl⁻                     | -106.0                             | 39.4 | -122.0                         | 23.4 | 17.4                   | -139.5                | 6.0        |
| <b>1</b> •DMSO•Br <sup>−</sup> | -79.0                              | 44.9 | -95.2                          | 28.7 | 17.2                   | -112.3                | 11.5       |
| 1.DMSO.I-                      | -54.0                              | 50.4 | -72.4                          | 32.0 | 10.5                   | -82.9                 | 21.6       |

Table S14. Binding energy  $\Delta E$ ,  $\Delta H$ , T\* $\Delta S$  (gas-phase), and  $\Delta G$  (in KJ/mol). Calculated according to Equation 7 in manuscript:  $1 \cdot [DMSO]_2 + X^- \neq 1 \cdot X^- + 2 DMSO$ . The most favourable isomers were highlighted in yellow.

|                                        | Binding Energy (kJ/mol, with BSSE) |      | $\Delta H$ (kJ/mol, | $\Delta$ H (kJ/mol, with BSSE) |           | T* $\Delta$ S (kJ/mol) $\Delta$ G (kJ/mol, with |       |
|----------------------------------------|------------------------------------|------|---------------------|--------------------------------|-----------|-------------------------------------------------|-------|
|                                        | Gas-phase                          | DMSO | Gas-phase           | DMSO                           | Gas-phase | Gas-phase                                       | DMSO  |
| $1_{2(dimer)} \cdot Cl^{-}$            | -73.5                              | 77.2 | -106.5              | 44.2                           | 95.9      | -202.5                                          | -51.8 |
| $1_2 \cdot \mathbf{Cl}^-$              | -42.5                              | 99.9 | -81.0               | 61.4                           | 85.4      | -166.4                                          | -24.0 |
| <b>1</b> •Cl <sub>t</sub> <sup>−</sup> | -56.1                              | 74.8 | -77.4               | 53.5                           | 67.2      | -144.6                                          | -13.7 |
| trans- $1 \cdot Cl_b^-$                | -48.4                              | 81.5 | -69.7               | 60.2                           | 69.0      | -138.7                                          | -8.8  |
| $1 \cdot [Cl_t^-]_2$                   | 45.6                               | 60.8 | 27.8                | 43.1                           | 40.1      | -12.3                                           | 3.0   |
| cis-1·Br <sub>b</sub> -                | -14.0                              | 86.7 | -35.5               | 65.2                           | 69.2      | -104.7                                          | -4.0  |
| <b>1</b> •Br <sub>t</sub> <sup>−</sup> | -25.0                              | 83.1 | -46.6               | 61.5                           | 66.7      | -113.2                                          | -5.1  |
| trans- $1 \cdot Br_b^-$                | -21.4                              | 86.4 | -42.9               | 65.0                           | 68.5      | -111.3                                          | -3.5  |
| cis-1·I <sub>b</sub> -                 | 12.8                               | 94.2 | -8.6                | 72.7                           | 69.8      | -78.4                                           | 3.0   |
| $1 \cdot I_t^-$                        | 2.9                                | 91.5 | -18.5               | 70.1                           | 67.4      | -86.0                                           | 2.7   |
| trans- $1 \cdot I_b^-$                 | 6.2                                | 94.5 | -15.2               | 73.0                           | 69.6      | -84.8                                           | 3.5   |

Table S15. Binding energy  $\Delta E$  (in kJ/mol) calculated according to  $\mathbf{1} + X^- \rightleftharpoons \mathbf{1} \cdot X^-$ . The most favourable isomers are highlighted in yellow. Dispersion contribution to  $\Delta E$  was summarized, and it shows a trend of  $Cl^- < Br^- < I^-$  in terms of magnitude of such contribution. It should be noted that when implicit solvation in DMSO was modelled, the dispersion contribution of forming  $\mathbf{1} \cdot Cl^-$  counts only 26.9% of total  $\Delta E$ , whereas it contributes to 50.2% of total  $\Delta E$  towards forming  $\mathbf{1} \cdot I^-$ .

|                                              |             | Binding Energy (kJ/mol, with BSSE)     |             |                                        |             |                                        |             |                                        |
|----------------------------------------------|-------------|----------------------------------------|-------------|----------------------------------------|-------------|----------------------------------------|-------------|----------------------------------------|
|                                              | Gas         | -phase                                 | DN          | ЛSO                                    | TI          | THF                                    |             | iC13                                   |
|                                              | ΔE (kJ/mol) | Dispersion<br>Contribution<br>(kJ/mol) |
| $1 \cdot Cl_t^-$                             | -218.8      | -11.1                                  | -43.2       | -11.6                                  | -63.0       | -11.5                                  | -74.6       | -11.4                                  |
| trans- $1 \cdot Cl_b^-$                      | -211.0      | 0.0                                    | -36.5       | -0.2                                   | -56.6       | -0.3                                   | -68.2       | 0.1                                    |
| $1 \cdot [Cl_t^-]_2$                         | -117.0      | -21.2                                  | -57.2       | -29.1                                  |             |                                        |             |                                        |
| cis- <b>1</b> •Br <sub>b</sub> <sup>-</sup>  | -176.6      | -13.2                                  | -31.3       | -16.8                                  | -47.9       | -16.6                                  | -57.6       | -16.4                                  |
| $1 \cdot Br_t^-$                             | -187.7      | -12.3                                  | -35.0       | -12.4                                  | -52.2       | -12.3                                  | -62.1       | -12.3                                  |
| trans-1·Br <sub>b</sub> -                    | -184.1      | -0.7                                   | -31.6       | -1.2                                   | -49.1       | -1.1                                   | -59.3       | -0.7                                   |
| cis-1·I <sub>b</sub> -                       | -149.8      | -15.6                                  | -23.8       | -19.2                                  | -38.1       | -18.7                                  | -46.4       | -18.4                                  |
| $1 \cdot I_t^-$                              | -159.8      | -13.8                                  | -26.5       | -13.3                                  | -41.2       | -13.5                                  | -49.9       | -13.5                                  |
| trans- <b>1</b> ·I <sub>b</sub> <sup>-</sup> | -156.5      | -1.9                                   | -23.6       | -6.3                                   | -38.7       | -3.3                                   | -47.7       | -4.5                                   |

|                                             |           | $\Delta$ H (kJ/mol, with BSSE) |       |       | T*ΔS (kJ/mol) | nol) $\Delta G (kJ/mol, with BSSE)$ |       |       |       |
|---------------------------------------------|-----------|--------------------------------|-------|-------|---------------|-------------------------------------|-------|-------|-------|
|                                             | Gas-phase | DMSO                           | THF   | CHCl3 | Gas-phase     | Gas-phase                           | DMSO  | THF   | CHCl3 |
| $1_{2(dimer)} \cdot Cl^{-}$                 | -393.8    | -153.8                         |       |       | -105.9        | -287.9                              | -47.9 |       |       |
| <b>1</b> <sub>2</sub> •Cl <sup>−</sup>      | -368.3    | -136.6                         |       |       | -116.5        | -251.9                              | -20.1 |       |       |
| $1 \cdot Cl_t^-$                            | -213.7    | -38.1                          | -57.9 | -69.5 | -33.7         | -180.0                              | -4.4  | -24.3 | -35.8 |
| trans-1·Cl <sub>b</sub> -                   | -206.0    | -31.4                          | -51.6 | -63.2 | -31.9         | -174.1                              | 0.4   | -19.7 | -31.3 |
| $1 \cdot [Cl_t]_2$                          | -108.5    | -48.6                          |       |       | -60.8         | -47.7                               | 12.3  |       |       |
| cis- <b>1</b> ·Br <sub>b</sub> <sup>-</sup> | -171.8    | -26.5                          | -54.4 | -52.7 | -31.8         | -140.1                              | 5.3   | -11.3 | -21.0 |
| $1 \cdot Br_t^-$                            | -182.9    | -30.1                          | -41.8 | -57.3 | -34.3         | -148.7                              | 4.1   | -13.1 | -23.0 |
| trans- $1 \cdot Br_b^-$                     | -179.2    | -26.7                          | -36.0 | -54.4 | -32.4         | -146.7                              | 5.8   | -11.8 | -22.0 |
| cis-1·I <sub>b</sub> -                      | -145.0    | -18.9                          | -33.2 | -41.6 | -31.1         | -113.8                              | 12.2  | -2.1  | -10.4 |
| $1 \cdot I_t^-$                             | -154.9    | -21.6                          | -36.3 | -45.0 | -33.5         | -121.4                              | 11.9  | -2.8  | -11.5 |
| trans- $1 \cdot I_b^-$                      | -151.6    | -18.6                          | -33.8 | -42.8 | -31.3         | -120.2                              | 12.7  | -2.4  | -11.4 |

Table S16.  $\Delta H$ , T\* $\Delta S$  (gas-phase), and  $\Delta G$  (in kJ/mol) calculated according to  $\mathbf{1} + X^- \rightleftharpoons \mathbf{1} \cdot X^-$ . The most favourable isomers are highlighted in yellow.

#### S4 Cartesian Coordinates of Optimized Structures

In the following tables X = Cl, Br, or I.,  $X_t^-$  is used to denote that the halide is in a terminal position on one of the antimony atoms,  $X_b^-$  is used to denote that the halide is bridging between the two antimony atoms, and cis and trans refer to the relative positions of the aryl rings with respect to the Sb-O-Sb core.

#### S4.1 Gas-phase Structures

Table S17. Cartesian coordinates (in Å) of  ${\bf 1}$ 

<sup>1</sup>, Sb O Sb. Sb. O

| Atom | Х                 | У                | Z                |
|------|-------------------|------------------|------------------|
| Sb   | -2.29219321001255 | 6.94765900080427 | 3.49924328227843 |
| Sb   | -1.67144985190040 | 5.48739159904945 | 0.29129523979088 |
| 0    | -1.44138054912600 | 6.83805555954375 | 1.67950175539993 |
| 0    | -1.01867879007253 | 5.69067687946830 | 4.41998406476215 |
| 0    | -0.99635826723911 | 8.35254371261029 | 4.14067341425338 |
| 0    | -1.91092490081157 | 3.94455408165817 | 1.57401763941336 |
| 0    | -3.70156496551838 | 5.52383352827545 | 0.36317196541989 |
| С    | 0.10870459670777  | 6.36130967402165 | 4.82469918037195 |
| С    | 1.20424462639865  | 5.70212305761232 | 5.37689250054608 |
| С    | 2.31480609481515  | 6.44816791260175 | 5.78261364777608 |
| С    | 2.32752826970704  | 7.83676627101280 | 5.63724931416810 |
| С    | 1.23035510818272  | 8.50299787323496 | 5.08361270072777 |
| С    | 0.12104281328556  | 7.76486061791124 | 4.67783263582245 |
| С    | -4.09637924458603 | 4.88845839223275 | 1.50868473423748 |
| С    | -5.37452695425613 | 5.03663690686394 | 2.04646417217214 |
| С    | -5.69268879204979 | 4.38822044968559 | 3.24315119427447 |
| С    | -4.74251111565659 | 3.60618839111609 | 3.90343139457545 |
| С    | -3.45977158857019 | 3.44729147863305 | 3.37175686958999 |
| С    | -3.13860134435411 | 4.07414998915139 | 2.16639597483956 |
| Н    | 1.17625992986801  | 4.62208364269644 | 5.48178371934319 |
| Н    | 3.17195476969966  | 5.93809897156026 | 6.21221945100655 |
| Н    | 3.19459815519516  | 8.40881625514269 | 5.95405133703750 |
| Н    | 1.22313858713430  | 9.58161369515318 | 4.96236237082285 |
| Н    | -6.09650381562051 | 5.66105780813893 | 1.52984647746636 |

| Η | -6.68508833827221 | 4.50931032320916 | 3.66665696293464 |
|---|-------------------|------------------|------------------|
| Н | -4.99318010868082 | 3.12310313185634 | 4.84272365681522 |
| Н | -2.70397011426711 | 2.85357879675573 | 3.87426934415416 |

Table S18. Cartesian coordinates (in Å) of  $1_{2(\text{dimer})}$ ·Cl<sup>-</sup>



| Atom | Х                 | У                | Ζ                 |
|------|-------------------|------------------|-------------------|
| Sb   | -2.70016440183566 | 6.82374010365114 | 4.20772563205176  |
| Sb   | 0.24533863091005  | 8.69792548755019 | 4.87860481548288  |
| 0    | -1.08446818428170 | 7.87126463246635 | 3.57064038143572  |
| 0    | -3.76220665828597 | 7.20261786414817 | 2.48853965708735  |
| 0    | -2.07965243997564 | 5.22470748336532 | 3.01145896865890  |
| 0    | -0.11850281377719 | 7.03576657073786 | 6.09585256996282  |
| 0    | 1.74233324307016  | 7.47193661207795 | 4.21557592916890  |
| С    | -3.29384318501178 | 6.48392438143562 | 1.43059216909207  |
| С    | -3.64306128258986 | 6.77865410862991 | 0.11313064270854  |
| С    | -3.08422240098120 | 6.03215470600805 | -0.93080548818961 |
| С    | -2.18332690891621 | 5.00171777692435 | -0.65472096458071 |
| С    | -1.82620718437726 | 4.70229238186545 | 0.66415148735556  |
| С    | -2.37997986263881 | 5.43601068422231 | 1.71745308286426  |
| С    | 1.61038294204647  | 6.20614835027535 | 4.69616405035567  |
| С    | 2.40565250492000  | 5.15304166472587 | 4.24570552111909  |
| С    | 2.21988937724598  | 3.86899120234655 | 4.76985205984441  |
| С    | 1.24255405489031  | 3.63679472933596 | 5.73827454322788  |
| С    | 0.44074419970659  | 4.68749586896797 | 6.19674892365795  |
| С    | 0.62285462482686  | 5.97292518373726 | 5.68599379778570  |
| Н    | -4.32269160839715 | 7.60167762373236 | -0.08487820586924 |
| Н    | -3.34497830603516 | 6.27127539762164 | -1.95782135736953 |
| Н    | -1.74374606837844 | 4.43252661831473 | -1.46971083562513 |
| Н    | -1.11391403000361 | 3.91533878571471 | 0.89413979624867  |
| Н    | 3.15422485586032  | 5.34984455359613 | 3.48356528848322  |
| Н    | 2.83729605425255  | 3.04986917667455 | 4.41040727462673  |
| Н    | 1.09496883157453  | 2.63644641537870 | 6.13668468349283  |

| Η  | -0.32789960068784 | 4.52537779931167  | 6.94754185186893  |
|----|-------------------|-------------------|-------------------|
| Cl | -4.24563720374090 | 12.25424500418150 | 0.96594245070683  |
| Sb | -3.82532163078428 | 10.25170380990420 | 2.38398405607032  |
| Sb | -0.65965704145060 | 8.58344071402608  | 1.29314869798240  |
| 0  | -2.22419585366474 | 9.74078859024319  | 1.36319829788035  |
| 0  | -3.51667071599010 | 9.00725391480369  | 4.53002110318856  |
| 0  | -2.77429676006670 | 11.48342491643840 | 3.64933772302005  |
| 0  | 0.49272562588598  | 9.68266697995713  | 2.66580259135802  |
| 0  | 0.35698130075483  | 9.91026831811060  | 0.04687845432727  |
| С  | -2.76103379138700 | 9.76905802627674  | 5.33381026008405  |
| С  | -2.33968994471888 | 9.36973989230307  | 6.61499783063908  |
| С  | -1.52565258738307 | 10.19875954682990 | 7.39912268403729  |
| С  | -1.11424720633011 | 11.43498765442510 | 6.90327116820490  |
| С  | -1.52350372546781 | 11.85387701200630 | 5.63341038109130  |
| С  | -2.35535233273987 | 11.04899008613510 | 4.84455845100885  |
| С  | 1.00365795049657  | 10.88805711961010 | 0.71153750290838  |
| С  | 1.59262263543592  | 11.98651749528920 | 0.07978956807941  |
| С  | 2.26274941940128  | 12.95204913916850 | 0.83808505977376  |
| С  | 2.34620584950753  | 12.83424498618200 | 2.22583530030218  |
| С  | 1.75886765897475  | 11.74089023254400 | 2.87387780790160  |
| С  | 1.09660504390304  | 10.77964613304700 | 2.11989516277491  |
| Н  | -2.65956185505244 | 8.40398318723646  | 6.99449238181495  |
| Н  | -1.20814884163104 | 9.86175855613459  | 8.38142983564358  |
| Н  | -0.46984952626905 | 12.07697077758480 | 7.49779427794266  |
| Н  | -1.20906702934140 | 12.81028192581790 | 5.22653220529716  |
| Н  | 1.51197976120715  | 12.07217864188200 | -0.99988362196471 |
| Н  | 2.71400944004604  | 13.80516722559890 | 0.33765388719707  |
| Н  | 2.86009430269744  | 13.59182858467420 | 2.81115168417425  |
| Н  | 1.80173267457711  | 11.64025236677220 | 3.95457352360987  |

Table S19. Cartesian coordinates (in Å) of  $1_2{\cdot}Cl^-$ 



| Atom | Х                | У                | Z                |
|------|------------------|------------------|------------------|
| Sb   | -2.3282437427720 | 7.8523225963387  | 2.2234916538559  |
| Sb   | -0.8277539455902 | 4.9574680950934  | 0.8709489843861  |
| 0    | -1.1373687504507 | 6.2855962682745  | 2.2782792262746  |
| 0    | -2.2062366602567 | 8.0963375522646  | 4.2888005264284  |
| 0    | -0.7669673453830 | 9.2182472770788  | 2.3862457968194  |
| 0    | -1.0791453076964 | 6.3253575492718  | -0.6319853270255 |
| 0    | 1.1470989051413  | 5.4736786265484  | 0.5949740313377  |
| С    | -1.1536806595432 | 8.8674494176066  | 4.6915870730677  |
| С    | -0.8332217745548 | 9.0772956109329  | 6.0277563256205  |
| С    | 0.2739353873313  | 9.8716637335757  | 6.3509133192721  |
| С    | 1.0451659163495  | 10.4426834198049 | 5.3379808672814  |
| С    | 0.7246876111090  | 10.2309554009715 | 3.9928096994731  |
| С    | -0.3812071958025 | 9.4462791699822  | 3.6555807389105  |
| С    | 1.2519572323992  | 6.5688740208794  | -0.2015438605120 |
| С    | 2.4541433273479  | 7.2486891509255  | -0.3994937486102 |
| С    | 2.4948651657626  | 8.3537770343577  | -1.2564958709442 |
| С    | 1.3395979788818  | 8.7824593433989  | -1.9113824949793 |
| С    | 0.1277909400184  | 8.1101279037657  | -1.7175358984531 |
| С    | 0.0791225926626  | 7.0096475137467  | -0.8637058384887 |
| Н    | -1.4370262477310 | 8.6144914472599  | 6.8032452856499  |
| Н    | 0.5299205545045  | 10.0353745693037 | 7.3941538271348  |
| Н    | 1.9073532681428  | 11.0544334137492 | 5.5916033482709  |
| Н    | 1.3195479599302  | 10.6631901880179 | 3.1935795629473  |
| Н    | 3.3417986310015  | 6.9067122325733  | 0.1248818226757  |
| Н    | 3.4327001548687  | 8.8836338675623  | -1.4025938227148 |
| Н    | 1.3727132070014  | 9.6475698835899  | -2.5685087208159 |
| Н    | -0.7845557192677 | 8.4335587770656  | -2.2104413009311 |
| Cl   | -3.9097370331536 | 4.9747659772539  | 0.5141817552553  |
| Sb   | -4.2437066030169 | 7.0469031959355  | 5.2921270822348  |
| Sb   | -4.5445561314415 | 4.5551050523097  | 3.0192571461284  |
| 0    | -3.9780555401521 | 6.4614026347907  | 3.3448134994010  |
| 0    | -5.0514076378389 | 8.8206349166827  | 4.6386340180832  |
| 0    | -6.2307659361114 | 6.4680470504850  | 5.1265415046461  |
| 0    | -2.7359211508701 | 3.5954712219515  | 3.0476165262236  |
| 0    | -4.1135930677136 | 4.4638607663930  | 5.1708195974850  |
| С    | -6.3442931274136 | 8.6725096057370  | 4.2520624178478  |
| С    | -7.0593880945167 | 9.6924019804833  | 3.6243099798604  |
| С    | -8.3931032831501 | 9.4815520105253  | 3.2556555054697  |
| С    | -9.0091865971115 | 8.2556178383605  | 3.5097464887118  |
| С    | -8.2989469431030 | 7.2251691752363  | 4.1369893678173  |
| С    | -6.9703940448983 | 7.4268199261701  | 4.5118615168554  |
| С    | -2.8357647566916 | 4.0545854129086  | 5.3801412396375  |

| С | -2.2197900331552  | 4.0922355221120  | 6.6322511683977 |
|---|-------------------|------------------|-----------------|
| С | -0.8946615543125  | 3.6642777977788  | 6.7703085321627 |
| С | -0.1875002024939  | 3.2003505106825  | 5.6614978773629 |
| С | -0.7947447370937  | 3.1637545321112  | 4.4019173780995 |
| С | -2.1119140979245  | 3.5951363851479  | 4.2555792473769 |
| Η | -6.5618715109164  | 10.6382734052011 | 3.4296866377385 |
| Н | -8.9453669632382  | 10.2785855437787 | 2.7645923983969 |
| Н | -10.0434890434867 | 8.0931362886727  | 3.2176765098255 |
| Н | -8.7611464832607  | 6.2631659457753  | 4.3409921922340 |
| Н | -2.7875240830075  | 4.4515177071951  | 7.4863219499148 |
| Н | -0.4180357694592  | 3.6998631451835  | 7.7460925936438 |
| Н | 0.8436138197357   | 2.8751191333768  | 5.7676236376698 |
| Н | -0.2532408776084  | 2.8099632538208  | 3.5290570255886 |
|   |                   |                  |                 |

Table S20. Cartesian coordinates (in Å) of trans- $1 \cdot Cl_{b^-}$ 



| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Sb   | -0.20709856637274 | 2.18635901897626  | -1.14692779028355 |
| Sb   | -0.42380371720554 | -0.94046003051393 | -2.61839130288166 |
| 0    | -1.21474585804956 | 0.81024289161218  | -2.14782048751698 |
| 0    | 0.87104253572895  | 2.91490007620332  | -2.72811120901474 |
| 0    | -1.51042358690969 | 3.68857602822274  | -1.78256268900152 |
| 0    | -0.81822262363307 | -1.89045373843053 | -0.84837496450215 |
| 0    | -2.30290831788791 | -1.73110862704275 | -3.06948173711440 |
| С    | 0.17047231725351  | 3.83331560672015  | -3.44280623223562 |
| С    | 0.66406184690007  | 4.38416143716321  | -4.62520021743376 |
| С    | -0.09695127178989 | 5.32884630699542  | -5.32568052771147 |
| С    | -1.34646543034249 | 5.72016770820588  | -4.84367400051453 |
| С    | -1.85017027412078 | 5.17272497759952  | -3.65741047170905 |
| С    | -1.09911941298842 | 4.23366957937050  | -2.94593299191971 |
| С    | -2.87238076712785 | -2.29161693407331 | -1.98238577664296 |
| С    | -4.17821884028269 | -2.78835098027852 | -1.97448149152267 |
| С    | -4.69399113445326 | -3.38638160675427 | -0.81818003430351 |
| С    | -3.91193466547226 | -3.48489361221931 | 0.33309561614104  |
| С    | -2.60325712077577 | -2.98546533510188 | 0.34072916132830  |
| С    | -2.08092778634891 | -2.38821842542646 | -0.80632210180870 |
| Н    | 1.63740348279890  | 4.06263367533018  | -4.98592004722967 |
| Н    | 0.29111704448304  | 5.75253067752546  | -6.24886862373406 |

| Н  | -1.93803892733412 | 6.45110231534222  | -5.39021690089015 |
|----|-------------------|-------------------|-------------------|
| Н  | -2.82276754151505 | 5.46454032882916  | -3.27018530648009 |
| Н  | -4.77514401940788 | -2.70139119360456 | -2.87842287528781 |
| Н  | -5.71115767518430 | -3.77128036760996 | -0.82177352350072 |
| Н  | -4.31509271337477 | -3.94664878500539 | 1.23122910097788  |
| Н  | -1.97962901633148 | -3.04778921629082 | 1.22843807325514  |
| Cl | 1.77342003974396  | 0.14304622425543  | -1.16742964846289 |

|              |            |             | . 0              |                |
|--------------|------------|-------------|------------------|----------------|
| Table CO1    | Contrain   | acandinataa | (: A)            | $(1 - 1)^{-1}$ |
| Table 5/1    | Carlesian. | coordinates | $(\Pi A)$        |                |
| 1 4010 0 21. | Cartoblan  | coorannaces | <b>( * * * *</b> |                |

Sł ci

| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Н    | -5.07849298808623 | 6.78040782623898  | 0.18865819472314  |
| Н    | -6.52682435972731 | 8.69685187620940  | 0.87309985591968  |
| Н    | 5.34813307475428  | 9.28576026680458  | 4.43905932149725  |
| С    | -4.70564269272033 | 7.54681194179434  | 0.86265228940369  |
| Н    | 6.08898675040908  | 10.12194492411850 | 2.21491872533715  |
| С    | -5.50847688195464 | 8.62606284918691  | 1.24817059735442  |
| 0    | -2.60914728258721 | 6.40300045689045  | 0.96164641875367  |
| С    | 4.61748979753934  | 9.49223975094085  | 3.66070583450289  |
| С    | -3.39338853793246 | 7.43747412201064  | 1.33313469611862  |
| С    | 5.03194563942214  | 9.96047306627127  | 2.41362589624175  |
| Н    | 2.91392957445833  | 8.90923997185413  | 4.87863889072963  |
| С    | 3.25648717199419  | 9.27926290972254  | 3.91588649800746  |
| С    | -5.00584639197604 | 9.60609040867567  | 2.10372268490771  |
| С    | 4.09294798242026  | 10.22112789538450 | 1.40811767044776  |
| Н    | 4.40018068774669  | 10.58391640003140 | 0.43081250747939  |
| Н    | -5.62742441615121 | 10.44693350789180 | 2.40163316959216  |
| Sb   | -0.67082013524087 | 6.35839001891942  | 1.64941002197167  |
| С    | -2.88322003885236 | 8.42880870280142  | 2.21484410636160  |
| С    | 2.31418245660247  | 9.53428386580539  | 2.92005590899020  |
| С    | -3.69389610919916 | 9.50761990620730  | 2.58144805932991  |
| С    | 2.73174668496836  | 10.01930694128510 | 1.65086439904364  |
| 0    | 0.15968882640693  | 7.83911945371675  | 0.62562395405978  |
| 0    | -1.61092491541664 | 8.28722852890280  | 2.64811756771983  |
| 0    | 0.98513645457984  | 9.33713382069760  | 3.11749822821791  |
| 0    | 1.77273737906489  | 10.28375581679230 | 0.74147411075677  |
| Н    | -3.28304127574509 | 10.25649463957250 | 3.25429461897257  |
| Cl   | -0.18389528891458 | 4.72150707464421  | -0.16400235964620 |

Table S22. Cartesian coordinates (in Å) of  $1 \cdot [Cl_t^-]_2$ 



| Atom | х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Н    | -5.20855581037853 | 8.27945221453744  | -0.23877363507226 |
| Н    | -6.70596317144713 | 7.43038361248179  | 1.58205095081456  |
| Н    | 5.81184792817018  | 8.44087169379978  | 1.80525188721715  |
| С    | -4.79295591376689 | 7.90818478541054  | 0.69570331638094  |
| Н    | 6.00885986164000  | 10.88550333834000 | 2.25940024188628  |
| С    | -5.62578360871990 | 7.43276169429093  | 1.72141368461132  |
| 0    | -2.58374523404322 | 8.36355531774246  | -0.11362092496083 |
| С    | 4.94064718957936  | 9.01218036575318  | 2.12414106342029  |
| С    | -3.40521623552286 | 7.92546695051983  | 0.85637528547348  |
| С    | 5.05159005435918  | 10.37938938763130 | 2.37613690789476  |
| Н    | 3.59925403436757  | 7.30253745414706  | 2.07026166390060  |
| С    | 3.70342004417524  | 8.36749376959941  | 2.26823376717758  |
| С    | -5.06714427557816 | 6.97585781782765  | 2.91485293802063  |
| С    | 3.92138765480260  | 11.11164948334240 | 2.77379461154129  |
| Н    | 3.98354531372358  | 12.18092089024060 | 2.96498712778003  |
| Н    | -5.70907193635849 | 6.61601079267595  | 3.71828582016978  |
| Sb   | -0.56384021629293 | 8.41760978331801  | 0.38978798877542  |
| С    | -2.82459355402358 | 7.45043328290585  | 2.07595010811831  |
| С    | 2.56352044068006  | 9.07811889008635  | 2.67452840465088  |
| С    | -3.67579971492523 | 6.98894511626279  | 3.09183667990800  |
| С    | 2.68284896622537  | 10.48295951583390 | 2.92412067729121  |
| 0    | -0.58390190015989 | 10.11674430417570 | 1.41468295413448  |
| 0    | -1.50106374177999 | 7.46603757320197  | 2.17688923481435  |
| 0    | 1.37261682028762  | 8.51856330582051  | 2.85023102766817  |
| 0    | 1.58773061961901  | 11.15725864182080 | 3.31620810542171  |
| Н    | -3.22476743663628 | 6.64103007357666  | 4.01905099725567  |
| Cl   | -0.29419503406061 | 9.66200355418060  | -1.90626568096983 |
| Sb   | -0.17333454078668 | 10.04683041091650 | 3.35482780094823  |
| Cl   | -1.31774960314940 | 12.36538397955950 | 3.81095999572781  |

Table S23. Cartesian coordinates (in Å) of cis- $1 \cdot Br_{b^-}$ 

|      |                   | Br                |                   |
|------|-------------------|-------------------|-------------------|
|      |                   | O-Sb_Sb_O         |                   |
|      | 1-                |                   |                   |
|      |                   |                   | $\searrow$        |
| Atom | Х                 | У                 | Z                 |
| Н    | -3.72418731875984 | 9.47017353565355  | 3.99765405062128  |
| 0    | -2.42271304532325 | 7.18931431593770  | 4.45545794743644  |
| 0    | 0.41214819120107  | 6.88321182691590  | 4.99022650425877  |
| С    | -3.16630316173820 | 9.08358304525410  | 3.14891345922891  |
| Н    | 2.45453660871539  | 11.38002038198450 | 4.37903543580175  |
| 0    | 2.62084087500177  | 8.74954052351438  | 4.77956676575127  |
| Sb   | -1.01110590552388 | 5.66387718009730  | 4.34966325026210  |
| С    | -2.44530978947683 | 7.89765189005621  | 3.30180583345980  |
| Sb   | 2.33978204320927  | 6.69764658579676  | 4.57368500965100  |
| Н    | -3.70709006988339 | 10.68436917005700 | 1.81171620632770  |
| С    | 2.32324312967919  | 10.77232187925950 | 3.48771604517604  |
| С    | -3.15102707893460 | 9.75625769962359  | 1.92127205574320  |
| С    | 2.38380887095884  | 9.38239126354861  | 3.60630535504512  |
| Br   | 1.40297354012040  | 3.98052380372295  | 3.58483240880104  |
| С    | -1.70258309082099 | 7.38445391311037  | 2.20725641865467  |
| 0    | -1.01810395747881 | 6.22321722279971  | 2.39380085465355  |
| Н    | 2.02991268165609  | 12.43927920273770 | 2.15435461565140  |
| С    | 2.08519702665462  | 11.35643293810390 | 2.23797722918353  |
| С    | 2.20233755440844  | 8.57370863274862  | 2.45479516220933  |
| С    | -2.41521550483940 | 9.25022383950907  | 0.84915904663405  |
| 0    | 2.27269575387824  | 7.22382584347688  | 2.61022544862971  |
| С    | -1.68829911889392 | 8.06281769553741  | 0.99022448005418  |
| Н    | -2.38855572129491 | 9.78515741739609  | -0.09680302152438 |
| С    | 1.90320769605637  | 10.55689243096280 | 1.10906160540531  |
| С    | 1.96085156696387  | 9.16267801637790  | 1.21533411528937  |
| Н    | -1.09247608365692 | 7.66285175047850  | 0.17539102929644  |
| Н    | 1.69801614023820  | 11.01230349430260 | 0.14353163498909  |
| Н    | 1.80172216788320  | 8.52135950103602  | 0.35370005330934  |

Table S24. Cartesian coordinates (in Å) of trans- $1 \cdot Br_{b}^{-}$ 



| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Sb   | -0.16113781235664 | 2.19487560047257  | -1.13199242715334 |
| Sb   | -0.38679329044739 | -0.96376728771646 | -2.60472379713175 |
| 0    | -1.14778049843141 | 0.79641829933324  | -2.12222678666718 |
| 0    | 0.89339253341272  | 2.93501512101597  | -2.72251145288904 |
| 0    | -1.49525435196321 | 3.66799463809625  | -1.76404558985627 |
| 0    | -0.80649464123660 | -1.91811413243978 | -0.84403839606573 |
| 0    | -2.27458284810611 | -1.71597362759587 | -3.07225113415395 |
| С    | 0.16892018651910  | 3.83318390921635  | -3.43970993974966 |
| С    | 0.64198733175460  | 4.38353780290215  | -4.63061541968719 |
| С    | -0.14261415320366 | 5.30870170288365  | -5.33079064426127 |
| С    | -1.39473520687143 | 5.68094289113144  | -4.84026298174316 |
| С    | -1.87783390165511 | 5.13356537987884  | -3.64554174951983 |
| С    | -1.10309827810951 | 4.21359486478727  | -2.93484886797542 |
| С    | -2.86190090840612 | -2.27130229572620 | -1.99082348504890 |
| С    | -4.17706820271712 | -2.74230725100726 | -1.99456413363931 |
| С    | -4.71239951008924 | -3.33357857825629 | -0.84383466972908 |
| С    | -3.94047557028771 | -3.45102981576283 | 0.31260806622717  |
| С    | -2.62228975124798 | -2.97806555112145 | 0.33127906301180  |
| С    | -2.08047303855389 | -2.38812900094310 | -0.81045213106314 |
| Н    | 1.61788251974708  | 4.07726071240472  | -4.99740933970483 |
| Н    | 0.22920086720933  | 5.73244009213105  | -6.26056466515110 |
| Н    | -2.00445885158663 | 6.39663010220223  | -5.38692190598248 |
| Н    | -2.85218300767228 | 5.41017247256645  | -3.25178700634994 |
| Н    | -4.76572670068904 | -2.64022398230339 | -2.90225082377450 |
| Н    | -5.73693372526584 | -3.69805764095434 | -0.85563519750573 |
| Н    | -4.35920269298324 | -3.90735859957936 | 1.20631970044322  |
| Н    | -2.00610923942647 | -3.05586502118208 | 1.22284244110266  |
| Br   | 2.01323074266382  | 0.09219719556626  | -1.08831572598201 |

Table S25. Cartesian coordinates (in Å) of  $\mathbf{1} \cdot \mathbf{Br}_t^-$ 

Sb  $\cap$ / Br

| Atom | X                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Н    | -4.86863947841569 | 8.46141900376298  | -0.27158881268204 |
| Н    | -6.47443920138192 | 7.19771569522281  | 1.16817292740721  |
| Н    | 5.21827161246416  | 8.12727695260089  | 1.33936338591260  |
| С    | -4.53239576447776 | 7.96404631438286  | 0.63425033624284  |
| Н    | 5.84017593178353  | 10.49869293917750 | 1.78343030189648  |
| С    | -5.42455039461298 | 7.25337836212642  | 1.44626673344438  |
| 0    | -2.26155350651235 | 8.67790310156168  | 0.22543482107354  |
| С    | 4.50261283530920  | 8.80598932125042  | 1.79682852731732  |
| С    | -3.18093445081232 | 8.04204208093379  | 0.98003172312901  |
| С    | 4.84991256635580  | 10.13370722770360 | 2.04567581387111  |
| Н    | 2.93576103791157  | 7.31141215719048  | 1.95745700424964  |
| С    | 3.22598305794159  | 8.34382002151143  | 2.13671591308918  |
| С    | -4.97342119983026 | 6.62442734080844  | 2.60702736842856  |
| С    | 3.92635633933929  | 11.00675689815310 | 2.63082095772542  |
| Н    | 4.17724078119088  | 12.04630877492870 | 2.82286044937937  |
| Н    | -5.66834683872784 | 6.07654915601556  | 3.23875843197076  |
| Sb   | -0.40972797413083 | 8.75552676355741  | 1.18753770606606  |
| С    | -2.72701979058448 | 7.40770445494494  | 2.16781147800235  |
| С    | 2.29626064392266  | 9.20147854825411  | 2.73258274073539  |
| С    | -3.62238848044978 | 6.70025259883934  | 2.96920811131780  |
| С    | 2.64841227273037  | 10.55639779397610 | 2.97553071947521  |
| 0    | -0.87651168081820 | 10.46122971562240 | 2.09621232180456  |
| 0    | -1.40924032974419 | 7.51530594064954  | 2.48050628506656  |
| 0    | 1.05046914131735  | 8.80585832696495  | 3.07817021784638  |
| 0    | 1.74857466089668  | 11.39042063066930 | 3.54077212245713  |
| Н    | -3.25229781435153 | 6.22277075859397  | 3.87256337993650  |
| Sb   | -0.13386998311035 | 10.65518048205400 | 3.92489830349105  |
| Br   | -0.97317399320257 | 13.18633863854280 | 4.10719073134565  |

Table S26. Cartesian coordinates (in Å) of cis- $1 \cdot I_{b}^{-}$ 



| Atom | Х                 | У                | Z                |
|------|-------------------|------------------|------------------|
| Sb   | -2.05445321597209 | 6.72081577252523 | 4.89433412310626 |
| Sb   | -1.80761210151570 | 5.66351174031326 | 1.50785842696388 |
| 0    | -2.43850612547443 | 6.85238331001516 | 2.95757899089824 |
| 0    | -0.08795607450995 | 7.22600094633450 | 4.83799357115828 |
| 0    | -2.24897759369123 | 8.77573750222967 | 5.12363751049714 |
| 0    | -1.91790140995723 | 7.20786310212890 | 0.12477104908018 |

| 0 | 0.14586198567676  | 6.22115638284684  | 1.51255148243055  |
|---|-------------------|-------------------|-------------------|
| С | 0.07945927905689  | 8.57283219716898  | 4.73396500667026  |
| С | 1.32577997472391  | 9.14594839763498  | 4.49026777084032  |
| С | 1.44266027254885  | 10.53724664307630 | 4.39903135306312  |
| С | 0.31826867323861  | 11.34956645992450 | 4.55048225708391  |
| С | -0.93801888189970 | 10.78117144078090 | 4.79131274369091  |
| С | -1.06678383987000 | 9.39423968120583  | 4.88386383059211  |
| С | 0.32900765552288  | 7.39857302871319  | 0.85353499171772  |
| С | 1.54248591397284  | 8.08248034582723  | 0.88576186198998  |
| С | 1.67899914189113  | 9.28494739564851  | 0.18370711583835  |
| С | 0.60672731354280  | 9.80017648021066  | -0.54555532058870 |
| С | -0.61707782537523 | 9.12152916405923  | -0.57912518658908 |
| С | -0.76520422857256 | 7.92147816616360  | 0.11847812492010  |
| Η | 2.18397956597390  | 8.49457855154058  | 4.35583166723472  |
| Η | 2.41331284508541  | 10.98033855896530 | 4.19132870590761  |
| Η | 0.41064775503423  | 12.42994832840310 | 4.46887319511091  |
| Η | -1.82578097621772 | 11.39846826470380 | 4.89922476210304  |
| Η | 2.35761929878145  | 7.67472732041198  | 1.47567986798396  |
| Η | 2.62155407137352  | 9.82476043693364  | 0.22528919653456  |
| Η | 0.71305299792488  | 10.74004146504120 | -1.08198662342209 |
| Н | -1.46603557258009 | 9.51476354578250  | -1.13185019915744 |
| Ι | -0.97680589871214 | 3.69080037141014  | 4.05901972434125  |
|   |                   |                   |                   |

Table S27. Cartesian coordinates (in Å) of trans- $1 \cdot I_{b}^{-}$ 

| O Sb Sb O |
|-----------|
| 0 0       |
|           |

|      | -                 |                   | $\checkmark$      |
|------|-------------------|-------------------|-------------------|
| Atom | Х                 | У                 | Z                 |
| Sb   | -2.29465821224350 | 8.72975595605499  | 3.38902704114751  |
| Sb   | -0.14515821575342 | 6.51491782084896  | 1.67586278740177  |
| 0    | -0.66533222282999 | 8.29659774086046  | 2.35649924861149  |
| 0    | -1.57087425440417 | 8.19429975932591  | 5.22512554286713  |
| 0    | -1.52092942245748 | 10.56634124578720 | 3.98524585637044  |
| 0    | -1.24718308941417 | 6.57680694281803  | -0.04509591873608 |
| 0    | 1.28114587846543  | 7.33411929845439  | 0.40247469598480  |
| С    | -0.85583171355711 | 9.19707379295349  | 5.79953921500708  |
| С    | -0.17607896876205 | 9.02506138729467  | 7.00521938181231  |
| С    | 0.54198664303682  | 10.09266020513620 | 7.55798165946610  |
| С    | 0.57940792585320  | 11.32644776567260 | 6.90696609832729  |
| С    | -0.09999541208192 | 11.50818556037060 | 5.69656482440533  |
| С    | -0.82272831169157 | 10.45210668664680 | 5.13711268827225  |

| С | 0.74671514761032  | 7.63310168070162  | -0.80265402967178 |
|---|-------------------|-------------------|-------------------|
| С | 1.45492031503275  | 8.29993339828318  | -1.80500629987957 |
| С | 0.84703253885529  | 8.55269251478775  | -3.04044129788995 |
| С | -0.46668506150835 | 8.14545639329634  | -3.27609981058802 |
| С | -1.18859212582484 | 7.48008878068436  | -2.27765550558884 |
| С | -0.59091797123248 | 7.22401121599825  | -1.04381255368016 |
| Η | -0.21425521913465 | 8.05554317770041  | 7.49405947774590  |
| Η | 1.07309396562736  | 9.95268972886658  | 8.49631879805653  |
| Η | 1.14083672343755  | 12.15319954655600 | 7.33571019422740  |
| Η | -0.07901658290954 | 12.46133378557190 | 5.17524879437927  |
| Н | 2.47590234884471  | 8.61283810398544  | -1.60382986756435 |
| Н | 1.40486310299282  | 9.07271203815535  | -3.81565985440416 |
| Н | -0.93794971563264 | 8.34550610955298  | -4.23530664482303 |
| Н | -2.21363471125621 | 7.15838422518084  | -2.43978667338240 |
| Ι | -2.97668237906208 | 5.50236213845428  | 3.07351115212577  |

Table S28. Cartesian coordinates (in Å) of  $1{\cdot}I_t^-$ 



| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Н    | -5.35291077342856 | 8.40002119066737  | -0.02297093615676 |
| Н    | -6.49468415267483 | 7.81472129463816  | 2.12048958880766  |
| Н    | 5.89221539162863  | 8.47520752007016  | 2.55287699059730  |
| С    | -4.78019528145536 | 8.09183994480919  | 0.84722485269109  |
| Н    | 5.84936688972536  | 10.95480385634120 | 2.75860379269321  |
| С    | -5.41058194888074 | 7.76515051129345  | 2.05272302313616  |
| 0    | -2.76469750078090 | 8.34298183879349  | -0.41731144285878 |
| С    | 4.94392559954425  | 9.00174503968114  | 2.62681279877831  |
| С    | -3.38750028963599 | 8.03309433280099  | 0.74115167327397  |
| С    | 4.91912702581566  | 10.39198284873420 | 2.74174748333282  |
| Н    | 3.74438817949054  | 7.19326641675922  | 2.50355195215879  |
| С    | 3.74645610341214  | 8.27571752588276  | 2.59907240244625  |
| С    | -4.65499802327910 | 7.38289990276604  | 3.16126284974647  |
| С    | 3.69907935924030  | 11.07269910671730 | 2.83108436988560  |
| Н    | 3.66239395740798  | 12.15518640585970 | 2.91837440270615  |
| Н    | -5.14384472069507 | 7.13242082732310  | 4.09945145410950  |
| Sb   | -0.70919148189247 | 8.31496854926876  | -0.42569522144944 |
| С    | -2.61721082734820 | 7.63553492965757  | 1.86584057704631  |

| С  | 2.52651651717224  | 8.94558173387647  | 2.68515975310409  |
|----|-------------------|-------------------|-------------------|
| С  | -3.25993518952983 | 7.32193071145627  | 3.06711264751567  |
| С  | 2.49776304592022  | 10.36009234146320 | 2.81145062470153  |
| 0  | -0.26256722794226 | 9.90177458923148  | 0.67453997217469  |
| 0  | -1.27208181529497 | 7.59961721581185  | 1.72311943550576  |
| 0  | 1.33804045798468  | 8.28672659482560  | 2.65558543450863  |
| 0  | 1.28891788134203  | 10.94905997056720 | 2.93099923145206  |
| Η  | -2.65145360539467 | 7.02157994542128  | 3.91659295641370  |
| Ι  | -0.79770323301475 | 9.90584311494051  | -2.90192607706145 |
| Sb | -0.25294433743634 | 9.57889174034214  | 2.63765541074068  |

Table S29. Cartesian coordinates (in Å) of  $1 \cdot (DMSO)_2$ 

Sb `Oʻ

| Atom | Х                | У                | Z               |
|------|------------------|------------------|-----------------|
| Н    | -8.0694326716870 | 7.8176304494023  | 0.8854128195121 |
| Н    | -7.4166908567885 | 10.2155573341102 | 0.9886677666474 |
| С    | -7.0223383267827 | 8.0948644874598  | 0.9690480340572 |
| С    | -6.6565907630286 | 9.4402034588275  | 1.0282676251518 |
| Н    | -6.0202787380334 | 8.9302930484560  | 4.5002926391251 |
| Н    | -4.4217377555012 | 9.0524532159746  | 3.6975642587133 |
| Н    | -6.3134753195946 | 6.0425858421930  | 0.9522840623683 |
| С    | -6.0452406230127 | 7.0937968321242  | 1.0068923847741 |
| С    | -5.3081557549943 | 9.7992923169332  | 1.1381394398210 |
| Н    | -5.0044164331672 | 10.8409381144004 | 1.1940592981784 |
| С    | -4.9837145917924 | 9.2563427301288  | 4.6055185620060 |
| Н    | -4.9188285148258 | 10.3152056323344 | 4.8691124954426 |
| С    | -4.6962588958338 | 7.4397992070630  | 1.1056483864310 |
| С    | -4.3284534810591 | 8.8078236896132  | 1.1891819606006 |
| S    | -4.1923484360878 | 8.2830743718670  | 5.9166707449955 |
| Н    | -5.1441905118810 | 9.8290423618890  | 7.4963231470013 |
| 0    | -4.6097128694027 | 6.8151716814246  | 5.6589724419180 |
| Н    | -6.3170546249571 | 8.5453377696420  | 7.0155869182364 |
| С    | -5.2839951745511 | 8.7641541839838  | 7.2927076561645 |
| 0    | -3.7028601498084 | 6.5171575158802  | 1.1460617062738 |
| 0    | -3.0077930091276 | 9.1072204860725  | 1.3471988520291 |
| Н    | -4.9837389499723 | 8.1686399436497  | 8.1560959929050 |

| Sb | -3.3587291035591 | 5.4899093589202  | 4.0448855049414 |
|----|------------------|------------------|-----------------|
| 0  | -2.6512140191733 | 7.3009980690559  | 3.5999642624787 |
| Sb | -1.9035302906337 | 7.4288659007255  | 1.7367230817197 |
| 0  | -1.7208451507947 | 4.7766672290106  | 2.9309306397059 |
| 0  | -2.0259840661842 | 5.2350279101927  | 5.5690280907066 |
| Н  | -0.2099399187618 | 11.7810849210248 | 3.6660481104928 |
| 0  | -0.4624510082198 | 9.0021157800843  | 2.8884723044346 |
| С  | -0.6040746275618 | 4.7661961037512  | 3.7085044192405 |
| Н  | -0.1097228738809 | 11.4796934256270 | 5.4315459909188 |
| С  | -0.7675747907793 | 4.9918049252142  | 5.0979623067581 |
| С  | 0.0694527266125  | 11.0617739995831 | 4.4373657245709 |
| S  | -0.9998891096361 | 9.6058795626465  | 4.2078352899475 |
| Н  | 0.7830908534590  | 4.3903139107702  | 2.1195046842868 |
| С  | 0.6732833071560  | 4.5560982814030  | 3.1873292378991 |
| Н  | -0.8195725158955 | 7.6051428934961  | 5.4474159244784 |
| Н  | 1.1102750072425  | 10.7543942849259 | 4.3177784664661 |
| С  | 0.3419953428744  | 4.9760241363890  | 5.9427423006780 |
| Н  | 0.1944708207023  | 5.1382981518597  | 7.0068145635969 |
| С  | -0.3061377741057 | 8.5618111824398  | 5.5219826584990 |
| Н  | -0.5110570293262 | 9.0337930686277  | 6.4865208715458 |
| С  | 1.7821540887340  | 4.5523506430716  | 4.0402645188913 |
| С  | 1.6175877931427  | 4.7568908152382  | 5.4105358517784 |
| Н  | 0.7651219634038  | 8.4429704283654  | 5.3495235117957 |
| Н  | 2.7732778621167  | 4.3844834184846  | 3.6287369110505 |
| Н  | 2.4791869649574  | 4.7440709256631  | 6.0721675807664 |
|    |                  |                  |                 |

Table S30. Cartesian coordinates (in Å) of  $1{\cdot}DMSO{\cdot}Cl_t^-$ 



| Atom | Х                 | у                | Z                |
|------|-------------------|------------------|------------------|
| Н    | -2.27986254358398 | 3.86824803468776 | 8.50148730824800 |
| Н    | -4.57311250303506 | 4.81156230842210 | 8.73210852901879 |
| С    | -2.75937945976927 | 4.35468801686052 | 7.65520847813047 |
| С    | -4.04359648680403 | 4.88288589636105 | 7.78502410484352 |
| Н    | -1.07588629413657 | 4.04777778400749 | 6.31870892727443 |
| С    | -2.07843790203052 | 4.45136987583277 | 6.43592229566914 |

| С  | -4.65529024633810 | 5.51577691726686  | 6.69531836682849  |
|----|-------------------|-------------------|-------------------|
| Н  | -5.65273558183688 | 5.94010055405071  | 6.77729906632130  |
| С  | -2.67955344870792 | 5.07047586892921  | 5.33336172013077  |
| Η  | -4.30459275420636 | 9.25333899511628  | 6.64567428514854  |
| С  | -3.98638830203512 | 5.61389384250311  | 5.47417624703617  |
| 0  | -1.57649973323919 | 9.15785002823208  | 5.97185802077777  |
| Η  | -4.30971795284705 | 8.46360338966835  | 5.02787986782543  |
| 0  | -2.07178835466969 | 5.20614009132492  | 4.14358760335247  |
| Η  | -2.88866536604887 | 11.21249041364180 | 7.31232944079929  |
| С  | -4.21825810885078 | 9.40523918582361  | 5.56710514086974  |
| Sb | -0.49599208646234 | 7.38697216868131  | 4.43886568969186  |
| 0  | -4.55086303980477 | 6.23221277864051  | 4.40970603843231  |
| Η  | -4.96005556128263 | 10.11415885944840 | 5.19004377176581  |
| S  | -2.56042463110928 | 10.06369012705310 | 5.20802318233735  |
| С  | -2.67032863275359 | 11.53592351808480 | 6.29172562288419  |
| 0  | -2.14819162447937 | 7.88380464310040  | 3.43743345961578  |
| Н  | -1.69635618050519 | 12.02656813517440 | 6.24681955271378  |
| 0  | 0.41109901134119  | 6.60593845990300  | 2.73070511824166  |
| 0  | 0.48988329251779  | 9.07653668754463  | 3.76893221190797  |
| Sb | -3.33282674687502 | 6.45681835960061  | 2.75490505992219  |
| Η  | -3.44950366901723 | 12.20211115572220 | 5.91073021784546  |
| С  | 0.99566033204884  | 7.57655505567854  | 1.99584536422849  |
| С  | 1.03730251681731  | 8.88791803566716  | 2.54533629540006  |
| Cl | -5.01484274475326 | 8.25373016297673  | 2.06975685926741  |
| Η  | 1.51546240289419  | 6.33028797909609  | 0.33346056830138  |
| С  | 1.55957921268980  | 7.33706388711050  | 0.74061898683855  |
| Η  | 1.65976222384440  | 10.91730188469720 | 2.26232507400737  |
| С  | 1.64181233174320  | 9.92111306432989  | 1.82781988387118  |
| С  | 2.16621085305096  | 8.38151901168635  | 0.03104406839054  |
| С  | 2.20759106221362  | 9.66679349593811  | 0.57149254076752  |
| Η  | 2.60131409476419  | 8.18478448517213  | -0.94609717393567 |
| Н  | 2.67508662125661  | 10.47835984196480 | 0.01876420523045  |

Table S31. Cartesian coordinates (in Å) of  $1 \cdot DMSO \cdot Br_{t}^{-}$ 



| Atom | Х                 | У                 | Ζ                |
|------|-------------------|-------------------|------------------|
| Н    | -5.70856728833876 | 8.81573209294467  | 7.20204444090381 |
| Н    | -4.37133908085714 | 7.91807882193387  | 7.99422076832929 |
| Н    | -4.25842706360266 | 9.69904895599677  | 7.81476775653587 |
| С    | -4.62927069164958 | 8.77294173078346  | 7.36652523709539 |
| Н    | -5.55895423857586 | 9.92511337309574  | 4.96892238039604 |
| Н    | -4.06554921923397 | 10.86491321857700 | 5.39421666935565 |
| S    | -3.78860898729461 | 8.51096673374740  | 5.76208293768967 |
| С    | -4.46841201693484 | 9.96913968427475  | 4.91481291607360 |
| 0    | -4.54945776801420 | 7.30410319740007  | 5.17730807999294 |
| Н    | -7.78573563053408 | 6.61080289992553  | 0.27397256337295 |
| Н    | -8.21815709448655 | 8.98526086953162  | 0.88744903734579 |
| С    | -6.96099097028345 | 7.26374075083932  | 0.54980055411389 |
| С    | -7.20378805992245 | 8.59356954455844  | 0.89323127209405 |
| Н    | -4.12227473267200 | 9.92679405084088  | 3.88244933015006 |
| Н    | -5.44890682111990 | 5.72483892003783  | 0.30222539127574 |
| С    | -5.65499014812568 | 6.76007656089660  | 0.56208182083224 |
| С    | -6.14053541854247 | 9.43029512281581  | 1.25527359509580 |
| Н    | -6.30847077514161 | 10.46807514885140 | 1.53157788805232 |
| Sb   | -3.15953454298464 | 6.00720973663355  | 3.46996734069221 |
| 0    | -2.19887173475842 | 5.45829922047844  | 5.21072902863707 |
| С    | -4.57987817788260 | 7.58594009264942  | 0.91129742408429 |
| С    | -4.83440869354326 | 8.93893970386690  | 1.26502461137064 |
| 0    | -2.26710663699895 | 7.79228291467918  | 3.46278868469849 |
| Н    | -0.38488369084516 | 4.79410771796320  | 7.02522048158354 |
| 0    | -3.30764583941411 | 7.15633463073774  | 0.96035725001353 |
| 0    | -3.78700116516797 | 9.72303053356305  | 1.61745324121161 |
| С    | -0.96554409833345 | 4.95181341079639  | 4.96993941957846 |
| С    | -0.07899724059125 | 4.62364350579322  | 5.99616320985959 |
| 0    | -1.48563435802122 | 5.06240349560526  | 2.65778755380877 |
| Sb   | -1.96807191943482 | 8.75283032046831  | 1.76344624400751 |
| Br   | -1.19368449284450 | 10.97143649183570 | 3.19805044266152 |
| С    | -0.58832400891614 | 4.74319560008218  | 3.61487405728526 |
| С    | 1.17955583656674  | 4.08845903938315  | 5.69195852334480 |

| Н | 1.86535308513043 | 3.83715901148608 | 6.49762442323409 |
|---|------------------|------------------|------------------|
| С | 0.67124116511095 | 4.21330857129263 | 3.32483730157117 |
| С | 1.55214592033527 | 3.88511780438269 | 4.36319647371910 |
| Н | 0.94638368598264 | 4.06412844035719 | 2.28395491991220 |
| Н | 2.53067891194027 | 3.47356608089447 | 4.12664073002104 |

Table S32. Cartesian coordinates (in Å) of  $1 \cdot DMSO \cdot I_t^-$ 



| Atom | Х                 | У                 | Z                |
|------|-------------------|-------------------|------------------|
| Н    | -6.64467739088130 | 6.13876072748118  | 7.42858419552785 |
| Н    | -7.44153973365540 | 6.33854230501485  | 5.82752938324741 |
| Н    | -7.10400817702008 | 4.68778556405525  | 6.45414641259357 |
| С    | -6.76369798328930 | 5.72635888831650  | 6.42382610334800 |
| Н    | -4.23930297732502 | 5.39738055760942  | 7.73080499495936 |
| Н    | -4.50270158184452 | 3.85946497322963  | 6.79595106250416 |
| S    | -5.16429544977734 | 5.78937512421953  | 5.55014476741729 |
| С    | -4.15702071104170 | 4.89488610871787  | 6.76372765989689 |
| 0    | -4.71067974707077 | 7.26273357059908  | 5.72012016788605 |
| Н    | -0.05850125597299 | 10.72237450095560 | 6.00387360154264 |
| Н    | -0.49761607802325 | 9.05686399644758  | 7.80054787614350 |
| С    | -0.39778506349534 | 9.72097693118868  | 5.74928685194608 |
| С    | -0.64258534595333 | 8.78739244938500  | 6.75730126299040 |
| Н    | -3.14132464245374 | 4.92978147104013  | 6.36778866966716 |
| Н    | -0.41123823171942 | 10.09562351002770 | 3.60995152068874 |
| С    | -0.59309631606133 | 9.37910562868596  | 4.40662640201593 |
| С    | -1.08956341980735 | 7.50146341143650  | 6.43108354940495 |
| Н    | -1.29623207145719 | 6.76685209081287  | 7.20430894764059 |
| Sb   | -4.50908313257938 | 8.44885628088452  | 3.60988126379894 |
| 0    | -6.50864258294509 | 7.95151062272907  | 3.68567796516287 |
| С    | -1.03195956404143 | 8.09422693336935  | 4.06381127167212 |
| С    | -1.28557578512980 | 7.14946076483347  | 5.09622248988412 |
| 0    | -3.98162472897677 | 6.70309180002638  | 2.84461089414274 |
| Н    | -9.01621917972780 | 7.31173440666227  | 3.10165249302236 |
| Ο    | -1.24341779785724 | 7.69855266804436  | 2.79848403746619 |
| Ο    | -1.72006369421743 | 5.91755446899520  | 4.73062946335475 |
| С    | -7.14837196968107 | 8.18094085435947  | 2.51126063423512 |

| С  | -8.47608077251514  | 7.81148573486494 | 2.30145742542875  |
|----|--------------------|------------------|-------------------|
| 0  | -5.14639960670351  | 9.18402027209576 | 1.75223243333312  |
| Sb | -2.23073672738065  | 5.79626107269498 | 2.73212702453205  |
| Ι  | -3.37690410864502  | 2.98519601410229 | 3.55994129630768  |
| С  | -6.41657036689677  | 8.83066849847539 | 1.48078031693043  |
| С  | -9.09003278269312  | 8.07925596064516 | 1.07101348264944  |
| Η  | -10.12431018908880 | 7.78461638129668 | 0.91112735023778  |
| С  | -7.04019483616928  | 9.08791564695468 | 0.25661855017206  |
| С  | -8.37433204772980  | 8.71372366112577 | 0.05538767904414  |
| Η  | -6.46882565959490  | 9.58003803558213 | -0.52591112775311 |
| Η  | -8.84994429057754  | 8.91815111303476 | -0.90102437304214 |
|    |                    |                  |                   |

## S4.2 Structures with solvation model (CPCM) in DMSO

Table S33. Cartesian coordinates (in Å) of  ${\bf 1}$ 

Sbiiiiiiio ΄Sb、 `o′

| Atom | Х                 | У                | Ζ                |
|------|-------------------|------------------|------------------|
| Sb   | -2.30799149365049 | 6.95939800442239 | 3.46064287737762 |
| Sb   | -1.67604828891690 | 5.50086439664015 | 0.23769239976731 |
| 0    | -1.40886204282388 | 6.82322103782416 | 1.67725692743367 |
| 0    | -1.02712752928258 | 5.70575024465328 | 4.42350440692660 |
| 0    | -0.96579801257198 | 8.36394262944143 | 4.08376930547352 |
| 0    | -1.91844215037308 | 3.95541542119578 | 1.54836179047164 |
| 0    | -3.71500019185498 | 5.56731387760236 | 0.38986068756312 |
| С    | 0.09810906874809  | 6.37076300627246 | 4.82882611367371 |
| С    | 1.18131817857951  | 5.71221361816239 | 5.41017734455370 |
| С    | 2.29767533697649  | 6.45234649869695 | 5.81826806375403 |
| С    | 2.32934118229434  | 7.83804386402771 | 5.64478537570005 |
| С    | 1.24526571477645  | 8.50468404844095 | 5.06084836749180 |
| С    | 0.13014341320362  | 7.77314685319037 | 4.65245344663878 |
| С    | -4.09867262701596 | 4.91232914610274 | 1.52538321742064 |
| С    | -5.37144402061844 | 5.05581473516502 | 2.08147864277242 |
| С    | -5.68525636666043 | 4.37705346500492 | 3.26299852103659 |
| С    | -4.73543281445276 | 3.56676969067050 | 3.89119916815025 |
| С    | -3.45834795606547 | 3.41437564223168 | 3.34227938823575 |
| С    | -3.13898231842439 | 4.07535834341812 | 2.15276567677347 |
| Н    | 1.14246082537289  | 4.63439549331615 | 5.53928326781696 |

| Н | 3.14177899063598  | 5.93949229607758 | 6.27033432369395 |
|---|-------------------|------------------|------------------|
| Η | 3.19810240951519  | 8.40790570045293 | 5.96172953040827 |
| Н | 1.25718468851138  | 9.58159300557423 | 4.91950108973468 |
| Н | -6.09482525766482 | 5.70180074346974 | 1.59322123931738 |
| Н | -6.67234507229760 | 4.49651108419440 | 3.69939265303246 |
| Н | -4.98123795624826 | 3.05682277272154 | 4.81771440543383 |
| Н | -2.70870470969197 | 2.79222238102998 | 3.82085676934781 |

| Table S34. Cartesian coordinates ( | in Å | ) of $1_{2(\text{dimer})}$ | ·Cl |
|------------------------------------|------|----------------------------|-----|
|------------------------------------|------|----------------------------|-----|



| Atom | Х                 | У                | Z                 |
|------|-------------------|------------------|-------------------|
| Sb   | -2.63944992215019 | 6.80723584324987 | 4.23570545759108  |
| Sb   | 0.31424014339038  | 8.68323720879954 | 4.92650599998040  |
| 0    | -1.01657742536459 | 7.86052806478533 | 3.59649446220839  |
| 0    | -3.68815491256470 | 7.19491011883104 | 2.50824456084170  |
| 0    | -2.01368705279319 | 5.20966148972522 | 3.05718920530339  |
| 0    | -0.09919000346174 | 7.02499205114772 | 6.12887137306950  |
| 0    | 1.77523754988046  | 7.41075246732888 | 4.25123389087428  |
| С    | -3.21604150073582 | 6.46468892855735 | 1.45524502897005  |
| С    | -3.56288113095173 | 6.74738779968930 | 0.13388817814534  |
| С    | -3.00749988944541 | 5.98435460951921 | -0.90023695192122 |
| С    | -2.11370380363797 | 4.94971302480154 | -0.61121231973957 |
| С    | -1.76107221306570 | 4.66254493216433 | 0.71234287255072  |
| С    | -2.31166475370361 | 5.41481112871005 | 1.75388252092544  |
| С    | 1.57790740657249  | 6.13736237080189 | 4.69926502605142  |
| С    | 2.31208615523008  | 5.05538226971482 | 4.21371855720813  |
| С    | 2.05565157480840  | 3.76860278542006 | 4.70336178831636  |
| С    | 1.06975219923376  | 3.56418157174974 | 5.67115025235062  |
| С    | 0.32947002920432  | 4.64538506017807 | 6.16430733764951  |
| С    | 0.58448702840421  | 5.93155726517578 | 5.68709383285091  |
| Н    | -4.24422571267190 | 7.56644085845967 | -0.07510068059180 |
| Н    | -3.26925996463772 | 6.20907375719713 | -1.92999717296301 |
| Н    | -1.68007201075192 | 4.36515030817300 | -1.41773474507106 |
| Н    | -1.05879469477835 | 3.86768423885900 | 0.94711764026833  |

| Н  | 3.07032193140767  | 5.22582810354406  | 3.45422543015065  |
|----|-------------------|-------------------|-------------------|
| Н  | 2.62704818268620  | 2.92762867258400  | 4.32025869833740  |
| Н  | 0.87001173482872  | 2.56371812867139  | 6.04473618396280  |
| Η  | -0.44344313574745 | 4.50263947526015  | 6.91473335708178  |
| Cl | -3.96278349942681 | 12.29098100349130 | 0.83467372827704  |
| Sb | -3.69866088793357 | 10.20752895668350 | 2.41648933156376  |
| Sb | -0.54340596914349 | 8.48982627049562  | 1.34836735178204  |
| 0  | -2.12764505110078 | 9.64127595230738  | 1.37895261497767  |
| 0  | -3.43823952457827 | 9.10841340725587  | 4.46307294993855  |
| 0  | -2.59655110673992 | 11.51161578780640 | 3.57432041468569  |
| 0  | 0.60875342635696  | 9.63191062283024  | 2.68014793268538  |
| 0  | 0.38289424046343  | 9.88529860358301  | 0.06842711316606  |
| С  | -2.66950463869670 | 9.84846056421194  | 5.28788659562793  |
| С  | -2.30235025853700 | 9.43766986547593  | 6.57955081639686  |
| С  | -1.47832966557694 | 10.24830692920660 | 7.37412698315248  |
| С  | -1.01002808704011 | 11.46536422214710 | 6.87796624160351  |
| С  | -1.37043582343822 | 11.88978608878700 | 5.59398624728682  |
| С  | -2.20735656670170 | 11.10127522865720 | 4.79674531899727  |
| С  | 0.95000882622590  | 10.91401561131320 | 0.73598737832411  |
| С  | 1.41009800649403  | 12.07704715711540 | 0.11041695323577  |
| С  | 1.99536929650013  | 13.09557762269550 | 0.87320121655423  |
| С  | 2.12107334039254  | 12.96395061339530 | 2.25784376463522  |
| С  | 1.66341854128902  | 11.80478606260060 | 2.89881372147940  |
| С  | 1.08555673368961  | 10.79275491231540 | 2.14002938572510  |
| Η  | -2.67645395551344 | 8.49250941090522  | 6.96111271018254  |
| Η  | -1.20157899228990 | 9.91522526246394  | 8.36952079800592  |
| Η  | -0.35987510071391 | 12.08904142726930 | 7.48423353485655  |
| Η  | -1.01022732336460 | 12.83407565857250 | 5.19660240986938  |
| Η  | 1.30521570171141  | 12.17458659974320 | -0.96679915476205 |
| Η  | 2.34952183250044  | 13.99594379330390 | 0.37850130131157  |
| Η  | 2.56979061514109  | 13.75936031382340 | 2.84588948092501  |
| Н  | 1.74495008084609  | 11.69145651844480 | 3.97575807511463  |

Table S35. Cartesian coordinates (in Å) of  $1_2 \cdot Cl^-$ 



| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Sb   | -3.16361477746532 | 7.91371392896627  | 1.84198201603901  |
| Sb   | -0.47326720711135 | 5.84208701842923  | 2.80785606581719  |
| 0    | -1.83200205016132 | 6.50464863185769  | 1.49564154230611  |
| 0    | -2.32370691700140 | 8.16319772632099  | 3.78194038720709  |
| 0    | -1.85854735598942 | 9.56405466758256  | 1.59227904333359  |
| 0    | 0.62050888952767  | 5.06955657956934  | 1.25632071192414  |
| 0    | 0.81709613462063  | 7.41116744671664  | 2.53891968997055  |
| С    | -1.45379734644626 | 9.21545387301480  | 3.89546779162242  |
| С    | -0.82518331080802 | 9.54419184300188  | 5.09040568376472  |
| С    | 0.09558049744791  | 10.60003911290630 | 5.10982161755443  |
| С    | 0.37061997327250  | 11.30927792891000 | 3.93828026677593  |
| С    | -0.26943773039928 | 10.98027969019550 | 2.73814435314783  |
| С    | -1.19268951521965 | 9.93098349185057  | 2.70474252764312  |
| С    | 1.51000515027213  | 7.27583002830575  | 1.37655891848647  |
| С    | 2.30148480396999  | 8.29820074440027  | 0.85202734840040  |
| С    | 3.00886224363926  | 8.08328287615900  | -0.33794659813709 |
| С    | 2.92103259896587  | 6.85635997616161  | -0.99990432862729 |
| С    | 2.12265397346477  | 5.82710072307237  | -0.48317106233858 |
| С    | 1.41361510744656  | 6.03467427020593  | 0.70001891456616  |
| Н    | -1.04114078645754 | 8.97181363653915  | 5.98830720952151  |
| Н    | 0.59395731945336  | 10.86026083220750 | 6.03914994907610  |
| Н    | 1.08825411348037  | 12.12529035415830 | 3.95373003020721  |
| Н    | -0.05618210398030 | 11.52483781723000 | 1.82241650412341  |
| Н    | 2.35271083557841  | 9.24770908590794  | 1.37717876773456  |
| Н    | 3.62415169181477  | 8.88041433406348  | -0.74600828444982 |
| Н    | 3.46985129100070  | 6.69355541782110  | -1.92327797016510 |
| Н    | 2.04269691974762  | 4.87007053362872  | -0.99136421009925 |
| Cl   | -5.81024351296995 | 5.65939468298589  | 0.77586550362695  |
| Sb   | -3.89722851711625 | 7.07360994199185  | 5.36355447434312  |
| Sb   | -5.37148362874200 | 4.86607779652753  | 3.22327626225605  |
| 0    | -4.29100452809345 | 6.58805419281376  | 3.40893604068686  |
| 0    | -4.79814444257215 | 8.90473598121488  | 5.12630534829603  |
| 0 | -5.87625638624349  | 6.53410950215892  | 5.73950986477802 |
|---|--------------------|-------------------|------------------|
| 0 | -3.87075791773413  | 3.75775848376644  | 2.36580758641529 |
| 0 | -4.08706649320355  | 4.38754301900469  | 4.96787533668938 |
| С | -6.15595062339370  | 8.80073104196855  | 5.08863521037298 |
| С | -6.97816306304093  | 9.87464380530444  | 4.74562218757517 |
| С | -8.36801516088131  | 9.70166818103438  | 4.71912605416571 |
| С | -8.93179552695648  | 8.46221825943328  | 5.02994793545648 |
| С | -8.11272706591196  | 7.37959097138484  | 5.37501445485855 |
| С | -6.72814713812611  | 7.54667970556762  | 5.41117253333909 |
| С | -2.92602939465969  | 3.84527550862541  | 4.55281396235348 |
| С | -1.84141554717644  | 3.61026274260702  | 5.40536861878515 |
| С | -0.67073825856749  | 3.02103926299651  | 4.91241818911810 |
| С | -0.56756812322187  | 2.68091579385238  | 3.56241211560254 |
| С | -1.63727982223028  | 2.93352521472586  | 2.68680172504075 |
| С | -2.81762579353100  | 3.50679189083482  | 3.17526038651423 |
| Н | -6.52656930499047  | 10.83172348769950 | 4.49925991262658 |
| Н | -9.00559507388285  | 10.53906367503430 | 4.44983698242099 |
| Н | -10.00976538840100 | 8.33023936557421  | 5.00333293955786 |
| Н | -8.53617530618404  | 6.40842857868116  | 5.61615356689177 |
| Н | -1.92952392292827  | 3.88414796672861  | 6.45297841174421 |
| Н | 0.16171815025259   | 2.83939714475177  | 5.58530722742272 |
| Н | 0.34238124450545   | 2.23287686300224  | 3.17607271820853 |
| Η | -1.56984189666157  | 2.67954437054516  | 1.63331756544851 |
|   |                    |                   |                  |

Table S36. Cartesian coordinates (in Å) of trans- $1 \cdot Cl_{b}^{-}$ 



| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Sb   | -0.17326573139890 | 2.33519065774553  | -0.94030211729463 |
| Sb   | -0.43332021626149 | -0.74749549987570 | -2.59703255492059 |
| 0    | -1.22073806190139 | 0.93091061702343  | -1.88175276413269 |
| 0    | 0.88305582282996  | 2.93805036900000  | -2.59437665941721 |
| 0    | -1.48261089617269 | 3.78810567157736  | -1.66133527298687 |
| 0    | -0.76812804559510 | -1.88093823370424 | -0.92073666497954 |
| 0    | -2.34425401749844 | -1.44431588210244 | -3.04374718960394 |
| С    | 0.15884115640651  | 3.79125416423014  | -3.37469825046932 |
| С    | 0.62033781542607  | 4.23085018841694  | -4.61600412635632 |
| С    | -0.16275956445947 | 5.10894395739862  | -5.37701358980076 |
| С    | -1.40017093054089 | 5.54379738130155  | -4.89741138887593 |
| С    | -1.87003578644371 | 5.10637111585311  | -3.65230971252158 |
| С    | -1.09562090807544 | 4.23317856867838  | -2.88418071006101 |

| -2.88061311157779 | -2.11940515913196                                                                                                                                                                                                                                                                                                    | -1.99453350872841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -4.19691261386057 | -2.58745019118045                                                                                                                                                                                                                                                                                                    | -1.98836925069411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -4.67924753678820 | -3.29652732934009                                                                                                                                                                                                                                                                                                    | -0.88056722274466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -3.85225802369919 | -3.53512365259637                                                                                                                                                                                                                                                                                                    | 0.21911399313044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -2.53204286057801 | -3.06580806247748                                                                                                                                                                                                                                                                                                    | 0.22479176066710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -2.04470196893312 | -2.35865831966627                                                                                                                                                                                                                                                                                                    | -0.87504959220923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.58423177063490  | 3.88258158569607                                                                                                                                                                                                                                                                                                     | -4.97734871418469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.19904244134156  | 5.44734834374395                                                                                                                                                                                                                                                                                                     | -6.34396376671113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -2.00675093530076 | 6.22427602381172                                                                                                                                                                                                                                                                                                     | -5.48882419194206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -2.83082648421978 | 5.43883843373872                                                                                                                                                                                                                                                                                                     | -3.26827171441782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -4.83081784099250 | -2.39670681716745                                                                                                                                                                                                                                                                                                    | -2.85026496792801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -5.70305879668682 | -3.66038495813345                                                                                                                                                                                                                                                                                                    | -0.88308181090569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -4.22798250631625 | -4.08504668625315                                                                                                                                                                                                                                                                                                    | 1.07750781764696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -1.87776142767858 | -3.24276488287364                                                                                                                                                                                                                                                                                                    | 1.07421130396070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.82343725834014  | 0.21368659628719                                                                                                                                                                                                                                                                                                     | -0.99751813351895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | -2.88061311157779<br>-4.19691261386057<br>-4.67924753678820<br>-3.85225802369919<br>-2.53204286057801<br>-2.04470196893312<br>1.58423177063490<br>0.19904244134156<br>-2.00675093530076<br>-2.83082648421978<br>-4.83081784099250<br>-5.70305879668682<br>-4.22798250631625<br>-1.87776142767858<br>1.82343725834014 | -2.88061311157779-2.11940515913196-4.19691261386057-2.58745019118045-4.67924753678820-3.29652732934009-3.85225802369919-3.53512365259637-2.53204286057801-3.06580806247748-2.04470196893312-2.358658319666271.584231770634903.882581585696070.199042441341565.44734834374395-2.006750935300766.22427602381172-2.830826484219785.43883843373872-4.83081784099250-2.39670681716745-5.70305879668682-3.66038495813345-4.22798250631625-4.08504668625315-1.87776142767858-3.242764882873641.823437258340140.21368659628719 |

Table S37. Cartesian coordinates (in Å) of  $1{\cdot}{\rm Cl_{t}^{-}}$ 

Ο, -0 Sb Sbο. O ·cí

| Atom | Х                 | У                 | Z                |
|------|-------------------|-------------------|------------------|
| Н    | -4.99466479264376 | 6.75285646128800  | 0.14901195792032 |
| Н    | -6.50258042728659 | 8.62937287551385  | 0.79703108677674 |
| Н    | 5.34532663497877  | 9.14242463289765  | 4.36954037069900 |
| С    | -4.65579848547391 | 7.52303176786229  | 0.83669901151614 |
| Н    | 6.08132515408444  | 9.95987191220024  | 2.13560088476593 |
| С    | -5.49602901777295 | 8.58111528292746  | 1.20338377284432 |
| 0    | -2.52275094550273 | 6.43394709578502  | 1.00332915674755 |
| С    | 4.61064749295335  | 9.39567488626163  | 3.61024089934698 |
| С    | -3.35910189919730 | 7.44797301245413  | 1.35260803274040 |
| С    | 5.02282227621818  | 9.85306496079276  | 2.35696645948286 |
| Н    | 2.91069324355043  | 8.89747614600038  | 4.86633655283128 |
| С    | 3.24602972582851  | 9.25614666206539  | 3.89680254082289 |
| С    | -5.04427545289003 | 9.56791846198827  | 2.08166094892329 |
| С    | 4.07702458279303  | 10.17683370435580 | 1.37539359720694 |
| Н    | 4.38643706159163  | 10.53553516745470 | 0.39715449660198 |
| Н    | -5.69506046531427 | 10.39085061208850 | 2.36349909751303 |
| Sb   | -0.62546427144118 | 6.49609931640538  | 1.79435478582821 |
| С    | -2.90384754850626 | 8.44198614488993  | 2.25354860968874 |
| С    | 2.29865044050381  | 9.57516390155326  | 2.92362818497436 |

| С  | -3.74698248622456 | 9.50020008552221  | 2.60360012503682  |
|----|-------------------|-------------------|-------------------|
| С  | 2.71366996234366  | 10.04545123960810 | 1.65178421392088  |
| 0  | 0.14439748226707  | 7.96364852312562  | 0.68991850362958  |
| 0  | -1.63295444144581 | 8.33063859613007  | 2.72582895665941  |
| 0  | 0.95978048833526  | 9.45031312104502  | 3.14918579913723  |
| 0  | 1.74610481049211  | 10.36624966453080 | 0.75624246023814  |
| Н  | -3.37794605363836 | 10.26001802847970 | 3.28769350577149  |
| Cl | -0.01982392806895 | 4.84777558133750  | -0.09718872641479 |
| Sb | -0.13862214053352 | 9.79703215543606  | 1.44699971479029  |

Table S38. Cartesian coordinates (in Å) of  $\mathbf{1} \cdot [Cl_t^-]_2$ 

\_



| Atom | Х                 | У                 | Z                 |  |
|------|-------------------|-------------------|-------------------|--|
| Н    | -4.94341401277590 | 8.38900375736471  | -0.28463160921652 |  |
| Н    | -6.53146359371219 | 7.84609174101379  | 1.56302167038972  |  |
| Н    | 5.64555085193281  | 8.59120452923655  | 1.55035507905890  |  |
| С    | -4.57605057807500 | 8.02495788903882  | 0.67172589327820  |  |
| Н    | 5.70355884742603  | 11.03936901857920 | 2.00946185828751  |  |
| С    | -5.46269083525526 | 7.72007837522595  | 1.71421860763991  |  |
| 0    | -2.30827449457336 | 8.15819338254556  | -0.12880474741668 |  |
| С    | 4.77087339312040  | 9.09295259064445  | 1.95608439890228  |  |
| С    | -3.20079149082235 | 7.86809079053720  | 0.85524897202479  |  |
| С    | 4.80367877665002  | 10.46492652841170 | 2.21228886066343  |  |
| Н    | 3.57035847230879  | 7.28561909255940  | 2.02028750766075  |  |
| С    | 3.60887290300583  | 8.35427529279742  | 2.21695088428638  |  |
| С    | -4.97355144956750 | 7.26269221020363  | 2.93914520886947  |  |
| С    | 3.67199513155853  | 11.11165187817640 | 2.72911271958808  |  |
| Н    | 3.68176111355804  | 12.18065861194880 | 2.92688548622528  |  |
| Н    | -5.65943310625409 | 7.03247557967980  | 3.75024131957322  |  |
| Sb   | -0.34401599367825 | 8.14331772291083  | 0.51891358604382  |  |
| С    | -2.69961949935884 | 7.39091355831285  | 2.09660053338488  |  |
| С    | 2.47578890305878  | 8.98508352169829  | 2.74224617828622  |  |
| С    | -3.59502422785710 | 7.10128052649506  | 3.13213472031168  |  |
| С    | 2.50978916937955  | 10.38375920432640 | 2.99200246113984  |  |
| 0    | -0.51897863821342 | 9.86453809273847  | 1.51166036341477  |  |
| 0    | -1.36445749663162 | 7.24656486498214  | 2.21763274618924  |  |
| 0    | 1.33275698267573  | 8.32763840994314  | 3.02344899118291  |  |
| 0    | 1.39102813633424  | 10.97448477325710 | 3.49025151864354  |  |

| Η  | -3.20138458548355 | 6.74743473997814  | 4.08192147534954  |
|----|-------------------|-------------------|-------------------|
| Cl | 0.08624060755262  | 9.63050298300286  | -1.70302464102815 |
| Sb | -0.26102001374898 | 9.72977810729554  | 3.48589212118931  |
| Cl | -1.64249627255395 | 12.05660022709540 | 3.68003083607770  |

| Table S39. Cartesian coordinat | tes (in Å) of cis- $1 \cdot \mathbf{Br}_{\mathbf{b}}^{-}$ |
|--------------------------------|-----------------------------------------------------------|
|--------------------------------|-----------------------------------------------------------|

Br O Ó

| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Н    | -3.50704073303143 | 9.60634396921354  | 4.01027238366206  |
| Ο    | -2.34081105904797 | 7.24774923324687  | 4.47412859638234  |
| 0    | 0.43334554834595  | 6.82395782637500  | 4.98935341359602  |
| С    | -2.97294289300844 | 9.18304979705340  | 3.16348555682300  |
| Н    | 2.21616301210610  | 11.36500792604440 | 4.37272615154125  |
| Ο    | 2.52973535014780  | 8.74420119408466  | 4.78216495143291  |
| Sb   | -1.03068823582536 | 5.63427735722054  | 4.37161797471187  |
| С    | -2.32600341076593 | 7.95424450760274  | 3.31066591784526  |
| Sb   | 2.37178063775782  | 6.67883786828932  | 4.58653753216973  |
| Н    | -3.42655098121524 | 10.80878982888780 | 1.82429268318590  |
| С    | 2.11625815493854  | 10.74592875980280 | 3.48489146404157  |
| С    | -2.92446709759447 | 9.85112940332171  | 1.93277674864979  |
| С    | 2.25824663498528  | 9.36150716026482  | 3.59988160475254  |
| Br   | 1.42190020638009  | 3.91475492497104  | 3.50189310502727  |
| С    | -1.62470921507526 | 7.39382115766691  | 2.21518791395188  |
| Ο    | -1.00815384623954 | 6.19121708474777  | 2.40499609593113  |
| Н    | 1.73375314043112  | 12.39307618204360 | 2.14976709677811  |
| С    | 1.84672675551306  | 11.31547580674540 | 2.23346527794989  |
| С    | 2.12636315219808  | 8.54365949703200  | 2.45109558468786  |
| С    | -2.23272801967960 | 9.29496633721252  | 0.85534041989264  |
| Ο    | 2.27239880911362  | 7.19616924466313  | 2.61133135678835  |
| С    | -1.58134067715556 | 8.06395130778717  | 0.99403782320957  |
| Н    | -2.18569982302444 | 9.82038092670217  | -0.09445342251428 |
| С    | 1.71859881839478  | 10.50602879559230 | 1.10333160454300  |
| С    | 1.85856463047248  | 9.11739944647812  | 1.20962523823179  |
| Н    | -1.02549979376960 | 7.62756625974217  | 0.16937141070377  |
| Н    | 1.49696956460519  | 10.94830681971420 | 0.13603274875246  |
| Н    | 1.74413537004294  | 8.47428637749333  | 0.34204176727233  |

Table S40. Cartesian coordinates (in Å) of trans- $1 \cdot Br_b^-$ 

| , <sup>B</sup> | r,   |
|----------------|------|
| O''Sb          | Sb 0 |
| 0,00,000       |      |
|                |      |

| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Sb   | -0.11362038326539 | 2.37623826494948  | -0.90138838983219 |
| Sb   | -0.40109762030064 | -0.72749429968922 | -2.56465000285449 |
| 0    | -1.15838136428757 | 0.94129267532462  | -1.79852310476350 |
| 0    | 0.90323066082057  | 2.94953388923601  | -2.58904997732323 |
| 0    | -1.44863108771979 | 3.80114511074773  | -1.62140194640988 |
| 0    | -0.75575503476516 | -1.89706615029282 | -0.91825333885995 |
| 0    | -2.31886381410132 | -1.37861858803413 | -3.03246620057494 |
| С    | 0.15406104873181  | 3.77884931271165  | -3.37177085963785 |
| С    | 0.58371182546469  | 4.19397142324978  | -4.63279488197612 |
| С    | -0.22376927934850 | 5.04878336653888  | -5.39456640413917 |
| С    | -1.45338200083853 | 5.48501715916274  | -4.89650659558091 |
| С    | -1.89130892907288 | 5.07220559475632  | -3.63153640051666 |
| С    | -1.09226307303188 | 4.22213692056929  | -2.86308632420590 |
| С    | -2.86986004583871 | -2.07068082846111 | -2.00092019463873 |
| С    | -4.19411137269277 | -2.51517000993183 | -2.01033631721752 |
| С    | -4.69243120068886 | -3.24061113424012 | -0.92051294548977 |
| С    | -3.87352374691502 | -3.51893251478778 | 0.17593304591555  |
| С    | -2.54518595575311 | -3.07401023840904 | 0.19648818730433  |
| С    | -2.04189838903212 | -2.35105495480427 | -0.88568566135317 |
| Н    | 1.54184317479601  | 3.84496343256171  | -5.00837547066050 |
| Н    | 0.11302370764256  | 5.36821252688713  | -6.37688541062526 |
| Н    | -2.07881600357188 | 6.14721678995647  | -5.48898296123098 |
| Н    | -2.84574106231942 | 5.40564190827781  | -3.23290474360001 |
| Н    | -4.82154202012665 | -2.29285176652915 | -2.86933554492723 |
| Н    | -5.72263732581936 | -3.58563663904612 | -0.93414099777562 |
| Н    | -4.26210605434075 | -4.08137759792011 | 1.02036352776882  |
| Н    | -1.89694003181622 | -3.28227477857275 | 1.04336434293829  |
| Br   | 2.06106337819094  | 0.17332912578881  | -0.88514342973337 |

Table S41. Cartesian coordinates (in Å) of  ${\bf 1}{\cdot}{\bf Br}_t^-$ 

О, Sb O  $\sim$ Sb / Br

| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Н    | -4.87116123600249 | 8.53619442646070  | -0.24163614100326 |
| Н    | -6.48643594429206 | 7.34348950955470  | 1.23917825258293  |
| Н    | 5.26711710709918  | 8.17912467181768  | 1.37107181777402  |
| С    | -4.52848665080139 | 8.02602576927445  | 0.65478298763788  |
| Н    | 5.80770275380721  | 10.57742510301680 | 1.77439580647243  |
| С    | -5.42931981120612 | 7.35308208789687  | 1.49044899112257  |
| 0    | -2.23785524988439 | 8.64826436708828  | 0.18653978653060  |
| С    | 4.53002495980712  | 8.83875526807164  | 1.82030847509971  |
| С    | -3.16708882461274 | 8.04004185426904  | 0.96798494008485  |
| С    | 4.83223333915167  | 10.18313982052520 | 2.04564183192945  |
| Н    | 3.01885355894628  | 7.29120293282944  | 2.00233168694126  |
| С    | 3.27245877318149  | 8.33431152952207  | 2.17236480721119  |
| С    | -4.97449311352771 | 6.69907775730356  | 2.63732900460257  |
| С    | 3.88110956643913  | 11.03488553926040 | 2.61974606110746  |
| Н    | 4.10313003231016  | 12.08410430806550 | 2.79470373321800  |
| Н    | -5.67489095862378 | 6.17871982883871  | 3.28468599108882  |
| Sb   | -0.37032026554793 | 8.65417754975596  | 1.10491682068350  |
| С    | -2.70935139701239 | 7.38117680675210  | 2.13694897246361  |
| С    | 2.32008957716443  | 9.17360523173673  | 2.75627225827367  |
| С    | -3.61181296253355 | 6.71130295488579  | 2.96341408205983  |
| С    | 2.62366225135829  | 10.53935010976270 | 2.97449274214085  |
| 0    | -0.85599167156538 | 10.34835316690250 | 2.06172391737333  |
| 0    | -1.37421554821609 | 7.42871551206876  | 2.41195274592057  |
| 0    | 1.07925929324265  | 8.73915567083084  | 3.10951274854984  |
| 0    | 1.68021719557825  | 11.34658159091450 | 3.53104798321545  |
| Н    | -3.24364786779406 | 6.20981765302562  | 3.85445593494148  |
| Sb   | -0.14163397074405 | 10.47479656864150 | 3.91597833691317  |
| Br   | -1.10763293572169 | 13.07503241092770 | 4.03389542506422  |

Table S42. Cartesian coordinates (in Å) of cis- $1 \cdot I_{b}^{-}$ 

|      | Г            |
|------|--------------|
| 0-Sb | Sb-O         |
|      | °            |
|      | $\checkmark$ |

| Х                 | У                                                                                                                                                   | Z                                                                                                                                                                                                                                        |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -2.05773131205918 | 6.69982408946925                                                                                                                                    | 4.93166478817029                                                                                                                                                                                                                         |
| -1.83755876107805 | 5.64646844101170                                                                                                                                    | 1.49257378141062                                                                                                                                                                                                                         |
| -2.46191404404075 | 6.78551551005308                                                                                                                                    | 2.99146461168631                                                                                                                                                                                                                         |
| -0.08296991780714 | 7.20243899694881                                                                                                                                    | 4.81665787432694                                                                                                                                                                                                                         |
| -2.25012116700934 | 8.76215861236776                                                                                                                                    | 5.04300271043236                                                                                                                                                                                                                         |
| -1.94402386668279 | 7.28593569765968                                                                                                                                    | 0.22589189864495                                                                                                                                                                                                                         |
| 0.12696349700873  | 6.19906493315217                                                                                                                                    | 1.53287868352352                                                                                                                                                                                                                         |
|                   | x<br>-2.05773131205918<br>-1.83755876107805<br>-2.46191404404075<br>-0.08296991780714<br>-2.25012116700934<br>-1.94402386668279<br>0.12696349700873 | xy-2.057731312059186.69982408946925-1.837558761078055.64646844101170-2.461914044040756.78551551005308-0.082969917807147.20243899694881-2.250121167009348.76215861236776-1.944023866682797.285935697659680.126963497008736.19906493315217 |

| С | 0.08239841945740  | 8.54754296024853  | 4.64862695430129  |
|---|-------------------|-------------------|-------------------|
| С | 1.32681511024196  | 9.11210736733322  | 4.37576446134535  |
| С | 1.43810695884142  | 10.49781498011910 | 4.21583401356901  |
| С | 0.31061035176306  | 11.31309026657930 | 4.32961932976762  |
| С | -0.94352886668822 | 10.75270004529440 | 4.60454047529533  |
| С | -1.06303473237904 | 9.37096666127784  | 4.76558966987986  |
| С | 0.31954437776206  | 7.41131758535549  | 0.93433077586798  |
| С | 1.54421802043705  | 8.07451081705793  | 0.98223802976043  |
| С | 1.68561488088672  | 9.31359752828612  | 0.34762740909907  |
| С | 0.60798108066649  | 9.88419139672161  | -0.33204428972246 |
| С | -0.62572990743180 | 9.22268129241962  | -0.38549706600166 |
| С | -0.77527884518355 | 7.98627386364434  | 0.24578494043747  |
| Н | 2.19215455937068  | 8.46408287226537  | 4.27327182757915  |
| Н | 2.40721063989460  | 10.93347450859230 | 3.98914723231641  |
| Н | 0.39872095358172  | 12.38855405309070 | 4.20059977787730  |
| Н | -1.82924534765473 | 11.37637652496390 | 4.69339185670294  |
| Н | 2.36900657431532  | 7.62637018887227  | 1.52834222393139  |
| Н | 2.63759325424320  | 9.83459642264269  | 0.39874044220145  |
| Н | 0.71879907411847  | 10.84855477868550 | -0.82059311491590 |
| Н | -1.47273257071696 | 9.65710465941654  | -0.91012983532756 |
| Ι | -0.86356541385737 | 3.60876994647037  | 4.06654053784052  |

Table S43. Cartesian coordinates (in Å) of trans- $1 \cdot I_{b}^{-}$ 

Outron Sb O 0.

| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Sb   | -3.02114799951757 | 8.99917538298087  | 3.62425123570258  |
| Sb   | -0.56399538526517 | 7.04018407799375  | 2.07528004178516  |
| 0    | -1.64463031303483 | 8.70116273442237  | 2.22012171802272  |
| 0    | -1.84704660215223 | 8.21306797163944  | 5.11156969690155  |
| 0    | -2.07127812620860 | 10.73873810593600 | 4.23678952984215  |
| 0    | -1.21901582750157 | 6.56848434704822  | 0.19627992201211  |
| 0    | 0.87844076924485  | 8.03979033178710  | 0.97999176852603  |
| С    | -0.92699387431571 | 9.12380907271916  | 5.54903562601068  |
| С    | 0.09724331292727  | 8.77483611033316  | 6.42914963822181  |
| С    | 1.01373625139202  | 9.74901637097345  | 6.84529179220074  |
| С    | 0.90466466324990  | 11.06226006317140 | 6.38260655843575  |
| С    | -0.12127098638130 | 11.41892077067330 | 5.49832789733878  |
| С    | -1.04145280986553 | 10.45535236425130 | 5.07976601612772  |
| С    | 0.59233672898174  | 8.01393603888790  | -0.35055296338268 |
| С    | 1.34653190741250  | 8.71008237003682  | -1.29724712697688 |

| С | 1.00513391468219  | 8.62736332534141  | -2.65320399226669 |
|---|-------------------|-------------------|-------------------|
| С | -0.08521610895323 | 7.85589614996879  | -3.06120943506375 |
| С | -0.84912508180857 | 7.15644916425781  | -2.11791945217617 |
| С | -0.51383596065394 | 7.23313976519503  | -0.76587401660277 |
| Н | 0.17132270727148  | 7.74835235933632  | 6.77751857653858  |
| Н | 1.81276720382043  | 9.47436159805902  | 7.52809400688402  |
| Н | 1.61822366456293  | 11.81537094005950 | 6.70510166260787  |
| Н | -0.21592883637916 | 12.43723470598680 | 5.13106316172451  |
| Н | 2.19256215669132  | 9.30690905444650  | -0.96745885028545 |
| Н | 1.59529788168903  | 9.16967548041404  | -3.38670526843823 |
| Н | -0.34804619694450 | 7.79444295497526  | -4.11352713596123 |
| Н | -1.70090281592560 | 6.55363832231586  | -2.42067557265041 |
| Ι | -3.57897323701806 | 5.68257706678895  | 3.09125396492152  |
|   |                   |                   |                   |

Table S44. Cartesian coordinates (in Å) of  $1\!\cdot\!I_t^-$ 

\_

, Sb, O. Sb 0

| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Η    | -5.31244349619161 | 8.50147225520330  | -0.03075277822780 |
| Η    | -6.49316573856041 | 7.89918250822125  | 2.08174961973014  |
| Н    | 5.87669226253744  | 8.50224352379700  | 2.46662988076752  |
| С    | -4.75658220147580 | 8.14984151621616  | 0.83412005597789  |
| Н    | 5.82082546550613  | 10.98712160608540 | 2.60773528069181  |
| С    | -5.41179429209277 | 7.81138144028843  | 2.02401426880337  |
| 0    | -2.69973787392969 | 8.35574055196287  | -0.39498065879887 |
| С    | 4.92841941613148  | 9.02311254110842  | 2.56513645301827  |
| С    | -3.36665169595562 | 8.03734368805157  | 0.74819104304300  |
| С    | 4.89660351640757  | 10.41701699028130 | 2.64311020731111  |
| Н    | 3.74731975156795  | 7.20080817739222  | 2.54689639810250  |
| С    | 3.73797366102718  | 8.28560216749507  | 2.60986186273798  |
| С    | -4.68326957373906 | 7.36682004381660  | 3.12923327978333  |
| С    | 3.67508026750505  | 11.09129822822430 | 2.76788543901541  |
| Н    | 3.63754930741184  | 12.17551133854080 | 2.83184864628075  |
| Н    | -5.19256760819836 | 7.10864722203591  | 4.05337320625464  |
| Sb   | -0.65233678868928 | 8.21102832219935  | -0.29292549753613 |
| С    | -2.62875546038469 | 7.57946051321701  | 1.86555743371094  |
| С    | 2.51773435528486  | 8.95064764513344  | 2.73227689007193  |
| С    | -3.29006925848847 | 7.25310624504486  | 3.05185443055771  |
| С    | 2.48319975655517  | 10.36487649023140 | 2.81802905361437  |

| 0  | -0.23644202805468 | 9.83829130321477  | 0.77102856575498  |
|----|-------------------|-------------------|-------------------|
| 0  | -1.27407972973369 | 7.50500898515890  | 1.73819033149868  |
| 0  | 1.32923976705088  | 8.28154969872479  | 2.77496942851078  |
| 0  | 1.26766354029278  | 10.95579092894560 | 2.96638388816950  |
| Η  | -2.70666435559125 | 6.91182537217055  | 3.90295480513218  |
| Ι  | -0.65373905878556 | 9.96695914904724  | -2.81583451865599 |
| Sb | -0.26431190740735 | 9.57365154819115  | 2.75804298468000  |

| Table S45.  | Cartesian                               | coordinates ( | íin Å | ) of $1 \cdot ($ | (DMSO) | 12  |
|-------------|-----------------------------------------|---------------|-------|------------------|--------|-----|
| 14010 0 .01 | 000000000000000000000000000000000000000 | ••••••        |       | /                |        | - 2 |



| Atom | Х                 | У                 | Z                |
|------|-------------------|-------------------|------------------|
| Н    | -8.02164543194319 | 7.60902516805962  | 0.67755836373079 |
| Н    | -7.51975209636282 | 10.03706222891570 | 0.91105243121286 |
| С    | -6.99552590540630 | 7.94631291392618  | 0.79702601413225 |
| С    | -6.71467217386432 | 9.30749344145329  | 0.92762111371971 |
| Н    | -5.90419080305669 | 9.27666992194480  | 4.83400148002187 |
| Н    | -4.41775222150138 | 9.23688679595509  | 3.81356811983115 |
| Н    | -6.16391203679896 | 5.94241993169415  | 0.72369430052973 |
| С    | -5.95787824016936 | 7.00516350459270  | 0.82227118280359 |
| С    | -5.39238136521332 | 9.74153390333827  | 1.09054573532733 |
| Н    | -5.16038679424274 | 10.79664199187370 | 1.20967257356865 |
| С    | -4.82348594923554 | 9.42574460956413  | 4.80592340869595 |
| Н    | -4.54706164327473 | 10.42352375298870 | 5.15388768093313 |
| С    | -4.63351555434369 | 7.42638766723130  | 0.97269314084360 |
| С    | -4.35340842096411 | 8.81071716826544  | 1.11977006360797 |
| S    | -4.04044325075447 | 8.22199050919660  | 5.90537224171974 |
| Н    | -4.69608369897246 | 9.59749328249915  | 7.72671505996329 |
| 0    | -4.63516142891703 | 6.83867554000016  | 5.45670471392002 |
| Н    | -6.02741666686634 | 8.48861424788272  | 7.22219841205398 |
| С    | -4.95844475733074 | 8.58192440626466  | 7.42085052068710 |
| 0    | -3.58646518299974 | 6.56797896874757  | 0.99911236735743 |
| 0    | -3.05653524451156 | 9.18620280060071  | 1.30548434017574 |
| Н    | -4.62684411186724 | 7.86145878999945  | 8.16950906026051 |
| Sb   | -3.46034008855121 | 5.56465986665912  | 3.89486005133264 |
| 0    | -2.60717744188848 | 7.32478502036320  | 3.51304922808861 |
| Sb   | -1.83146805356862 | 7.57990245419857  | 1.69681513957983 |

| 0 | -1.76671539179217 | 4.72551719810868  | 2.88687168743377 |
|---|-------------------|-------------------|------------------|
| 0 | -2.21229650708874 | 5.21398532691630  | 5.49240184075151 |
| Η | -0.43903867526132 | 11.93834307341900 | 3.69961330873861 |
| 0 | -0.55840126930547 | 9.17914067066952  | 2.81721453589093 |
| С | -0.69874718999257 | 4.70821602994256  | 3.71867059380302 |
| Η | -0.28513446453935 | 11.57814006649160 | 5.44977199368789 |
| С | -0.93465042005416 | 4.95146487289581  | 5.09784530719993 |
| С | -0.08797901861860 | 11.21622868715370 | 4.43779467534475 |
| S | -1.06480313128518 | 9.71308605683952  | 4.20597660178674 |
| Η | 0.78004874988812  | 4.30514698851872  | 2.21631335067931 |
| С | 0.60674618849722  | 4.47664402388351  | 3.27567072298946 |
| Η | -0.68505923400664 | 7.66390351994948  | 5.30658687463913 |
| Η | 0.96817162420743  | 10.98055805399670 | 4.29688421804741 |
| С | 0.12682068642469  | 4.93509438929309  | 6.00317158092731 |
| Η | -0.07173191159399 | 5.12789275481273  | 7.05421674275875 |
| С | -0.24618509709254 | 8.65348399316566  | 5.42173657662333 |
| Η | -0.46001906631070 | 9.05947052693947  | 6.41282678923789 |
| С | 1.66749290127099  | 4.46520402992418  | 4.19096635443045 |
| С | 1.42922208108269  | 4.69006604403543  | 5.54796757226450 |
| Η | 0.82509907998053  | 8.64597140524133  | 5.21392608163842 |
| Η | 2.67850129875055  | 4.28240612955755  | 3.83676744589709 |
| Η | 2.25247532944429  | 4.68401127203025  | 6.25713840113234 |
|   |                   |                   |                  |

Table S46. Cartesian coordinates (in Å) of  $1{\cdot}DMSO{\cdot}Cl_t^-$ 



| Х                 | у                                                                                                                                                                                                                   | Z                                                                                                                                                                                                                                                                                                                                            |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -2.32122180176622 | 4.05698501732841                                                                                                                                                                                                    | 8.55722294044768                                                                                                                                                                                                                                                                                                                             |
| -4.55098355829004 | 5.15171641306959                                                                                                                                                                                                    | 8.74160144829072                                                                                                                                                                                                                                                                                                                             |
| -2.78970231356277 | 4.49505387425551                                                                                                                                                                                                    | 7.67988473139771                                                                                                                                                                                                                                                                                                                             |
| -4.03989546361622 | 5.10823418420044                                                                                                                                                                                                    | 7.78365353227259                                                                                                                                                                                                                                                                                                                             |
| -1.15223576039670 | 3.97609348334656                                                                                                                                                                                                    | 6.35334181017769                                                                                                                                                                                                                                                                                                                             |
| -2.12889293751172 | 4.44421146513993                                                                                                                                                                                                    | 6.44595704190567                                                                                                                                                                                                                                                                                                                             |
| -4.64023341378985 | 5.67880054526274                                                                                                                                                                                                    | 6.65363009382627                                                                                                                                                                                                                                                                                                                             |
| -5.60750437454961 | 6.16949824254639                                                                                                                                                                                                    | 6.72122418747040                                                                                                                                                                                                                                                                                                                             |
| -2.72215475407823 | 5.00116555529370                                                                                                                                                                                                    | 5.30743493525165                                                                                                                                                                                                                                                                                                                             |
| -4.27939525416868 | 9.12980872077506                                                                                                                                                                                                    | 6.64227567170564                                                                                                                                                                                                                                                                                                                             |
|                   | x<br>-2.32122180176622<br>-4.55098355829004<br>-2.78970231356277<br>-4.03989546361622<br>-1.15223576039670<br>-2.12889293751172<br>-4.64023341378985<br>-5.60750437454961<br>-2.72215475407823<br>-4.27939525416868 | xy-2.321221801766224.05698501732841-4.550983558290045.15171641306959-2.789702313562774.49505387425551-4.039895463616225.10823418420044-1.152235760396703.97609348334656-2.128892937511724.44421146513993-4.640233413789855.67880054526274-5.607504374549616.16949824254639-2.722154754078235.00116555529370-4.279395254168689.12980872077506 |

| С  | -3.99122284681446 | 5.62653421092496  | 5.41919967932031  |
|----|-------------------|-------------------|-------------------|
| 0  | -1.58178373201832 | 9.01195955276893  | 5.88524238339010  |
| Н  | -4.33740234055609 | 8.48658603792886  | 4.95779314670049  |
| 0  | -2.13133658891175 | 4.99900451613865  | 4.09216801966322  |
| Н  | -2.78269032734985 | 11.01985145433930 | 7.40978112709106  |
| С  | -4.21846644818033 | 9.37265556681370  | 5.57988026631651  |
| Sb | -0.50710850401683 | 7.40865302867691  | 4.47635192857168  |
| 0  | -4.53757374740135 | 6.17548789413341  | 4.30117660437360  |
| Н  | -4.94562692746139 | 10.13970393976060 | 5.30228071082036  |
| S  | -2.57122476323492 | 10.03416149861050 | 5.23224654566791  |
| С  | -2.57698259765818 | 11.40904020281950 | 6.41084823758517  |
| 0  | -2.11740605631684 | 7.72530990603828  | 3.33524063538743  |
| Н  | -1.59058276927140 | 11.87211096273710 | 6.36088698016106  |
| 0  | 0.53293197161912  | 6.60884797356006  | 2.80829779196177  |
| 0  | 0.39433096749239  | 9.11506270486923  | 3.75067697634932  |
| Sb | -3.25357893540128 | 6.24104323269748  | 2.68566217166651  |
| Η  | -3.34695515489009 | 12.11536148717870 | 6.09173071158549  |
| С  | 1.04313354850466  | 7.59211713816689  | 2.03734574033773  |
| С  | 0.97780878639897  | 8.92119238678966  | 2.53729253405364  |
| Cl | -4.95745847781092 | 8.10402444042287  | 1.81433679067109  |
| Η  | 1.67568918488147  | 6.33850611022533  | 0.41245553203223  |
| С  | 1.63261254950189  | 7.35696484791759  | 0.79057257005097  |
| Н  | 1.44925022008259  | 10.98619585133890 | 2.19110581729206  |
| С  | 1.50707713502979  | 9.97634818987017  | 1.79272241112192  |
| С  | 2.16218545312760  | 8.42250733862467  | 0.04979863980808  |
| С  | 2.10108649374939  | 9.72548983183725  | 0.54747090384820  |
| Н  | 2.62049066377137  | 8.22756713447032  | -0.91622599152525 |
| Η  | 2.51063687486484  | 10.55174805912130 | -0.02725925704872 |

Table S47. Cartesian coordinates (in Å) of  $1 \cdot DMSO \cdot Br_{t}^{-}$ 



| Н  | -5.67737729189088 | 9.88540310054373  | 5.01001144707983 |
|----|-------------------|-------------------|------------------|
| Н  | -4.24291711164466 | 10.89406383065310 | 5.43988055138953 |
| S  | -3.79538483587234 | 8.57194305698537  | 5.68984715883689 |
| С  | -4.59541801320042 | 9.99980935556732  | 4.92083319290887 |
| 0  | -4.50356955627508 | 7.33050442514346  | 5.05591038056817 |
| Н  | -7.73497024424931 | 6.60325180638038  | 0.25460924689076 |
| Η  | -8.20787810575521 | 8.89123841409830  | 1.11684440464457 |
| С  | -6.91739681483959 | 7.25930590303738  | 0.54093105688126 |
| С  | -7.18305493952672 | 8.54236453940841  | 1.02418500142399 |
| Η  | -4.27223060411656 | 10.01379602267360 | 3.87982468841180 |
| Н  | -5.37727382215996 | 5.80816688586291  | 0.05775411843797 |
| С  | -5.59702952895594 | 6.80732512632074  | 0.42491602974334 |
| С  | -6.12979986321934 | 9.38614149332014  | 1.39976176105792 |
| Η  | -6.32164745743911 | 10.38429273280650 | 1.78406072772053 |
| Sb | -3.20254351687377 | 6.04669034990365  | 3.47791984861111 |
| 0  | -2.21431309323830 | 5.56630432862755  | 5.21827788492441 |
| С  | -4.53655569344380 | 7.64396966174439  | 0.78827016973247 |
| С  | -4.81119958104764 | 8.94473504105007  | 1.28155943376135 |
| 0  | -2.15283031625967 | 7.73963068325058  | 3.30185183056311 |
| Η  | -0.36237350609328 | 5.01361781180754  | 7.03963631526358 |
| 0  | -3.23987475027235 | 7.26283299194344  | 0.71715508823676 |
| 0  | -3.75715498396808 | 9.72949447982730  | 1.63753714415034 |
| С  | -0.99473863126301 | 5.00784415522615  | 4.98826622305068 |
| С  | -0.08999542393323 | 4.75341151954012  | 6.01988755523517 |
| 0  | -1.58533549345893 | 4.92527499764973  | 2.69539878193892 |
| Sb | -1.94658198667051 | 8.74114200715364  | 1.60954430083832 |
| Br | -1.08234546284000 | 10.99716777478540 | 3.21870588287592 |
| С  | -0.66185835872870 | 4.67375666225281  | 3.64800340508645 |
| С  | 1.15186414077561  | 4.16950566740712  | 5.73179514405009 |
| Η  | 1.85218095200738  | 3.97362297896698  | 6.53919083346748 |
| С  | 0.58275321034675  | 4.09713230923725  | 3.37364474927649 |
| С  | 1.48545531309507  | 3.84421458377244  | 4.41555717109596 |
| Η  | 0.83251733222393  | 3.84642862067943  | 2.34560639872073 |
| Н  | 2.44837332748664  | 3.39268745116347  | 4.19168316638807 |

Table S48. Cartesian coordinates (in Å) of  $1{\cdot}DMSO{\cdot}I_t^-$ 



| Atom | Х                 | У                 | Z                |
|------|-------------------|-------------------|------------------|
| Н    | -4.37030632487409 | 9.66359466996889  | 6.70907145271750 |
| Н    | -5.05642271143786 | 10.46613174064070 | 5.24251751741621 |
| С    | -4.47371614737967 | 9.62466024566393  | 5.62327164644671 |
| Н    | -4.89961795454281 | 8.67945582705877  | 5.28686955369138 |
| Н    | -2.32798215147977 | 11.15029464314130 | 6.73286279345045 |
| Н    | -3.86131761363329 | 5.41299853497338  | 9.00764485544648 |
| Н    | -2.86671470356514 | 12.06445583674540 | 5.27350515636327 |
| С    | -2.24859001253875 | 11.24527450035810 | 5.64852075538591 |
| Н    | -2.15368134493993 | 3.70406955737419  | 8.40693181334149 |
| 0    | -2.03197176811607 | 8.59022734781684  | 5.61528937921742 |
| S    | -2.83330245661828 | 9.71681882945147  | 4.87454309707339 |
| С    | -3.62839957842946 | 5.21644893849496  | 7.96473957360763 |
| С    | -2.66978762469379 | 4.25785911185324  | 7.62736280274397 |
| Н    | -1.21209482092882 | 11.37361853349350 | 5.33448198606979 |
| Н    | -5.02984872585195 | 6.69146506443940  | 7.21207590648628 |
| С    | -4.28951584603161 | 5.93704554323770  | 6.96253946996653 |
| С    | -2.36466253740232 | 4.00532375066169  | 6.28452052689204 |
| Н    | -1.61816492470214 | 3.26523018071446  | 6.00874796964021 |
| С    | -3.99227568831302 | 5.69033507283521  | 5.62199871739806 |
| Sb   | -0.69921699178955 | 7.16067832216389  | 4.34557874536424 |
| С    | -3.02400887151239 | 4.71405690902087  | 5.27494949020273 |
| 0    | -2.15648164294660 | 7.18400565146433  | 2.97866969992189 |
| 0    | -4.60352899475829 | 6.36409766675402  | 4.60886198350099 |
| 0    | 0.00419477129441  | 9.00164219280585  | 3.75499220219811 |
| 0    | -2.77532766904345 | 4.52286786887301  | 3.95675217023156 |
| Ι    | -5.50629444032605 | 8.59153022560094  | 1.87920363269394 |
| Н    | 0.97035610763940  | 11.07097835215000 | 2.40106061498314 |
| Sb   | -3.72701271119202 | 6.00797610035601  | 2.78006536391485 |
| С    | 0.79207637436763  | 8.94651735373432  | 2.64836706174466 |
| 0    | 0.68298493858523  | 6.59077607659636  | 2.83171070868561 |
| С    | 1.25173086207185  | 10.09740433904890 | 2.00786090027586 |
| С    | 1.14467984382100  | 7.66180416380034  | 2.15484555817814 |
| С    | 2.06297352748093  | 9.98476766621840  | 0.86990488051628 |

| С | 1.95054923907228 | 7.56422263380658  | 1.01512490156964  |
|---|------------------|-------------------|-------------------|
| Η | 2.41780501517423 | 10.88379261968040 | 0.37338500152820  |
| С | 2.40892779234485 | 8.72479125541631  | 0.37728185336002  |
| Η | 2.21516927255186 | 6.57905384650735  | 0.63899318505997  |
| Η | 3.03674651264345 | 8.63764082707837  | -0.50563892728456 |

## S4.3 Structures with solvation model (CPCM) in THF

Table S49. Cartesian coordinates (in Å) of **1**.

| Atom | Х                 | У                | Z                |
|------|-------------------|------------------|------------------|
| Sb   | -2.30432518679868 | 6.95074043160169 | 3.47285148085597 |
| Sb   | -1.67112175586946 | 5.48859893812197 | 0.25405487713549 |
| 0    | -1.41569338487488 | 6.82040593698662 | 1.68116580719538 |
| 0    | -1.01984378591977 | 5.69958589443905 | 4.42531210199855 |
| 0    | -0.97133236934918 | 8.35850824457906 | 4.09434988961416 |
| 0    | -1.91973026209227 | 3.94751550180124 | 1.56313650273132 |
| 0    | -3.71002022381843 | 5.55221829881298 | 0.38507327036029 |
| С    | 0.10556952627427  | 6.36797486153058 | 4.82736914498485 |
| С    | 1.19363684751166  | 5.71157704424580 | 5.40126240818458 |
| С    | 2.30856274884040  | 6.45520501441983 | 5.80579125582819 |
| С    | 2.33377015296772  | 7.84147509887096 | 5.63641957271180 |
| С    | 1.24462840136913  | 8.50573646287453 | 5.06007707917260 |
| С    | 0.13098855566092  | 7.77054757379223 | 4.65534352419024 |
| С    | -4.09976731984917 | 4.90473182219889 | 1.52337101370139 |
| С    | -5.37482611203209 | 5.05231297545587 | 2.07226855792072 |
| С    | -5.69342229359626 | 4.38318580395368 | 3.25801537017895 |
| С    | -4.74623204373007 | 3.57889376578976 | 3.89732002738051 |
| С    | -3.46675745839061 | 3.42201187824417 | 3.35538049553866 |
| С    | -3.14323175545307 | 4.07263134658740 | 2.16165581343627 |
| Н    | 1.15908154207551  | 4.63332414102072 | 5.52678859290374 |
| Н    | 3.15709336119327  | 5.94472341950514 | 6.25213793859884 |
| Н    | 3.20193632536303  | 8.41353494522678 | 5.95088207399207 |
| Н    | 1.25074928166818  | 9.58293171876130 | 4.92160163976739 |
| Н    | -6.09613330389194 | 5.69352405324141 | 1.57484172299067 |
| Н    | -6.68262754120679 | 4.50536226001666 | 3.68882652531875 |
| Н    | -4.99598062768091 | 3.07699018348279 | 4.82712231353545 |

|      | CI                |                          |                   |
|------|-------------------|--------------------------|-------------------|
|      |                   | O <sup>wsb</sup> Sb Sb O |                   |
|      |                   |                          |                   |
|      |                   |                          |                   |
| Atom | Х                 | У                        | Z                 |
| Sb   | -0.17175135400783 | 2.33034535464027         | -0.95083043745213 |
| Sb   | -0.43372170576618 | -0.75165562688121        | -2.58620674981520 |
| 0    | -1.22600853584649 | 0.92947601841306         | -1.88660893078691 |
| 0    | 0.87931785245198  | 2.93357039415488         | -2.60773343150281 |
| 0    | -1.47664928683189 | 3.79471577532604         | -1.66262963212574 |
| 0    | -0.77478756613774 | -1.87942408357776        | -0.90814510966298 |
| 0    | -2.33859631592810 | -1.46097540177835        | -3.04294201500276 |
| С    | 0.15862667690976  | 3.79467607572300         | -3.38050615947433 |
| С    | 0.61906113888807  | 4.23787628329339         | -4.62080250953152 |
| С    | -0.16112700123954 | 5.12359696137484         | -5.37588600630399 |
| С    | -1.39487300763331 | 5.56263537771418         | -4.89115120675257 |
| С    | -1.86371455914029 | 5.12209337123421         | -3.64683268948839 |
| С    | -1.09231253254438 | 4.24169931240048         | -2.88386787167024 |
| С    | -2.87830032838255 | -2.13287819320702        | -1.99514073356831 |
| С    | -4.19212881266819 | -2.60778492301740        | -1.99466066960232 |
| С    | -4.67796271152382 | -3.31428564445719        | -0.88684397807088 |
| С    | -3.85705300271184 | -3.54347828871408        | 0.21918292994797  |
| С    | -2.53937744786955 | -3.06731612835708        | 0.23108238404729  |
| С    | -2.04833307494826 | -2.36285402280593        | -0.86864072288158 |
| Н    | 1.57995697056737  | 3.88506103700886         | -4.98559437596581 |
| Н    | 0.19988048659609  | 5.46428516806397         | -6.34245061732776 |
| Н    | -1.99971130822774 | 6.24846088052285         | -5.47837340584963 |
| Н    | -2.82202558190726 | 5.45668206777444         | -3.25857972704846 |
| Н    | -4.82097374884833 | -2.42308156378099        | -2.86149774440154 |
| Н    | -5.70011671955724 | -3.68305061408180        | -0.89398970487147 |
| Н    | -4.23578092788094 | -4.09095056875676        | 1.07794803342683  |
| Н    | -1.88917409168695 | -3.23568136865432        | 1.08528811476921  |
| Cl   | 1.81270449587516  | 0.22100035042539         | -0.99665603303398 |

Table S50. Cartesian coordinates (in Å) of trans- $1 \cdot Cl_{b}^{-}$ 

Table S51. Cartesian coordinates (in Å) of  $\mathbf{1} \cdot Cl_t^-$ 



| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Н    | -5.01339259487002 | 6.76010072299349  | 0.15605051802078  |
| Н    | -6.50888734420713 | 8.64365857410770  | 0.81560503372214  |
| Н    | 5.34403732932823  | 9.17284770141942  | 4.38784236910877  |
| С    | -4.66697666610745 | 7.52872954366514  | 0.84160861644412  |
| Н    | 6.08430054492449  | 9.99108261174387  | 2.15574316509076  |
| С    | -5.49945288446254 | 8.59065797755338  | 1.21437755063149  |
| 0    | -2.54068197802403 | 6.42874918882998  | 0.99025945314875  |
| С    | 4.61107456598934  | 9.41614909659084  | 3.62355127339134  |
| С    | -3.36622981083195 | 7.44630058655029  | 1.34672930366815  |
| С    | 5.02561794285782  | 9.87414916812051  | 2.37139220270568  |
| Н    | 2.90819555893537  | 8.90286598168176  | 4.87035271321623  |
| С    | 3.24639232187511  | 9.26258309464158  | 3.90223167541908  |
| С    | -5.03645431872299 | 9.57529032547296  | 2.08897199251827  |
| С    | 4.08222508837126  | 10.18451261587550 | 1.38335299904361  |
| Н    | 4.39241645962222  | 10.54274490220560 | 0.40527866460636  |
| Н    | -5.68112628136095 | 10.40134659292450 | 2.37598310167562  |
| Sb   | -0.63346811623202 | 6.46560566477631  | 1.76115233327311  |
| С    | -2.89907293019504 | 8.43896650619742  | 2.24450941712238  |
| С    | 2.30108693720712  | 9.56790374607620  | 2.92269322694616  |
| С    | -3.73524860220902 | 9.50091561855678  | 2.60032641280644  |
| С    | 2.71867362695410  | 10.03954973405620 | 1.65163095677349  |
| 0    | 0.15020938116427  | 7.93745910395582  | 0.67390450038028  |
| 0    | -1.62665584665430 | 8.32168071141152  | 2.70615905040205  |
| 0    | 0.96333256133205  | 9.42905296708335  | 3.14078339270113  |
| 0    | 1.75335533180175  | 10.34817518698620 | 0.75144439313684  |
| Н    | -3.35694561649592 | 10.25813446562420 | 3.28231149732889  |
| Cl   | -0.05720790716021 | 4.82392593041156  | -0.11764425784636 |
| Sb   | -0.13210975282951 | 9.76553168048756  | 1.43425344456444  |

Table S52. Cartesian coordinates (in Å) of cis- $1 \cdot Br_{b}^{-}$ 



| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Н    | -3.52898216694676 | 9.59076182680900  | 4.00929959989605  |
| 0    | -2.35032008058606 | 7.23885852172502  | 4.46993692384579  |
| 0    | 0.43044148504132  | 6.82936735265930  | 4.99125657984569  |
| С    | -2.99165891236308 | 9.17243794748354  | 3.16217049358446  |
| Н    | 2.23857442190665  | 11.36593179009930 | 4.37203258136989  |
| 0    | 2.53967736332881  | 8.74414802503689  | 4.78006414989817  |
| Sb   | -1.02679831609152 | 5.63601512103058  | 4.36642802029185  |
| С    | -2.33752207489052 | 7.94747798734355  | 3.30909728882235  |
| Sb   | 2.36679742979271  | 6.67961430126081  | 4.58313246056022  |
| Н    | -3.45097101036899 | 10.79856878835240 | 1.82536977282087  |
| С    | 2.13535438048022  | 10.74803775918900 | 3.48384431414305  |
| С    | -2.94416389476848 | 9.84322181800439  | 1.93305933566680  |
| С    | 2.27000796114191  | 9.36295743662073  | 3.59939737622443  |
| Br   | 1.41899353561876  | 3.92420805766639  | 3.52053024656642  |
| С    | -1.63005965752006 | 7.39346692736830  | 2.21386232374322  |
| 0    | -1.00691315186064 | 6.19469880792491  | 2.40217548394381  |
| Н    | 1.75915260603084  | 12.39688429559990 | 2.14903527199692  |
| С    | 1.86735921773747  | 11.31871366466120 | 2.23276365162135  |
| С    | 2.13199766871040  | 8.54566276734329  | 2.45048974386992  |
| С    | -2.24595056599545 | 9.29372280329828  | 0.85644572832465  |
| 0    | 2.27082157329853  | 7.19800076362024  | 2.61006488554601  |
| С    | -1.58736614239674 | 8.06649018361094  | 0.99434610417086  |
| Н    | -2.19895994111750 | 9.82188476954761  | -0.09190957066459 |
| С    | 1.73282147196864  | 10.50985246352210 | 1.10304731533019  |
| С    | 1.86519816240509  | 9.12053958183133  | 1.20943150323016  |
| Н    | -1.02591682038356 | 7.63455518833370  | 0.17124476379170  |
| Н    | 1.51125798807629  | 10.95319401808230 | 0.13612685790575  |
| Н    | 1.74543146975176  | 8.47681203197462  | 0.34311579365404  |

Table S53. Cartesian coordinates (in Å) of trans- $1 \cdot Br_{b}^{-}$ 



| Х                 | У                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -0.12166126588778 | 2.35511250465594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.92680145929379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.40323778809434 | -0.75182983944897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.56934584555150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -1.16421748514685 | 0.92807606945987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.83430226696769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.90187441126825  | 2.95032548526819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.60221377357745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -1.45334783755449 | 3.79098061832577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.63662536244721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.76250875689902 | -1.90143517193561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.91069587182530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -2.31732674600929 | -1.41796452103365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -3.03790155176126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.15657133009097  | 3.78715517382222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.37901805189287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.59203090699301  | 4.21590093502478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.63329645218133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.21157431647191 | 5.07900842328047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5.38974688441189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -1.44338926244865 | 5.50981820771377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.89272315649291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -1.88730287201728 | 5.08333131740521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.63448465054078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -1.09239583468604 | 4.22511764569867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.87073692003343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -2.87097958453752 | -2.09543113461794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.99983957320208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -4.19393015878059 | -2.54359489340741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.00747540562948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -4.69478140333849 | -3.25480834469810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.90957129455764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -3.87964183969574 | -3.51530408970013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.19385757309513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -2.55265758081834 | -3.06648947218650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.21319352437820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -2.04660641953374 | -2.35779906334982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.87689894193193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.55188604989047  | 3.87004608165120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5.00723876550066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.12972307528791  | 5.40879329608278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -6.36716221728103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -2.06629407987349 | 6.17798391159656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5.48133513266379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -2.84394393519081 | 5.41126016951629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.23670186013143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -4.81808866828623 | -2.33402937917317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.87198801029691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -5.72427646680238 | -3.60231209973823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.92211859002522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -4.27032686216520 | -4.06624601443569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.04499139600164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -1.90675697293529 | -3.25970969479252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.06533727321320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.04822836364291  | 0.16680187901604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.91222672849056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | x $-0.12166126588778$ $-0.40323778809434$ $-1.16421748514685$ $0.90187441126825$ $-1.45334783755449$ $-0.76250875689902$ $-2.31732674600929$ $0.15657133009097$ $0.59203090699301$ $-0.21157431647191$ $-1.44338926244865$ $-1.88730287201728$ $-1.09239583468604$ $-2.87097958453752$ $-4.19393015878059$ $-4.69478140333849$ $-3.87964183969574$ $-2.55265758081834$ $-2.04660641953374$ $1.55188604989047$ $0.12972307528791$ $-2.06629407987349$ $-2.84394393519081$ $-4.81808866828623$ $-5.72427646680238$ $-4.27032686216520$ $-1.90675697293529$ $2.04822836364291$ | xy-0.121661265887782.35511250465594-0.40323778809434-0.75182983944897-1.164217485146850.928076069459870.901874411268252.95032548526819-1.453347837554493.79098061832577-0.76250875689902-1.90143517193561-2.31732674600929-1.417964521033650.156571330090973.787155173822220.592030906993014.21590093502478-0.211574316471915.07900842328047-1.443389262448655.50981820771377-1.887302872017285.08333131740521-1.092395834686044.22511764569867-2.87097958453752-2.09543113461794-4.19393015878059-2.54359489340741-4.69478140333849-3.25480834469810-3.87964183969574-3.51530408970013-2.55265758081834-3.06648947218650-2.04660641953374-2.357799063349821.551886049890473.870046081651200.129723075287915.40879329608278-2.066294079873496.17798391159656-2.843943935190815.41126016951629-4.81808866828623-2.33402937917317-5.72427646680238-3.60231209973823-4.27032686216520-4.06624601443569-1.90675697293529-3.259709694792522.048228363642910.16680187901604 |

Table S54. Cartesian coordinates (in Å) of  $1{\cdot}Br_t^-$ 

Sb O / Br

| Atom | Х                 | у                | Z                 |
|------|-------------------|------------------|-------------------|
| Н    | -4.87470358603154 | 8.52459394124572 | -0.24337672562903 |
| Н    | -6.48556863043967 | 7.30998414922968 | 1.22627410772358  |
| Н    | 5.25596584899698  | 8.16193300380222 | 1.37140636706187  |
| С    | -4.53198675298249 | 8.01408284352876 | 0.65272071436892  |

| Η  | 5.81610415367720  | 10.55623324858920 | 1.77305727134117 |
|----|-------------------|-------------------|------------------|
| С  | -5.42960546763294 | 7.32932124331399  | 1.48203527956761 |
| 0  | -2.24605053403444 | 8.66050986251980  | 0.19741455409120 |
| С  | 4.52401224109958  | 8.82833487439497  | 1.81923738751659 |
| С  | -3.17223538083762 | 8.04158045563858  | 0.97187166377440 |
| С  | 4.83711138998340  | 10.17020220327580 | 2.04376792082164 |
| Н  | 2.99905814164020  | 7.29423042141520  | 2.00273573177449 |
| С  | 3.26163243588830  | 8.33551504475221  | 2.17069908758902 |
| С  | -4.97338385949284 | 6.67698183678238  | 2.62918342280473 |
| С  | 3.89254216405925  | 11.02997982978020 | 2.61646939085964 |
| Н  | 4.12180460059942  | 12.07773927666550 | 2.79045719542623 |
| Н  | -5.67149233072436 | 6.14807668158081  | 3.27217236295284 |
| Sb | -0.38074853355432 | 8.68183090805219  | 1.12345331058159 |
| С  | -2.71294532258237 | 7.38418562433855  | 2.14158837501653 |
| С  | 2.31504405110668  | 9.18233268578375  | 2.75355156803051 |
| С  | -3.61250188007228 | 6.70269225535922  | 2.96163246725445 |
| С  | 2.63011673377134  | 10.54661828528280 | 2.97113118922882 |
| 0  | -0.86675820531600 | 10.37393514148080 | 2.07485601483211 |
| 0  | -1.38061308620083 | 7.44493903670213  | 2.42313188996048 |
| 0  | 1.07222256093239  | 8.75934797980023  | 3.10592519262610 |
| 0  | 1.69627897146328  | 11.36311108852450 | 3.52558804876477 |
| Н  | -3.24241796005175 | 6.20357194665606  | 3.85316133137509 |
| Sb | -0.13806424879512 | 10.52087630800760 | 3.92147098944888 |
| Br | -1.07129751446942 | 13.10716982349660 | 4.04287389083578 |
|    |                   |                   |                  |

Table S55. Cartesian coordinates (in Å) of cis- $1 \cdot I_b^-$ 



| Atom | х                 | У                 | Z                |
|------|-------------------|-------------------|------------------|
| Sb   | -2.05993832913412 | 6.70314574899646  | 4.92824142320415 |
| Sb   | -1.83018082284846 | 5.64905799557813  | 1.49553306799769 |
| 0    | -2.46200358262001 | 6.78926720815683  | 2.98880994304977 |
| 0    | -0.08592750658484 | 7.20461160292416  | 4.82308431953858 |
| 0    | -2.25152743216810 | 8.76529605207796  | 5.05103694758032 |
| 0    | -1.93750141897351 | 7.27761132597033  | 0.21446591445375 |
| 0    | 0.13196740913720  | 6.20487134004508  | 1.53516371075322 |
| С    | 0.08064703589551  | 8.54963606197706  | 4.66033526315560 |
| С    | 1.32601989653959  | 9.11395741253414  | 4.39162129613757 |
| С    | 1.43888822924979  | 10.50008567807220 | 4.23649555998146 |
| С    | 0.31205730031898  | 11.31611160195520 | 4.35069108522416 |

| С | -0.94299301225905 | 10.75603427604090 | 4.62137862873670  |
|---|-------------------|-------------------|-------------------|
| С | -1.06443333222076 | 9.37408981103089  | 4.77788740043099  |
| С | 0.32334193548419  | 7.41211158945974  | 0.92742443202446  |
| С | 1.54675594804751  | 8.07770927476907  | 0.97268598312516  |
| С | 1.68755741035821  | 9.31201066012760  | 0.32871505500892  |
| С | 0.61054015643745  | 9.87576970647379  | -0.35750223116737 |
| С | -0.62198613389078 | 9.21205354800238  | -0.40819378352786 |
| С | -0.77116404737305 | 7.98025111479266  | 0.23186492432006  |
| Η | 2.19014290084482  | 8.46459833435934  | 4.28828567476039  |
| Η | 2.40885417902566  | 10.93541115526930 | 4.01270663684918  |
| Η | 0.40136606807304  | 12.39178742184290 | 4.22419393430006  |
| Η | -1.82891294955120 | 11.37936021047100 | 4.70915525520361  |
| Η | 2.37024096607619  | 7.63445553961706  | 1.52450783089928  |
| Η | 2.63871905170795  | 9.83476378679427  | 0.37784977228444  |
| Η | 0.72077740438243  | 10.83690926205090 | -0.85253427984537 |
| Η | -1.46933211985952 | 9.64100044363982  | -0.93649706321179 |
| Ι | -0.90367220409515 | 3.61411683697040  | 4.06845329873292  |
|   |                   |                   |                   |

|             |            |               | 0                 |                            |       |
|-------------|------------|---------------|-------------------|----------------------------|-------|
| T-1.1. CEC  | <b>O</b>   | <b>1</b>      | (* A.)            | <b>f f f f f f f f f f</b> | 1 T - |
| Lanie Non   | c arresian | coordinates ( | 1n A              | of trans-                  | • 1.  |
| 1 abic 550. | Curtestun  | coordinates   | (III / <b>1</b> ) | or trans.                  | T TD  |



| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Sb   | -2.65877231483369 | 8.92356761054319  | 3.46518460804442  |
| Sb   | -0.29101658945971 | 6.83328802854487  | 1.87782078786590  |
| 0    | -1.12951484895449 | 8.59318464216374  | 2.24316752868949  |
| 0    | -1.70389726043701 | 8.22413460050151  | 5.13895819101041  |
| 0    | -1.81256582350037 | 10.70277717066680 | 4.12460169755088  |
| 0    | -1.20407240613777 | 6.56274787532235  | 0.06591605999398  |
| 0    | 1.13220084132242  | 7.72724377467404  | 0.66830788713421  |
| С    | -0.89178796016642 | 9.17279166726095  | 5.68717142758884  |
| С    | -0.03393358940323 | 8.88810108314981  | 6.74995981741275  |
| С    | 0.77674562658564  | 9.90150349097221  | 7.27738222823402  |
| С    | 0.72924913614803  | 11.19105780849410 | 6.74361961429278  |
| С    | -0.12974314662563 | 11.48426780252940 | 5.67681713857546  |
| С    | -0.94381518795161 | 10.48130346512080 | 5.14587486681428  |
| С    | 0.69350875169639  | 7.82922977390649  | -0.61468270573067 |
| С    | 1.41159241416225  | 8.49997705231909  | -1.60680888584639 |
| С    | 0.90801553581713  | 8.55351056016157  | -2.91267655653257 |
| С    | -0.30767922387565 | 7.94199075952803  | -3.22602101591875 |

| С | -1.03606617778614 | 7.26877287758746  | -2.23675416190908 |
|---|-------------------|-------------------|-------------------|
| С | -0.54021356695741 | 7.21012703419890  | -0.93392927575443 |
| Η | -0.00529557736231 | 7.87928323375727  | 7.15244448712457  |
| Н | 1.44588101207302  | 9.67545717397182  | 8.10300635961047  |
| Н | 1.36064856129722  | 11.97513144812180 | 7.15270271663507  |
| Η | -0.17647911183762 | 12.48365789367490 | 5.25276558628212  |
| Η | 2.35555817923201  | 8.97272219256870  | -1.34954882161347 |
| Η | 1.47045980051176  | 9.07653675192383  | -3.68131301077036 |
| Η | -0.69695492119443 | 7.98628294541168  | -4.23942083788723 |
| Η | -1.98402883604144 | 6.78954697103320  | -2.46541683123773 |
| Ι | -3.25862231632085 | 5.63603131189099  | 3.06799010034105  |
|   |                   |                   |                   |

Table S57. Cartesian coordinates (in Å) of  $1 \cdot I_t^-$ 

Sb. sho, sb, o

| Atom | Х                 | У                 | Ζ                 |
|------|-------------------|-------------------|-------------------|
| Н    | -5.31757009544241 | 8.47006231258301  | -0.03597403554285 |
| Н    | -6.49620649404966 | 7.86962768826310  | 2.07891171373585  |
| Н    | 5.87701411341305  | 8.49073513145560  | 2.47161104505167  |
| С    | -4.76007725504737 | 8.13162647248814  | 0.83302167079396  |
| Н    | 5.82987910071395  | 10.97474010846500 | 2.63041298946717  |
| С    | -5.41363133241235 | 7.79486640769738  | 2.02412823929624  |
| 0    | -2.70806252993307 | 8.35625901440923  | -0.39530757770443 |
| С    | 4.93022147809500  | 9.01459972914152  | 2.56915170469417  |
| С    | -3.36849867564484 | 8.03688325496710  | 0.74898452690467  |
| С    | 4.90328398665280  | 10.40789820059440 | 2.65720629217605  |
| Н    | 3.74104376383441  | 7.19742913100206  | 2.52996817725225  |
| С    | 3.73659870827063  | 8.28168498398517  | 2.60159099976349  |
| С    | -4.68180713595476 | 7.36880977827235  | 3.13426230459886  |
| С    | 3.68374021813686  | 11.08585180301320 | 2.78002469487214  |
| Н    | 3.64898493175948  | 12.16966510852070 | 2.85069534685717  |
| Н    | -5.18937859411961 | 7.11166410877849  | 4.05973805385612  |
| Sb   | -0.65793694424892 | 8.24045093536462  | -0.31266974892576 |
| С    | -2.62620707872713 | 7.59647976016658  | 1.87175174198159  |
| С    | 2.51810827860203  | 8.95020435801701  | 2.72174369750917  |
| С    | -3.28719101739025 | 7.27236850316567  | 3.05925494368240  |
| С    | 2.48844920101067  | 10.36430490473190 | 2.81853845908472  |
| 0    | -0.24720644079801 | 9.86332665210180  | 0.76032776837124  |

| 0  | -1.27272255298125 | 7.53520290762727  | 1.74706776825760  |
|----|-------------------|-------------------|-------------------|
| 0  | 1.32776434509967  | 8.28566342463650  | 2.75181816836344  |
| 0  | 1.27560427581112  | 10.95707215165100 | 2.96606579009967  |
| Η  | -2.70044775539700 | 6.94394631583105  | 3.91321473916950  |
| Ι  | -0.67415777657638 | 9.95257253098393  | -2.82264218104672 |
| Sb | -0.26390072267666 | 9.58134432208594  | 2.74168270738058  |

## S4.4 Structures with solvation model (CPCM) in chloroform

Table S58. Cartesian coordinates (in Å) of  $\mathbf{1}$ .

Sb Sb Sb Contraction

| Atom | Х                 | У                | Z                |
|------|-------------------|------------------|------------------|
| Sb   | -2.30299000552570 | 6.94237335207972 | 3.47957138631083 |
| Sb   | -1.66937505011785 | 5.48593828237684 | 0.25973125638774 |
| 0    | -1.41957193992962 | 6.81929091661357 | 1.68377700878021 |
| 0    | -1.01456185753826 | 5.69313954374613 | 4.42494117213155 |
| 0    | -0.97748920084701 | 8.35317239320477 | 4.10320296200767 |
| 0    | -1.91976479519863 | 3.94468170486590 | 1.56549066085428 |
| 0    | -3.70767336386149 | 5.54671733562756 | 0.38075373299925 |
| С    | 0.10936090718217  | 6.36478740455082 | 4.82720613329949 |
| С    | 1.20074833231671  | 5.71070241740326 | 5.39698501299700 |
| С    | 2.31329335904029  | 6.45749365882390 | 5.80167371512614 |
| С    | 2.33269358580268  | 7.84434350344453 | 5.63670655595578 |
| С    | 1.24007427933692  | 8.50619290792113 | 5.06464822146169 |
| С    | 0.12883255475815  | 7.76778173494773 | 4.65977786177805 |
| С    | -4.09972478609261 | 4.90183932183432 | 1.52005109434270 |
| С    | -5.37527517351072 | 5.05141977468210 | 2.06671437295253 |
| С    | -5.69514682018966 | 4.38643422196601 | 3.25444323821756 |
| С    | -4.74875056817752 | 3.58456425304616 | 3.89775224621839 |
| С    | -3.46871708416518 | 3.42547403435829 | 3.35786987988230 |
| С    | -3.14417028122871 | 4.07163650912947 | 2.16213422720176 |
| Н    | 1.17038344757423  | 4.63197756834571 | 5.51892582672088 |
| Н    | 3.16466419969018  | 5.94902254827769 | 6.24484588431305 |
| Н    | 3.19918144023492  | 8.41874776423150 | 5.95144245345844 |
| Н    | 1.24133794711425  | 9.58376488849778 | 4.92953989414313 |
| Н    | -6.09580661827217 | 5.69086651623856 | 1.56597620603923 |
| Н    | -6.68487859741722 | 4.50997311058900 | 3.68363293779256 |

| Н | -4.99954315534797 | 3.08618501814661 | 4.82913836987777 |
|---|-------------------|------------------|------------------|
| Н | -2.72026975563017 | 2.81102731505089 | 3.84765268875003 |

Table S59. Cartesian coordinates (in Å) of trans- $1 \cdot Cl_{b}^{-}$ 

-O<sup>111111</sup>Sb Sb O 0 ò.

| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Sb   | -0.17650474812893 | 2.26321774365746  | -1.01281565458229 |
| Sb   | -0.40849940222756 | -0.83846088796049 | -2.61369665241952 |
| 0    | -1.19872310735243 | 0.87447346023903  | -1.99706873060198 |
| 0    | 0.88683244993617  | 2.93515940047055  | -2.63386459091754 |
| 0    | -1.49768206468211 | 3.72715947054446  | -1.70063588844815 |
| 0    | -0.77795404900958 | -1.89340565314361 | -0.89539282266195 |
| 0    | -2.31037986305751 | -1.56149254760890 | -3.06818732713156 |
| С    | 0.16385713626908  | 3.80793590594475  | -3.39033229094238 |
| С    | 0.63607595912400  | 4.29810423978575  | -4.60820768546368 |
| С    | -0.14676920928945 | 5.19444502476307  | -5.34782594335933 |
| С    | -1.39529807819125 | 5.59716313794657  | -4.86989975059774 |
| С    | -1.87616275026664 | 5.10969043699477  | -3.64795381047486 |
| С    | -1.10242240517296 | 4.21855478111844  | -2.89992474958646 |
| С    | -2.86775923473026 | -2.18369557816761 | -2.00017641207633 |
| С    | -4.18362078473245 | -2.65283281654869 | -1.99687006537028 |
| С    | -4.68739739449826 | -3.30998260472608 | -0.86706272895478 |
| С    | -3.88239627265810 | -3.49550680970896 | 0.25847860607056  |
| С    | -2.56296946931790 | -3.02451519175302 | 0.26791055054391  |
| С    | -2.05393611429257 | -2.36885570552531 | -0.85355020060872 |
| Н    | 1.60865896970801  | 3.97276078841476  | -4.96754477649627 |
| Н    | 0.22382080637008  | 5.57184842338541  | -6.29704391590649 |
| Н    | -2.00247775352364 | 6.29105480846563  | -5.44527807821938 |
| Н    | -2.84632554774432 | 5.41513075477577  | -3.26516703790845 |
| Н    | -4.79964167812831 | -2.50225365955227 | -2.87936194892250 |
| Н    | -5.71113965394659 | -3.67454883536187 | -0.87228664567543 |
| Н    | -4.27509600005518 | -4.00463561093648 | 1.13446419394978  |
| Н    | -1.92463890528732 | -3.15872704817826 | 1.13698222921015  |
| Cl   | 1.82361716488600  | 0.18497257266507  | -1.06075687244833 |

Table S60. Cartesian coordinates (in Å) of  $1 \cdot Cl_t^-$ 



| Atom | Х                 | У                 | Ζ                 |
|------|-------------------|-------------------|-------------------|
| Н    | -5.02304029455579 | 6.76236161849951  | 0.16196505897241  |
| Н    | -6.51221788656482 | 8.64932381979062  | 0.82749137690273  |
| Н    | 5.34189459978462  | 9.18887175864691  | 4.39759361511123  |
| С    | -4.67238339672254 | 7.53075451063723  | 0.84558188416324  |
| Н    | 6.08519910762106  | 10.00626640800610 | 2.16624923279052  |
| С    | -5.50096943254519 | 8.59448940960215  | 1.22159502510740  |
| 0    | -2.54894638719876 | 6.42631197877586  | 0.98405190628270  |
| С    | 4.61015570834101  | 9.42697310669181  | 3.63040681633559  |
| С    | -3.36914559023088 | 7.44546600049775  | 1.34417880154577  |
| С    | 5.02634834641744  | 9.88454371659087  | 2.37875293047841  |
| Н    | 2.90541350170579  | 8.90686434593576  | 4.87211072443534  |
| С    | 3.24534097312906  | 9.26676357403441  | 3.90466755106670  |
| С    | -5.03201147930616 | 9.57872818196398  | 2.09326118664197  |
| С    | 4.08462281741487  | 10.18774688003060 | 1.38699786710549  |
| Н    | 4.39585467850899  | 10.54494405052250 | 0.40889447497957  |
| Н    | -5.67373090177790 | 10.40624160435770 | 2.38294225600350  |
| Sb   | -0.63658932918446 | 6.45132506254270  | 1.74404461974556  |
| С    | -2.89578027437222 | 8.43816527728264  | 2.23928202561482  |
| С    | 2.30157672014972  | 9.56495114354381  | 2.92154910137488  |
| С    | -3.72844721701871 | 9.50186391230725  | 2.59820444975236  |
| С    | 2.72078739320015  | 10.03653542221490 | 1.65064552581487  |
| 0    | 0.15345372680766  | 7.92414723447382  | 0.66422733687032  |
| 0    | -1.62220380242466 | 8.31838008530274  | 2.69513784042348  |
| 0    | 0.96441137472478  | 9.41890452678512  | 3.13543389585226  |
| 0    | 1.75740328039725  | 10.33832031914390 | 0.74757426537312  |
| Н    | -3.34533039344963 | 10.25815817605020 | 3.27857008364200  |
| Cl   | -0.07585938014844 | 4.81152774420441  | -0.12700664155388 |
| Sb   | -0.12879946270217 | 9.74974013156432  | 1.42645178916766  |

Table S61. Cartesian coordinates (in Å) of cis-1·Brb-



|      |                   | ~                 | $\mathbf{v}$      |
|------|-------------------|-------------------|-------------------|
| Atom | Х                 | У                 | Z                 |
| Н    | -3.54099171721928 | 9.58254830180448  | 4.00887024342937  |
| 0    | -2.35585120987756 | 7.23403948392979  | 4.46784379689338  |
| 0    | 0.42893517311591  | 6.83273927084054  | 4.99052765023666  |
| С    | -3.00222241623234 | 9.16664064966993  | 3.16152241034864  |
| Н    | 2.25104084580350  | 11.36653277670380 | 4.37196419605277  |
| 0    | 2.54545778679833  | 8.74427346513427  | 4.77913593106472  |
| Sb   | -1.02493287282047 | 5.63756328999359  | 4.36388629840243  |
| С    | -2.34430899732659 | 7.94374974521211  | 3.30830652409662  |
| Sb   | 2.36408243777263  | 6.68074049117207  | 4.58145538653411  |
| Н    | -3.46499005912914 | 10.79266807634570 | 1.82577539575515  |
| С    | 2.14635448829043  | 10.74933688380850 | 3.48351218581482  |
| С    | -2.95567815457979 | 9.83855648744015  | 1.93309276442960  |
| С    | 2.27698773029644  | 9.36395027032688  | 3.59923273159650  |
| Br   | 1.41734559113405  | 3.92837072434539  | 3.53010949188133  |
| С    | -1.63372034544144 | 7.39291121116669  | 2.21320955738557  |
| 0    | -1.00694206568538 | 6.19635476980869  | 2.40088869357022  |
| Н    | 1.77368367022330  | 12.39922590450770 | 2.14899812429953  |
| С    | 1.87943716064612  | 11.32075576951740 | 2.23264063005887  |
| С    | 2.13589298679737  | 8.54690727894433  | 2.45027826152355  |
| С    | -2.25441511092549 | 9.29236358259869  | 0.85685967721374  |
| 0    | 2.27074001428671  | 7.19916254344518  | 2.60958245475147  |
| С    | -1.59187239136181 | 8.06726087614230  | 0.99442716063992  |
| Н    | -2.20771257424892 | 9.82176492753181  | -0.09087379601889 |
| С    | 1.74170055110081  | 10.51229224985170 | 1.10310497027649  |
| С    | 1.86998089814585  | 9.12261577576181  | 1.20944412338926  |
| Н    | -1.02756851672313 | 7.63773390465495  | 0.17206704591394  |
| Н    | 1.52036207926319  | 10.95625454874400 | 0.13636165976872  |
| Н    | 1.74750901789670  | 8.47877174059718  | 0.34363543069150  |

Table S62. Cartesian coordinates (in Å) of trans- $1 \cdot Br_{b}^{-}$ 



| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Sb   | -0.15048283543367 | 2.25845528397671  | -1.01455381637706 |
| Sb   | -0.37961232752215 | -0.87514373717508 | -2.62181725438400 |
| 0    | -1.14105486202991 | 0.84841804092534  | -1.99967585167433 |
| 0    | 0.90208664480430  | 2.95062825000393  | -2.63192211247097 |
| 0    | -1.49778343664468 | 3.69264498373313  | -1.69816470212136 |
| 0    | -0.76662769883775 | -1.92249574134988 | -0.90323551955125 |
| 0    | -2.29068888025881 | -1.56364292026876 | -3.07707174571286 |
| С    | 0.16072843851671  | 3.80730330141051  | -3.38982361800381 |
| С    | 0.62203348417171  | 4.30552378473881  | -4.60856841682163 |
| С    | -0.17902959499755 | 5.18667644484118  | -5.34659680379913 |
| С    | -1.43415138175761 | 5.56613520220347  | -4.86660857125083 |
| С    | -1.90413117932943 | 5.07000588743962  | -3.64391262553198 |
| С    | -1.11206683184191 | 4.19347089503868  | -2.89827424021739 |
| С    | -2.86149803008145 | -2.17202835053229 | -2.00724583598762 |
| С    | -4.18668660867102 | -2.61386524273895 | -2.00463955806847 |
| С    | -4.70573040332916 | -3.25429201665627 | -0.87219547944106 |
| С    | -3.90662784328191 | -3.45034108096057 | 0.25593477823598  |
| С    | -2.57757377663637 | -3.00732890827052 | 0.26543717340425  |
| С    | -2.05334750027028 | -2.36894128166205 | -0.85890426665245 |
| Н    | 1.60013283007726  | 3.99877785605644  | -4.96906746620814 |
| Н    | 0.18271183449498  | 5.57097604313318  | -6.29642082376762 |
| Н    | -2.05518453137752 | 6.24824521075129  | -5.44117094679267 |
| Н    | -2.87931669271038 | 5.35682244405567  | -3.25966716651193 |
| Н    | -4.79798362912200 | -2.45449944944562 | -2.88880919447452 |
| Н    | -5.73696398078536 | -3.59700661547407 | -0.87715170208157 |
| Н    | -4.31159534530975 | -3.94602172506899 | 1.13400812591704  |
| Н    | -1.94355738284468 | -3.15031899199383 | 1.13618453394241  |
| Br   | 2.05906952100841  | 0.11460043328895  | -1.00913589359704 |

Table S63. Cartesian coordinates (in Å) of  $1 \cdot Br_t^-$ 



| Atom | X                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Н    | -4.87671364613454 | 8.51724800930312  | -0.24423911179939 |
| Н    | -6.48339848877426 | 7.29053224985712  | 1.22037188141421  |
| Н    | 5.24929355635123  | 8.15319288311493  | 1.37054898251326  |
| С    | -4.53297456614501 | 8.00757990758513  | 0.65192962395767  |
| Н    | 5.82096436222708  | 10.54365994867210 | 1.77913884295829  |
| С    | -5.42803948596239 | 7.31621226380395  | 1.47840795046670  |
| 0    | -2.25044867727616 | 8.66782838743501  | 0.20215586177226  |
| С    | 4.51977451398132  | 8.82249905077355  | 1.81819582209614  |
| С    | -3.17390432617762 | 8.04376702477093  | 0.97355512104501  |
| С    | 4.83930012489849  | 10.16204511328770 | 2.04674571037726  |
| Н    | 2.98629279778931  | 7.29619426819537  | 1.99561141040914  |
| С    | 3.25389737454791  | 8.33589988448936  | 2.16565991704469  |
| С    | -4.97035031400925 | 6.66577703143443  | 2.62591412456076  |
| С    | 3.89792795561846  | 11.02518679041090 | 2.61943586190728  |
| Н    | 4.13164855580723  | 12.07142059881080 | 2.79646583939930  |
| Н    | -5.66653552347442 | 6.13187507666844  | 3.26697500475879  |
| Sb   | -0.38485709010503 | 8.69823408417136  | 1.13172801827641  |
| С    | -2.71329687348500 | 7.38829284998641  | 2.14425269407444  |
| С    | 2.30990851735281  | 9.18589595611063  | 2.74836228051136  |
| С    | -3.61039966631819 | 6.70024750884479  | 2.96136918669666  |
| С    | 2.63180682654012  | 10.54826003437030 | 2.97015076660498  |
| 0    | -0.87212359279892 | 10.39117804642300 | 2.07785010955051  |
| 0    | -1.38267490619380 | 7.45729310914373  | 2.42913587533425  |
| 0    | 1.06505570093257  | 8.76847072727223  | 3.09737586633533  |
| 0    | 1.70303208923688  | 11.36897960606710 | 3.52410483886117  |
| Н    | -3.23873102344736 | 6.20311031030931  | 3.85334983752889  |
| Sb   | -0.13984941020313 | 10.54506860168710 | 3.92123418766561  |
| Br   | -1.05308478477830 | 13.12396067700070 | 4.04870349567904  |

Table S64. Cartesian coordinates (in Å) of cis- $1 \cdot I_{b^{-}}$ 

|      | 4                 |                  |                  |
|------|-------------------|------------------|------------------|
| Atom | Х                 | У                | Z                |
| Sb   | -2.05742780195231 | 6.70317124431890 | 4.92589858134028 |
| Sb   | -1.82726297942717 | 5.64983716798804 | 1.49755101665636 |
| 0    | -2.46194948804290 | 6.79226825895397 | 2.98744529567926 |
| 0    | -0.08468315958963 | 7.20594278977634 | 4.82263510963059 |
| 0    | -2.25044334078327 | 8.76505127794418 | 5.05682276086134 |
| 0    | -1.93539957005471 | 7.27293335444024 | 0.20919797630458 |

| 0 | 0.13378250637084  | 6.20637255291281  | 1.53487680291433  |
|---|-------------------|-------------------|-------------------|
| С | 0.08112449092920  | 8.55126009517700  | 4.66432527981411  |
| С | 1.32618309769731  | 9.11672777481660  | 4.39677405124741  |
| С | 1.43869721787699  | 10.50335978095890 | 4.24620132837054  |
| С | 0.31175871219984  | 11.31871101655220 | 4.36367976117323  |
| С | -0.94297287530069 | 10.75748910339510 | 4.63297636258104  |
| С | -1.06434267469169 | 9.37505884107898  | 4.78511258687056  |
| С | 0.32437165034737  | 7.41143934934598  | 0.92325276591895  |
| С | 1.54721175251978  | 8.07811868245643  | 0.96715008012253  |
| С | 1.68758880988509  | 9.31031990899157  | 0.31911473516951  |
| С | 0.61063228708667  | 9.87096159814807  | -0.36967719988068 |
| С | -0.62131373362913 | 9.20626564808897  | -0.41889211953275 |
| С | -0.77030094003427 | 7.97645358151143  | 0.22500361253834  |
| Η | 2.18988127103404  | 8.46729815450795  | 4.29067043541065  |
| Η | 2.40841362295575  | 10.93965631789530 | 4.02299793637248  |
| Η | 0.40074861661648  | 12.39480111827870 | 4.24014947439267  |
| Η | -1.82932894213874 | 11.37988581379720 | 4.72251809061051  |
| Η | 2.37015491355584  | 7.63689006324972  | 1.52133690061017  |
| Η | 2.63825598426123  | 9.83413441125191  | 0.36739842368984  |
| Η | 0.72041810860122  | 10.83083026659300 | -0.86736957480754 |
| Н | -1.46907630287883 | 9.63284677489002  | -0.94838179254247 |
| Ι | -0.91641823341434 | 3.61800005268022  | 4.06709131848421  |
|   |                   |                   |                   |

Table S65. Cartesian coordinates (in Å) of trans- $1 \cdot I_b^-$ 

|      |                   | Oursb O Sb O      |                  |
|------|-------------------|-------------------|------------------|
| Atom | Х                 | у                 | Z                |
| Sb   | -2.86064174266817 | 8.95920154518939  | 3.56835863236466 |
| Sb   | -0.45220119034444 | 6.96323263261648  | 1.96748950696696 |
| 0    | -1.42393034458041 | 8.67345426514424  | 2.22805116323837 |
| 0    | -1.76421847333287 | 8.21231583478189  | 5.13284954828733 |
| 0    | -1.97148969247195 | 10.72311632278540 | 4.21722790524472 |
| 0    | -1.22119380761092 | 6.57367565923585  | 0.11279798505938 |
| 0    | 0.98818471966011  | 7.91002889528402  | 0.82012081140043 |
| С    | -0.90185803761908 | 9.14517379508684  | 5.62961263305102 |
| С    | 0.05522853308144  | 8.82807697865251  | 6.59369364782571 |
| С    | 0.91607958336943  | 9.82507063967524  | 7.07038461738713 |
| С    | 0.81863311502227  | 11.13064859605830 | 6.58472142598222 |
| С    | -0.14059322110056 | 11.45642865464740 | 5.61758294680156 |
| С    | -1.00581843061729 | 10.47048966095410 | 5.13802346949952 |

| С | 0.63660797111902  | 7.93245867007452  | -0.49247184065418 |
|---|-------------------|-------------------|-------------------|
| С | 1.38014855660464  | 8.60817872172410  | -1.46209683868734 |
| С | 0.96898486619924  | 8.57533678199040  | -2.80061370275354 |
| С | -0.18087731572454 | 7.87374081504598  | -3.16880462954288 |
| С | -0.93499919665343 | 7.19553069917535  | -2.20251825993173 |
| С | -0.53068390916827 | 7.22203629923739  | -0.86746694209219 |
| Η | 0.12027585817221  | 7.80697712789452  | 6.95933079146544  |
| Η | 1.66284767700757  | 9.57384312123603  | 7.81848113591752  |
| Η | 1.48952948434415  | 11.90179764623550 | 6.95346960378523  |
| Η | -0.22633883677533 | 12.46824394376490 | 5.23071359746441  |
| Η | 2.27238814944368  | 9.15086867000074  | -1.16189903837590 |
| Η | 1.55135300973662  | 9.10209722752069  | -3.55171518347562 |
| Η | -0.49852864932398 | 7.85115972330786  | -4.20762971059010 |
| Η | -1.83290417433001 | 6.64686959042792  | -2.47307312594091 |
| Ι | -3.43458350143906 | 5.68417448225194  | 3.07249885030283  |

Table S66. Cartesian coordinates (in Å) of  $1 \cdot I_t^-$ 

Sb 0 Sb 0 Ó,

| Atom | Х                 | У                 | Z                 |
|------|-------------------|-------------------|-------------------|
| Н    | -5.32382020220159 | 8.46000733482497  | -0.03254856214068 |
| Н    | -6.49515017901191 | 7.85773415764198  | 2.08620475430699  |
| Н    | 5.87728043641717  | 8.48463318144388  | 2.48829364464706  |
| С    | -4.76308018463306 | 8.12565491456910  | 0.83591475393666  |
| Н    | 5.83400976310712  | 10.96858640611990 | 2.64851202784233  |
| С    | -5.41229227819086 | 7.78806739571085  | 2.02906538869247  |
| 0    | -2.71708643769830 | 8.35833857585586  | -0.39831478693371 |
| С    | 4.93091827715063  | 9.01033040550908  | 2.58054682689924  |
| С    | -3.37111255206375 | 8.03789591338152  | 0.74801508778163  |
| С    | 4.90611218632663  | 10.40352754964930 | 2.66946922926404  |
| Н    | 3.73779404884435  | 7.19575046469453  | 2.53223502882525  |
| С    | 3.73557152478635  | 8.27994065428843  | 2.60497634213489  |
| С    | -4.67595603481154 | 7.36776740500969  | 3.13828302823324  |
| С    | 3.68720010230340  | 11.08373977204370 | 2.78510735541569  |
| Н    | 3.65375073141248  | 12.16757873504320 | 2.85583592677871  |
| Н    | -5.18009525571730 | 7.10969734643794  | 4.06544520139448  |
| Sb   | -0.66527774978873 | 8.25346856087774  | -0.33176084086897 |
| С    | -2.62388905807466 | 7.60322886312017  | 1.87031588024940  |

| С  | 2.51765229261720  | 8.95059485880616  | 2.71798328690216  |
|----|-------------------|-------------------|-------------------|
| С  | -3.28105624796613 | 7.27826590910043  | 3.05980038984542  |
| С  | 2.48997000438302  | 10.36496230966500 | 2.81585994083587  |
| 0  | -0.24772128885822 | 9.87175178835780  | 0.74456717803580  |
| 0  | -1.27125530849015 | 7.54785069470095  | 1.74242784245534  |
| 0  | 1.32630019335050  | 8.28849421948833  | 2.73992839376997  |
| 0  | 1.27808117199518  | 10.95912451015180 | 2.95672609820183  |
| Η  | -2.69041750561615 | 6.95367993460611  | 3.91259036771902  |
| Ι  | -0.69661830521925 | 9.94897144940945  | -2.83468147357161 |
| Sb | -0.26412214435240 | 9.58569668949197  | 2.72378168934746  |
|    |                   |                   |                   |

## **S5** References

- (1) Qiu, J.; Unruh, D. K.; Cozzolino, A. F. J. Phys. Chem. A 2016, 120 (46), 9257–9269.
- (2) Willcott, M. R. J. Am. Chem. Soc. 2009, 131 (36), 13180–13180.
- (3) *Maple*; Maplesoft, a division of Waterloo Maple Inc.: Waterloo, Ontario, 2016.
- (4) R Core Team. *R: A Language and Environment for Statistical Computing*; R Foundation for Statistical Computing: Vienna, Austria, 2017.
- (5) John C. Nash. J. Stat. Softw. 2011, 43 (9), 1–14.
- (6) John C. Nash. J. Stat. Softw. 2014, 40 (2), 1–14.
- (7) Karline Soetaert. *rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of ordinary differential equations.*; R-package.
- (8) Soetaert, K.; Herman, P. M. J. A practical guide to ecological modelling: using R as a simulation *platform*; Springer: Dordrecht, 2009.
- (9) Thordarson, P. Chem Soc Rev 2011, 40 (3), 1305–1323.
- (10) Biros, S. M.; Bridgewater, B. M.; Villeges-Estrada, A.; Tanski, J. M.; Parkin, G. Inorg. Chem. 2002, 41 (15), 4051–4057.
- (11) Neese, F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2 (1), 73–78.
- (12) van Lenthe, E.; Baerends Evert, J.; Snijders, J. G. J Chem Phys **1993**, 99, 4597–4610.
- (13) Heully, J. L.; Lindgren, I.; Lindroth, E.; Lundqvist, S.; Maartensson-Pendrill, A. M. J Phys B Mol Phys 1986, 19, 2799–2815.
- (14) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32 (7), 1456–1465.
- (15) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297-3305.
- (16) Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97 (4), 2571–2577.
- (17) Weigend, F. Phys. Chem. Chem. Phys. 2006, 8 (9), 1057-1065.
- (18) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140 (4A), A1133-A1138.
- (19) Kendall, R. A.; Früchtl, H. A. Theor. Chem. Acc. 1997, 97 (1-4), 158-163.
- (20) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19 (4), 553–566.
- (21) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102 (11), 1995-2001.