Formation and structure of the ferryl [Fe=O] intermediate in the non-haem iron halogenase SyrB2: classical and QM/MM modelling agree

G. Rugg and H. M. Senn

WestCHEM and School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK

1 Supplementary Computational Details

1.1 Protein structure preparation

The complete protein structure was prepared by A. Jarnuczak¹ using the program Modeller^{2,3}, which creates potential structures for missing loops by constructing an initial loop model, randomly displacing it to generate a number of structures, then carrying out an optimisation of each of these structures at the MM level. 100 such optimised structures were generated, and the most favourable selected according to its $DOPE-HR^4$ score and its RMSD from 2FCT. Next, hydrogen atoms were added and Asn/Gln/His residues checked for flips using Reduce 5,6 via the MolProbity server⁷. The residues Gln11, Asn95, Gln129, and Gln245 were flipped from their conformation in the crystal structure. Finally, the protonation states of all titratable residues were calculated using PropKa^{8,9}. Protonation states of histidine residues are shown in Table S1; all other residues were left in their standard protonation states.

DIC DT	<u>. 110.011au</u>	ton states or monune	, residi
	Residue	Protonation State	
	His69	N ^ε	
	His78	N^{ϵ}	
	His116	N^{δ}	
	His235	N^{δ}	
	His240	N^{ϵ}	
	His261	N^{δ}	
	His268	N ^ε	
	His300	N ^ε	

Table S1: Protonation states of histidine residues

1.2QM calculations on model compounds, atomic charges for non-standard residues

Partial charges for non-standard residues were obtained at the DFT level by fitting to the molecular electrostatic potential according to the Merz-Singh-Kollmann scheme¹⁰; structures were fully optimised at the same level of theory unless indicated otherwise. For compatibility with the Amber ff03 force field¹¹, charges were determined in a polarisable continuum solvent. For the singlet Fe(II) complexes, charges were taken from TPSS-D/def2-TZVP/COSMO($\epsilon = 80$) calculations run with TURBOMOLE¹²⁻¹⁴; charges for the Fe(IV) complexes in the quintet state from B3LYP/def2-TZVP+/PCM($\epsilon = 3.9$) calculations in Gaussian¹⁵; and charges for the substrates from B97-D/def2-TZVP/PCM(water) calculations with Gaussian. For ABA and NVA, a distance constraint was used to ensure that the pantetheine was in the same extended conformation as for **THR**. It was verified that the slightly different choices of exchange–correlation functional and value of ϵ had negligible effect on the fitted charges.

For residues cut by a QM–MM boundary, the charges were corrected such as to ensure that the total charge of the atoms that would become QM atoms summed up to an integer value; by construction, the total charge of the remaining MM atoms is then also an integer value. The corrections required to ensure charge integrity were small; the imbalance was distributed over all atoms of the residue, leading to very small (< 0.01e) changes of the original atomic charges.

1.3 MD simulations

1.3.1 Simulation parameters

MD simulations were run under periodic boundary conditions in a rhombic-dodecahedral box with an image distance of $d \approx 7.88$ nm, chosen to give a minimal simulation volume while maintaining a minimum distance of 1 nm to the solute. The simulation systems were neutralised by the addition of counterions (14 Na⁺ for systems containing substrate). Electrostatic interactions were treated with the particle–mesh Ewald (PME) method ($r_{\rm C} = 1.0$ nm, fourth-order interpolation, tolerance 10^{-5} , grid spacing 0.12 nm). Van der Waals interactions were cut off at $r_{\rm vdW} = 1.0$ nm. Energies and pressures were corrected for long-range dispersion effects.

The simulation stages and parameters are summarised in Table S2. A time step of 2 fs was used throughout. Overall equilibration was judged by convergence of the backbone RMSD according to a series of statistical tests^{16,17}. The production runs were continued to about 20 ns or until conformational equilibration for the active site residues was established. Each trajectory spanned up to 40 ns in total.

_	table 52. Equilibration	procedure for M	1D simulations	s with re(II) a	active-site con	ipiex
Parameter	Energy	Temperature	Equilibra-	Equilibra-	Equilibra-	Final Equilibra-
	Minimisa-	Equilibration	tion Stage	tion Stage	tion Stage	tion/Production
	tion		1	2	3	
Ensemble		NVT	NPT	NPT	NPT	NVT
Integrator	Steepest			Leap-frog		
-	descent					
Duration (ps)		100	400	100	400	until equilibration
Constraints	all bonds to			all bonds		
	hydrogen					
Position restraint	s on 1000	1000	1000	100	0	0
non-H (kJ mol^{-1}	nm^{-1})					
$\tau_{\rm T} ~({\rm ps})$	_	0.1	0.1	0.1	0.1	2
$\tau_{\rm p}~({\rm ps})$	_	_	1	1	1	_

Table S2: Equilibration procedure for MD simulations with Fe(II) active-site complex

1.3.2 Force-field parameters

For the residues containing atoms with non-standard charges, we list here the [atoms] blocks in GROMACS topology format. All atom types (and therefore van der Waals parameters) were standard atom types from either Amber ff03 or GAFF.

$A-H_2O$

; 1	id	at FE	ty] E	pe	:	res nr 1	resid IRO	u name	at : IR	name O	cg nr 1	charge 0.784449	
; 1	id	at Cl	ty]	pe]	res nr 1	resid CLO	u name	at : CL	name O	cg nr 1	charge -0.706289	
;	AKG :	= 20)G										
;	nr	ty	rpe	resi	res	atom	cgnr	charge		mass		; qtot	
		1	с	1209	AKG	С	1	0.77176	53	12.	01000	; qtot -0.083	3
	:	2	0	1209	AKG	0	2	-0.68352	26	16.	00000	; qtot -0.184	1
	:	3	0	1209	AKG	01	3	-0.7040	03	16.	00000	; qtot -0.252	2
	4	4	с	1209	AKG	C1	4	0.32883	31	12.	01000	; qtot -0.319	Э
	!	5	0	1209	AKG	02	5	-0.44647	77	16.	00000	; qtot -0.37	5
		6	c3	1209	AKG	C2	6	-0.05052	28	12.	01000	; qtot -0.469	Э
		7	c3	1209	AKG	CЗ	7	-0.05561	13	12.	01000	; qtot -0.55	1
	;	8	с	1209	AKG	C4	8	0.85654	16	12.	01000	; qtot -0.65	5
	1	9	0	1209	AKG	03	9	-0.86957	79	16.	00000	; qtot -0.752	2
		10	0	1209	AKG	04	10	-0.82954	17	16.	00000	; qtot -0.649	Э
		11	hc	1209	AKG	Н	11	-0.00714	13	1.0	0800 ;	qtot -0.760	
		12	hc	1209	AKG	H1	12	-0.00251	13	1.0	0800;	qtot -0.862	
		13	hc	1209	AKG	H2	13	0.03076	52	1.0	0800;	qtot -0.931	
		14	hc	1209	AKG	H3	14	0.06993	32	1.0	0800 ;	qtot -1.000	
;	VOD :	= cc	ord	inated	l wate	r							
;	id a	at t	zype	r	es nr	res 1	name a	t name cg	g nr	char	ge r	nass	

	1	OW			1	VOD	OW	1	-0.799831	16.00	0000	
	2	HW			1	VOD	HW1	1	0.378185	1.008	300	
	3	HW			1	VOD	HW2	1	0.42859	1.0080	00	
;	resi	due	116	HIQ	rtp HIQ	q 0.0						
	1816	5		N	116	HIQ	N	1816	-0.506799	14.01	; qtot	-4.507
	1817	,		Н	116	HIQ	Н	1817	0.351021	1.008	; qtot	-4.156
	1818	3		CT	116	HIQ	CA	1818	0.119066	12.01	; qtot	-4.037
	1819)		H1	116	HIQ	HA	1819	0.137761	1.008	; qtot	-3.899
	1820)		CT	116	HIQ	CB	1820	-0.122638	12.01	; qtot	-4.022
	1821			HC	116	HIQ	HB1	1821	0.086329	1.008	; qtot	-3.935
	1822	2		HC	116	HIQ	HB2	1822	0.086329	1.008	; qtot	-3.849
	1823	3		CC	116	HIQ	CG	1823	0.340433	12.01	; qtot	-3.85
	1824	Ł		NA	116	HIQ	ND1	1824	-0.340626	14.01	; qtot	-4.056
	1825	5		Н	116	HIQ	HD1	1825	0.349008	1.008	; qtot	-3.738
	1826	5		CR	116	HIQ	CE1	1826	-0.085004	12.01	; qtot	-3.591
	1827	•		H5	116	HIQ	HE1	1827	0.175775	1.008	; qtot	-3.469
	1828	3		NB	116	HIQ	NE2	1828	-0.117347	14.01	; qtot	-4.07
	1829)		CV	116	HIQ	CD2	1829	-0.354558	12.01	; qtot	-4.026
	1830)		H4	116	HIQ	HD2	1830	0.156461	1.008	; qtot	-3.916
	1831			С	116	HIQ	С	1831	0.515947	12.01	; qtot	-3.4
	1832	2		0	116	HIQ	0	1832	-0.599831	16	; qtot	-4
;	resi	.due	235	HIX	rtp HIX	q 0.0						
	3655	5		Ν	235	HIX	Ν	3655	-0.506799	14.01	; qtot	-10.51
	3656	5		Н	235	HIX	Н	3656	0.351021	1.008	; qtot	-10.16
	3657	,		СТ	235	HIX	CA	3657	0.119066	12.01	; qtot	-10.04
	3658	3		H1	235	HIX	HA	3658	0.137761	1.008	; qtot	-9.899
	3659)		СТ	235	HIX	CB	3659	-0.122638	12.01	; qtot	-10.02
	3660)		HC	235	HIX	HB1	3660	0.086329	1.008	; qtot	-9.935
	3661	•		HC	235	HIX	HB2	3661	0.086329	1.008	; qtot	-9.849
	3662	2		CC	235	HIX	CG	3662	0.314181	12.01	; qtot	-9.85
	3663	3		NA	235	HIX	ND1	3663	-0.307132	14.01	; qtot	-10.06
	3664	Ŀ		Н	235	HIX	HD1	3664	0.350125	1.008	; qtot	-9.738
	3665	5		CR	235	HIX	CE1	3665	-0.201184	12.01	; qtot	-9.591
	3666	5		Н5	235	HIX	HE1	3666	0.199216	1.008	; qtot	-9.469
	3667	•		NB	235	HIX	NE2	3667	0.134339	14.01	; qtot	-10.07
	3668	3		CV	235	HIX	CD2	3668	-0.428564	12.01	; qtot	-10.03
	3669)		H4	235	HIX	HD2	3669	0.186526	1.008	; qtot	-9.916
	3670)		С	235	HIX	С	3670	0.515947	12.01	; qtot	-9.4
	3671			0	235	HIX	0	3671	-0.599831	16	; qtot	-10

 \mathbf{A}

; 1	id	at tyj FE	pe		res nr 1	residu IRO	name	at name IRO	cg nr 1	charge 0.69874
; 1	id	at tyj Cl	pe		res nr 1	residu CLO	name	at name CLO	cg nr 1	charge -0.64616
;	AKG =	20G								
;	nr	type	resi	res	atom	cgnr	charge	mass		; qtot
	1	с	1209	AKG	C	1	0.700254	l 12.	01000	; qtot -0.111771
	2	0	1209	AKG	0	2	-0.663076	5 16.	00000	; qtot -0.133799
	3	0	1209	AKG	01	3	-0.634775	5 16.	00000	; qtot -0.100448
	4	с	1209	AKG	C1	4	0.376036	5 12.	01000	; qtot -0.094001
	5	0	1209	AKG	02	5	-0.451993	3 16.	00000	; qtot -0.071065
	6	c3	1209	AKG	C2	6	-0.084148	3 12.	01000	; qtot -0.105823
	7	c3	1209	AKG	CЗ	7	-0.053219) 12.	01000	; qtot -0.080459
	8	с	1209	AKG	C4	8	0.860231	12.	01000	; qtot -0.099629
	9	0	1209	AKG	03	9	-0.870025	5 16.	00000	; qtot -0.130951

	10	0	1209	AKG	04	10	-0.8280	16.0000	0 ; qtot	-0	.08134	49
	11	hc	1209	AKG	Н	11	-0.0066	338 1.0080	0 ; qtot	-0	.06559	9
	12	hc	1209	AKG	H1	12	-0.0048	1.0080	0 ; qtot	-0	.0607	75
	13	hc	1209	AKG	H2	13	0.041	1.0080	0 ; qtot	-0	. 1297	52
	14	hc	1209	AKG	НЗ	14	0.0764	1.0080	0 ; qtot	-0	. 1155	77
									_			
;	residue	116	HIQ	rtp HIQ	q 0.	0						
	1816		Ν	116	HIQ	N	1816	-0.506799	14.01	;	qtot	-4.507
	1817		Н	116	HIQ	Н	1817	0.351021	1.008	;	qtot	-4.156
	1818		СТ	116	HIQ	CA	1818	0.119066	12.01	;	qtot	-4.037
	1819		H1	116	HIQ	HA	1819	0.137761	1.008	;	qtot	-3.899
	1820		СТ	116	HIQ	CB	1820	-0.122638	12.01	;	qtot	-4.022
	1821		HC	116	HIQ	HB1	1821	0.086329	1.008	;	qtot	-3.935
	1822		HC	116	HIQ	HB2	1822	0.086329	1.008	;	qtot	-3.849
	1823		CC	116	HIQ	CG	1823	0.357995	12.01	;	qtot	-3.85
	1824		NA	116	HIQ	ND1	1824	-0.349642	14.01	;	qtot	-4.056
	1825		Н	116	HIQ	HD1	1825	0.353283	1.008	;	qtot	-3.738
	1826		CR	116	HIQ	CE1	1826	-0.11849	12.01	;	qtot	-3.591
	1827		H5	116	HIQ	HE1	1827	0.191526	1.008	;	qtot	-3.469
	1828		NB	116	HIQ	NE2	1828	-0.042566	14.01	;	qtot	-4.07
	1829		CV	116	HIQ	CD2	1829	-0.392046	12.01	;	qtot	-4.026
	1830		H4	116	HIQ	HD2	1830	0.181364	1.008	;	qtot	-3.916
	1831		С	116	HIQ	C	1831	0.515947	12.01	;	qtot	-3.4
	1832		0	116	HIQ	0	1832	-0.599831	16	;	qtot	-4
;	residue	235	HIX	rtp HIX	q 0.	0						
	3655		Ν	235	HIX	N	3655	-0.506799	14.01	;	qtot	-10.51
	3656		Н	235	HIX	Н	3656	0.351021	1.008	;	qtot	-10.16
	3657		CT	235	HIX	CA	3657	0.119066	12.01	;	qtot	-10.04
	3658		H1	235	HIX	HA	3658	0.137761	1.008	;	qtot	-9.899
	3659		СТ	235	HIX	CB	3659	-0.122638	12.01	;	qtot	-10.02
	3660		HC	235	HIX	HB1	3660	0.086329	1.008	;	qtot	-9.935
	3661		HC	235	HIX	HB2	3661	0.086329	1.008	;	qtot	-9.849
	3662		CC	235	HIX	CG	3662	0.303336	12.01	;	qtot	-9.85
	3663		NA	235	HIX	ND1	3663	-0.329661	14.01	;	qtot	-10.06
	3664		Н	235	HIX	HD1	3664	0.347334	1.008	;	qtot	-9.738
	3665		CR	235	HIX	CE1	3665	-0.031523	12.01	;	qtot	-9.591
	3666		H5	235	HIX	HE1	3666	0.143737	1.008	;	qtot	-9.469
	3667		NB	235	HIX	NE2	3667	-0.11523	14.01	;	qtot	-10.07
	3668		CV	235	HIX	CD2	3668	-0.294443	12.01	;	qtot	-10.03
	3669		H4	235	HIX	HD2	3669	0.15065	1.008	;	qtot	-9.916
	3670		С	235	HIX	C	3670	0.515947	12.01	;	qtot	-9.4
	3671		0	235	HIX	0	3671	-0.599831	16	;	qtot	-10

;	id	at ty	ре		res nr	residu	ı name	at name	cg nr	charge
1		FE		1		FER		IRO	1	0.684248
2		0		1		FER		FEO	1	-0.445369
;	id	at ty	pe		res nr	residu	1 name	at name	cg nr	charge
1		Cl			1	CLO		CLO	1	-0.531291
;	\mathbf{nr}	type	resi	res	atom	cgnr	charge	mass		; qtot
	1	0	1	SUC	0	1	-0.636592	16.0	0000;	qtot -0.246
	2	с	1	SUC	С	2	0.598324	12.0	1000 ;	qtot 0.110
	3	0	1	SUC	01	3	-0.345319	16.0	0000;	qtot -0.136
	4	c3	1	SUC	C1	4	-0.127374	12.0	1000 ;	qtot -0.077
	5	c3	1	SUC	C2	5	-0.056894	12.0	1000 ;	qtot -0.017
	6	с	1	SUC	C3	6	0.862099	12.0	1000 ;	qtot 0.339
	7	о	1	SUC	02	7	-0.882571	16.0	0000;	qtot 0.093
	8	о	1	SUC	03	8	-0.812840	16.0	0000;	qtot -0.154

	9	hc	1	SUC	Н	9 -	-0.007683	1.00800); qtot	-0.115	
	10	hc	1	SUC	H1 1	.0	0.017870	1.00800); qtot	-0.077	
	11	hc	1	SUC	H2 1	.1	0.030399	1.00800); qtot	-0.038	
	12	hc	1	SUC	H3 1	.2	0.029686	1.00800); qtot	-0.000	
;	residue	e 116	HIQ	rtp HIQ	q 0.0)					
	1816		Ν	116	HIQ	N	1816	-0.506799	14.01	; qtot	-4.507
	1817		Н	116	HIQ	Н	1817	0.351021	1.008	; qtot	-4.156
	1818		СТ	116	HIQ	CA	1818	0.119066	12.01	; qtot	-4.037
	1819		H1	116	HIQ	HA	1819	0.137761	1.008	; qtot	-3.899
	1820		СТ	116	HIQ	CB	1820	-0.122638	12.01	; qtot	-4.022
	1821		HC	116	HIQ	HB1	1821	0.086329	1.008	; qtot	-3.935
	1822		HC	116	HIQ	HB2	1822	0.086329	1.008	; qtot	-3.849
	1823		CC	116	HIQ	CG	1823	0.358772	12.01	; qtot	-3.85
	1824		NA	116	HIQ	ND1	1824	-0.372509	14.01	; qtot	-4.056
	1825		Н	116	HIQ	HD1	1825	0.361030	1.008	; qtot	-3.738
	1826		CR	116	HIQ	CE1	1826	0.020964	12.01	; qtot	-3.591
	1827		H5	116	HIQ	HE1	1827	0.157317	1.008	; qtot	-3.469
	1828		NB	116	HIQ	NE2	1828	-0.115046	14.01	; qtot	-4.07
	1829		CV	116	HIQ	CD2	1829	-0.332913	12.01	; qtot	-4.026
	1830		H4	116	HIQ	HD2	1830	0.178074	1.008	; qtot	-3.916
	1831		С	116	HIQ	C	1831	0.515947	12.01	; qtot	-3.4
	1832		0	116	HIQ	0	1832	-0.599831	16	; qtot	-4
;	residue	235	HIX	rtp HIX	q 0.0)					
	3655		Ν	235	HIX	N	3655	-0.506799	14.01	; qtot	-10.51
	3656		Н	235	HIX	Н	3656	0.351021	1.008	; qtot	-10.16
	3657		СТ	235	HIX	CA	3657	0.119066	12.01	; qtot	-10.04
	3658		H1	235	HIX	HA	3658	0.137761	1.008	; qtot	-9.899
	3659		СТ	235	HIX	CB	3659	-0.122638	12.01	; qtot	-10.02
	3660		HC	235	HIX	HB1	3660	0.086329	1.008	; qtot	-9.935
	3661		HC	235	HIX	HB2	3661	0.086329	1.008	; qtot	-9.849
	3662		CC	235	HIX	CG	3662	0.362487	12.01	; qtot	-9.85
	3663		NA	235	HIX	ND1	3663	-0.401630	14.01	; qtot	-10.06
	3664		Н	235	HIX	HD1	3664	0.354126	1.008	; qtot	-9.738
	3665		CR	235	HIX	CE1	3665	0.006603	12.01	; qtot	-9.591
	3666		H5	235	HIX	HE1	3666	0.146663	1.008	; qtot	-9.469
	3667		NB	235	HIX	NE2	3667	-0.098290	14.01	; qtot	-10.07
	3668		CV	235	HIX	CD2	3668	-0.366903	12.01	; qtot	-10.03
	3669		H4	235	HIX	HD2	3669	0.230197	1.008	; qtot	-9.916
	3670		С	235	HIX	C	3670	0.515947	12.01	; qtot	-9.4
	3671		0	235	HIX	0	3671	-0.599831	16	; qtot	-10

; 1 2	id	at ty FE O	pe	1 1	res nr	resi FER FER	du name	at name IRO FEO	cg nr 1 1	charge 0.684248 -0.445369
; 1	id	at ty Cl	rpe		res nr 1	resi CLO	du name	at name CLO	cg nr 1	charge -0.531291
;	nr	type	resi	res	atom	cgnr	charge	mass		; qtot
	1	0	1	SUC	0	1	-0.636592	16.0	0000;	qtot -0.246
	2	с	1	SUC	С	2	0.598324	12.0	1000 ;	qtot 0.110
	3	0	1	SUC	01	3	-0.345319	16.0	0000;	qtot -0.136
	4	c3	1	SUC	C1	4	-0.127374	12.0	1000 ;	qtot -0.077
	5	c3	1	SUC	C2	5	-0.056894	12.0	1000 ;	qtot -0.017
	6	с	1	SUC	C3	6	0.862099	12.0	1000 ;	qtot 0.339
	7	0	1	SUC	02	7	-0.882571	16.0	0000;	qtot 0.093
	8	0	1	SUC	03	8	-0.812840	16.0	0000;	qtot -0.154
	9	hc	1	SUC	Н	9	-0.007683	1.0	0800;	qtot -0.115

	10	hc	1	SUC	H1	10		0.017870	1.00800	; qtot	-0.077
	11	hc	1	SUC	H2	11		0.030399	9 1.00800	; qtot	-0.038
	12	hc	1	SUC	НЗ	12		0.029686	5 1.00800	; qtot	-0.000
;	residue	ə 116	HIQ	rtp HIQ	q 0.	0					
	1816		Ν	116	HIQ		Ν	1816	-0.506799	14.01	; qtot -4.507
	1817		Н	116	HIQ		Н	1817	0.351021	1.008	; qtot -4.156
	1818		СТ	116	HIQ		CA	1818	0.119066	12.01	; qtot -4.037
	1819		H1	116	HIQ		HA	1819	0.137761	1.008	; qtot -3.899
	1820		CT	116	HIQ		CB	1820	-0.122638	12.01	; qtot -4.022
	1821		HC	116	HIQ		HB1	1821	0.086329	1.008	; qtot -3.935
	1822		HC	116	HIQ		HB2	1822	0.086329	1.008	; qtot -3.849
	1823		CC	116	HIQ		CG	1823	0.358772	12.01	; qtot -3.85
	1824		NA	116	HIQ		ND1	1824	-0.372509	14.01	; qtot -4.056
	1825		Н	116	HIQ		HD1	1825	0.361030	1.008	; qtot -3.738
	1826		CR	116	HIQ		CE1	1826	0.020964	12.01	; qtot -3.591
	1827		H5	116	HIQ		HE1	1827	0.157317	1.008	; qtot -3.469
	1828		NB	116	HIQ		NE2	1828	-0.115046	14.01	; qtot -4.07
	1829		CV	116	HIQ		CD2	1829	-0.332913	12.01	; qtot -4.026
	1830		H4	116	HIQ		HD2	1830	0.178074	1.008	; qtot -3.916
	1831		С	116	HIQ		С	1831	0.515947	12.01	; qtot -3.4
	1832		0	116	HIQ		0	1832	-0.599831	16	; qtot -4
;	residue	e 235	HIX	rtp HIX	q 0.	0					
	3655		N	235	HIX		Ν	3655	-0.506799	14.01	; qtot -10.51
	3656		Н	235	HIX		Н	3656	0.351021	1.008	; qtot -10.16
	3657		СТ	235	HIX		CA	3657	0.119066	12.01	; qtot -10.04
	3658		H1	235	HIX		HA	3658	0.137761	1.008	; qtot -9.899
	3659		СТ	235	HIX		CB	3659	-0.122638	12.01	; qtot -10.02
	3660		HC	235	HIX		HB1	3660	0.086329	1.008	; qtot -9.935
	3661		HC	235	HIX		HB2	3661	0.086329	1.008	; qtot -9.849
	3662		CC	235	HIX		CG	3662	0.362487	12.01	; qtot -9.85
	3663		NA	235	HIX		ND1	3663	-0.401630	14.01	; qtot -10.06
	3664		H	235	HIX		HD1	3664	0.354126	1.008	; qtot -9.738
	3665		CR	235	HIX		CE1	3665	0.006603	12.01	; qtot -9.591
	3666		H5	235	HIX		HE1	3666	0.146663	1.008	; qtot -9.469
	3667		NB	235	HIX		NE2	3667	-0.098290	14.01	; qtot -10.07
	3668		CV	235	HIX		CD2	3668	-0.366903	12.01	; qtot -10.03
	3669		H4	235	HIX		HD2	3669	0.230197	1.008	; qtot -9.916
	3670		С	235	HIX		С	3670	0.515947	12.01	; qtot -9.4
	3671		0	235	HIX		0	3671	-0.599831	16	; qtot -10

; 1 2	id	at ty FE O	ре	1 1	res nr	resi FER FER	du name	at name IRO FEO	cg nr 1 1	charge 1.000264 -0.50310004
; 1	id	at ty Cl	ре		res nr 1	resi CLO	du name	at name CLO	cg nr 1	charge -0.575058
;	nr	type	resi	res	atom	cgnr	charge	mass		; qtot
	1	0	1	SUC	0	1	-0.647829	16.0	00000;	qtot -0.246
	2	с	1	SUC	С	2	0.744445	12.0	1000 ;	qtot 0.110
	3	о	1	SUC	01	3	-0.652057	16.0	0000 ;	qtot -0.136
	4	c3	1	SUC	C1	4	-0.113137	12.0	1000 ;	qtot -0.077
	5	c3	1	SUC	C2	5	-0.037569	12.0	1000 ;	qtot -0.017
	6	с	1	SUC	C3	6	0.855608	12.0	1000 ;	qtot 0.339
	7	0	1	SUC	02	7	-0.837781	16.0	, 0000	qtot 0.093
	8	0	1	SUC	03	8	-0.878422	16.0	, 0000	qtot -0.154
	9	hc	1	SUC	Н	9	0.000406	1.00	800 ; q	ltot -0.115
	10	hc	1	SUC	H1	10	-0.008403	1.00	800 ; q	ltot -0.077

	11	hc	1	SUC	H2	11		0.03298	4	1.00800	;	qtot	-0.0	38	
	12	hc	1	SUC	HЗ	12		0.05337	5	1.00800	;	qtot	-0.0	00	
	rogiduc	116	υтο	rtn UTO	a 0	0									
,	1816	: 110	лтқ м	116	ч о што	.0	N	1816	-0	506700		1/ 01		atot	-4 507
	1817		и Ц	116	ито		ц	1817	0	351021		1 008	,	qtot	-/ 156
	1818		СТ	116	нто		CA	1818	0	119066		12 01	,	atot	-4 037
	1819		ы 1	116	нто		нΔ	1819	0	137761		1 008	,	atot	-3 800
	1820		СТ	116	нто		CB	1820	-0	122638		12 01	,	atot	-4 022
	1821		HC	116	нто		HR1	1821	0	086329		1 008	,	atot	-3 935
	1822		HC	116	нто		HB2	1822	0	086329		1 008	,	atot	-3 849
	1823		CC	116	нто		CG	1823	0	442784		12.01	;	atot	-3.85
	1824		NA	116	HIQ		ND1	1824	-0	444119		14.01	;	atot	-4.056
	1825		Н	116	HIQ		HD1	1825	0	368646		1.008	:	atot	-3.738
	1826		CR.	116	ніо		CE1	1826	0	053689		12.01	;	atot	-3.591
	1827		H5	116	HIQ		HE1	1827	0	155198		1.008	;	qtot	-3.469
	1828		NB	116	HIQ		NE2	1828	-0	112765		14.01	;	qtot	-4.07
	1829		CV	116	, HIQ		CD2	1829	-0	449950		12.01	;	qtot	-4.026
	1830		H4	116	, HIQ		HD2	1830	0	194227		1.008	;	qtot	-3.916
	1831		С	116	HIQ		С	1831	0	515947		12.01	;	qtot	-3.4
	1832		0	116	HIQ		0	1832	-0	599831		16	;	qtot	-4
;	residue	235	HIX	rtp HIX	q 0	.0									
	3655		Ν	235	HIX		Ν	3655	-0	.506799		14.01	;	qtot	-10.51
	3656		Н	235	HIX		Н	3656	0	.351021		1.008	;	qtot	-10.16
	3657		СТ	235	HIX		CA	3657	0	.119066		12.01	;	qtot	-10.04
	3658		H1	235	HIX		HA	3658	0	.137761		1.008	;	qtot	-9.899
	3659		СТ	235	HIX		CB	3659	-0	. 122638		12.01	;	qtot	-10.02
	3660		HC	235	HIX		HB1	3660	0	.086329		1.008	;	qtot	-9.935
	3661		HC	235	HIX		HB2	3661	0	.086329		1.008	;	qtot	-9.849
	3662		CC	235	HIX		CG	3662	0	. 308498		12.01	;	qtot	-9.85
	3663		NA	235	HIX		ND1	3663	-0	.302183	1	4.01	;	qtot ·	-10.06
	3664		Н	235	HIX		HD1	3664	0	.343071		1.008	;	qtot	-9.738
	3665		CR	235	HIX		CE1	3665	-0	. 102242		12.01	;	qtot	-9.591
	3666		H5	235	HIX		HE1	3666	0	. 171566		1.008	;	qtot	-9.469
	3667		NB	235	HIX		NE2	3667	-0	.016128		14.01	;	qtot	-10.07
	3668		CV	235	HIX		CD2	3668	-0	.351546		12.01	;	qtot	-10.03
	3669		H4	235	HIX		HD2	3669	0	173122		1.008	;	qtot	-9.916
	3670		C	235	HIX		C	3670	0	.515947		12.01	;	qtot	-9.4
	3671		0	235	HTX		0	3671	-0	. 599831		16	;	qtot	-10

${\bf Substrate-D4}$

; 1 2	id	at ty FE O	ре	1 1	res nr	resi FER FER	du name	at name IRO FEO	cg nr 1 1	charge 1.034717 -0.574945
; 1	id	at ty Cl	ре		res nr 1	resi CLO	du name	at name CLO	cg nr 1	charge -0.550890
					_				_	
;	\mathbf{nr}	type	resi	res	atom	cgnr	charge	mass		; qtot
	1	0	1	SUC	0	1	-0.669822	16.0	0000;	qtot -0.246
	2	с	1	SUC	С	2	0.764680	12.0	1000 ;	qtot 0.110
	3	0	1	SUC	01	3	-0.659302	16.0	0000;	qtot -0.136
	4	c3	1	SUC	C1	4	-0.125507	12.0	1000 ;	qtot -0.077
	5	c3	1	SUC	C2	5	-0.002997	12.0	1000 ;	qtot -0.017
	6	с	1	SUC	C3	6	0.854765	12.0	1000 ;	qtot 0.339
	7	0	1	SUC	02	7	-0.874124	16.0	0000;	qtot 0.093
	8	0	1	SUC	03	8	-0.846563	16.0	0000;	qtot -0.154
	9	hc	1	SUC	Н	9	-0.019375	1.00	800 ; a	tot -0.115
	10	hc	1	SUC	H1	10	-0.013920	1.00	800;0	tot -0.077
	11	hc	1	SUC	H2	11	0.059759	1.00	800; 0	- qtot -0.038

	12	hc	1	SUC	H3 1	2	0.03011	.7 1.0080	00 ; qtot -(0.000
;	residue	e 116	HIQ	rtp HIQ	q 0.0					
	1816		N	116	HIQ	N	1816	-0.506799	14.01	; qtot -4.507
	1817		Н	116	HIQ	Н	1817	0.351021	1.008	; qtot -4.156
	1818		СТ	116	HIQ	CA	1818	0.119066	12.01	; qtot -4.037
	1819		H1	116	HIQ	HA	1819	0.137761	1.008	; qtot -3.899
	1820		CT	116	HIQ	CB	1820	-0.122638	12.01	; qtot -4.022
	1821		HC	116	HIQ	HB1	1821	0.086329	1.008	; qtot -3.935
	1822		HC	116	HIQ	HB2	1822	0.086329	1.008	; qtot -3.849
	1823		CC	116	HIQ	CG	1823	0.392287	12.01	; qtot -3.85
	1824		NA	116	HIQ	ND1	1824	-0.365249	14.01	; qtot -4.056
	1825		Н	116	HIQ	HD1	1825	0.353521	1.008	; qtot -3.738
	1826		CR	116	HIQ	CE1	1826	-0.036499	12.01	; qtot -3.591
	1827		H5	116	HIQ	HE1	1827	0.183276	1.008	; qtot -3.469
	1828		NB	116	HIQ	NE2	1828	-0.078236	14.01	; qtot -4.07
	1829		CV	116	HIQ	CD2	1829	-0.440544	12.01	; qtot -4.026
	1830		H4	116	HIQ	HD2	1830	0.196387	1.008	; qtot -3.916
	1831		С	116	HIQ	С	1831	0.515947	12.01	; qtot -3.4
	1832		0	116	HIQ	0	1832	-0.599831	16	; qtot -4
;	residue	e 235	HIX	rtp HIX	q 0.0					
	3655		N	235	HIX	N	3655	-0.506799	14.01	; gtot -10.51
	3656		Н	235	HIX	н	3656	0.351021	1.008	; gtot -10.16
	3657		СТ	235	HIX	CA	3657	0.119066	12.01	; qtot -10.04
	3658		H1	235	HIX	HA	3658	0.137761	1.008	; qtot -9.899
	3659		СТ	235	HIX	CB	3659	-0.122638	12.01	; qtot -10.02
	3660		HC	235	HIX	HB1	3660	0.086329	1.008	; qtot -9.935
	3661		HC	235	HIX	HB2	3661	0.086329	1.008	; qtot -9.849
	3662		CC	235	HIX	CG	3662	0.369485	12.01	; qtot -9.85
	3663		NA	235	HIX	ND1	3663	-0.348861	14.01	; qtot -10.06
	3664		Н	235	HIX	HD1	3664	0.351716	1.008	; qtot -9.738
	3665		CR	235	HIX	CE1	3665	-0.066350	12.01	; qtot -9.591
	3666		Н5	235	HIX	HE1	3666	0.172700	1.008	; qtot -9.469
	3667		NB	235	HIX	NE2	3667	0.008000	14.01	; qtot -10.07
	3668		CV	235	HIX	CD2	3668	-0.446081	12.01	; qtot -10.03
	3669		H4	235	HIX	HD2	3669	0.213484	1.008	; qtot -9.916
	3670		С	235	HIX	С	3670	0.515947	12.01	; qtot -9.4
	3671		0	235	HIX	0	3671	-0.599831	16	; qtot -10

;	id	at ty	rpe		res nr	resi	du name	at name	cg nr	charge
1		FE		1		FER		IRO	1	0.793927
2		0		1		FER		FEO	1	-0.578432
;	id	at ty	pe		res nr	resi	du name	at name	cg nr	charge
1		Cl			1	CLO		CLO	1	-0.500775
;	nr	type	resi	res	atom	cgnr	charge	mass		; qtot
	1	0	1	LIG	0	1	-0.709408	16.0	0000;	qtot -0.246
	2	с	1	LIG	С	2	0.787417	12.0	1000 ;	qtot 0.110
	3	о	1	LIG	01	3	-0.515985	16.0	0000;	qtot -0.136
	4	c3	1	LIG	C1	4	-0.309409	12.0	1000 ;	qtot -0.077
	5	c3	1	LIG	C2	5	0.156446	12.0	1000 ;	qtot -0.017
	6	с	1	LIG	CЗ	6	0.748318	12.0	1000 ;	qtot 0.339
	7	0	1	LIG	02	7	-0.852347	16.0	0000;	qtot 0.093
	8	о	1	LIG	03	8	-0.807292	16.0	0000;	qtot -0.154
	9	hc	1	LIG	Н	9	-0.031508	1.	00800	; qtot -0.115
	10	hc	1	LIG	H1	10	-0.067819	1.	00800	; qtot -0.077
	11	hc	1	LIG	H2	11	0.063750	1.	00800	; qtot -0.038
	12	hc	1	LIG	HЗ	12	0.059706	1.	00800	; qtot -0.000
										_

;	residue	116	HIQ	rtp HIQ	q 0.0							
	1816		Ν	116	HIQ	Ν	1816	-0.506799	14.01	;	qtot	-4.507
	1817		Н	116	HIQ	Н	1817	0.351021	1.008	;	qtot	-4.156
	1818		CT	116	HIQ	CA	1818	0.119066	12.01	;	qtot	-4.037
	1819		H1	116	HIQ	HA	1819	0.137761	1.008	;	qtot	-3.899
	1820		CT	116	HIQ	CB	1820	-0.122638	12.01	;	qtot	-4.022
	1821		HC	116	HIQ	HB1	1821	0.086329	1.008	;	qtot	-3.935
	1822		HC	116	HIQ	HB2	1822	0.086329	1.008	;	qtot	-3.849
	1823		CC	116	HIQ	CG	1823	0.339699	12.01	;	qtot	-3.85
	1824		NA	116	HIQ	ND1	1824	-0.312577	14.01	;	qtot	-4.056
	1825		Н	116	HIQ	HD1	1825	0.338124	1.008	;	qtot	-3.738
	1826		CR	116	HIQ	CE1	1826	-0.090369	12.01	;	qtot	-3.591
	1827		H5	116	HIQ	HE1	1827	0.179567	1.008	;	qtot	-3.469
	1828		NB	116	HIQ	NE2	1828	-0.116037	14.01	;	qtot	-4.07
	1829		CV	116	HIQ	CD2	1829	-0.266276	12.01	;	qtot	-4.026
	1830		H4	116	HIQ	HD2	1830	0.193220	1.008	;	qtot	-3.916
	1831		С	116	HIQ	С	1831	0.515947	12.01	;	qtot	-3.4
	1832		0	116	HIQ	0	1832	-0.599831	16	;	qtot	-4
;	residue	235	HIX	rtp HIX	q 0.0							
	3655		N	235	HIX	N	3655	-0.506799	14.01	;	qtot	-10.51
	3656		Н	235	HIX	Н	3656	0.351021	1.008	;	qtot	-10.16
	3657		CT	235	HIX	CA	3657	0.119066	12.01	;	qtot	-10.04
	3658		H1	235	HIX	HA	3658	0.137761	1.008	;	qtot	-9.899
	3659		CT	235	HIX	CB	3659	-0.122638	12.01	;	qtot	-10.02
	3660		HC	235	HIX	HB1	3660	0.086329	1.008	;	qtot	-9.935
	3661		HC	235	HIX	HB2	3661	0.086329	1.008	;	qtot	-9.849
	3662		CC	235	HIX	CG	3662	0.358329	12.01	;	qtot	-9.85
	3663		NA	235	HIX	ND1	3663	-0.324563	14.01	;	qtot	-10.06
	3664		H	235	HIX	HD1	3664	0.343920	1.008	;	qtot	-9.738
	3665		CR	235	HIX	CE1	3665	-0.145887	12.01	;	qtot	-9.591
	3666		H5	235	HIX	HE1	3666	0.192682	1.008	;	qtot	-9.469
	3667		NB	235	HIX	NE2	3667	0.139527	14.01	;	qtot	-10.07
	3668		CV	235	HIX	CD2	3668	-0.474968	12.01	;	qtot	-10.03
	3669		H4	235	HIX	HD2	3669	0.274650	1.008	;	qtot	-9.916
	3670		C	235	HIX	С	3670	0.515947	12.01	;	qtot	-9.4
	3671		0	235	HIX	0	3671	-0.599831	16	;	qtot	-10

 \mathbf{THR}

nr	type	resi	res	atom	cgnr	charge	mass		; qtot bond_type
1	c3	1	LIG	С	1	0.028003	12.01000	;	qtot 0.028
2	os	1	LIG	0	2	-0.185718	16.00000 ;	;	qtot -0.158
3	c3	1	LIG	С	3	-0.317708	12.01000	;	qtot -0.475
4	c3	1	LIG	С	4	0.411177	12.01000	;	qtot -0.064
5	c3	1	LIG	С	5	-0.404402	12.01000	;	qtot -0.469
6	c3	1	LIG	С	6	-0.289491	12.01000	;	qtot -0.758
7	c3	1	LIG	С	7	-0.195934	12.01000	;	qtot -0.954
8	oh	1	LIG	0	8	-0.580049	16.00000 ;	;	qtot -1.534
9	ho	1	LIG	Н	9	0.396549	1.00800 ;	;	qtot -1.138
10	с	1	LIG	С	10	0.704642	12.01000	;	qtot -0.433
11	0	1	LIG	0	11	-0.621570	16.00000 ;	;	qtot -1.055
12	n	1	LIG	Ν	12	-0.498288	14.01000	;	qtot -1.553
13	hn	1	LIG	Н	13	0.323545	1.00800 ;	;	qtot -1.229
14	c3	1	LIG	С	14	0.332134	12.01000	;	qtot -0.897
15	c3	1	LIG	С	15	-0.540514	12.01000	;	qtot -1.438
16	с	1	LIG	С	16	0.726795	12.01000	;	qtot -0.711
17	n	1	LIG	Ν	17	-0.718367	14.01000	;	qtot -1.429
18	hn	1	LIG	Н	18	0.459514	1.00800 ;	;	qtot -0.970
19	0	1	LIG	0	19	-0.546523	16.00000 ;	;	qtot -1.516
20	c3	1	LIG	С	20	0.064949	12.01000	;	qtot -1.451
	nr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20	rr type 1 c3 2 os 3 c3 4 c3 5 c3 6 c3 7 c3 8 oh 9 ho 10 c 11 o 12 n 13 hn 14 c3 15 c3 16 c 17 n 18 hn 19 o 20 c3	r type resi 1 c3 1 2 os 1 3 c3 1 4 c3 1 5 c3 1 6 c3 1 7 c3 1 8 oh 1 9 ho 1 10 c 1 12 n 1 13 hn 1 14 c3 1 15 c3 1 16 c 1 17 n 1 18 hn 1 19 o 1 10 c3 1 12 n 1 13 hn 1 14 c3 1 15 c3 1 18 hn 1 19 o 1 20 c3 1	type resi resi 1 c3 1 LIG 2 os 1 LIG 3 c3 1 LIG 4 c3 1 LIG 5 c3 1 LIG 6 c3 1 LIG 7 c3 1 LIG 8 oh 1 LIG 9 ho 1 LIG 10 c 1 LIG 11 o 1 LIG 12 n 1 LIG 12 n 1 LIG 12 n 1 LIG 13 hn 1 LIG 14 c3 1 LIG 15 c3 1 LIG 16 c 1 LIG 18 hn 1 LIG 19 o 1 LIG <	r type resi res atom 1 $c3$ 1 LIG C 2 os 1 LIG C 3 $c3$ 1 LIG C 4 $c3$ 1 LIG C 5 $c3$ 1 LIG C 6 $c3$ 1 LIG C 6 $c3$ 1 LIG C 6 $c3$ 1 LIG C 7 $c3$ 1 LIG C 8 oh 1 LIG D 9 ho 1 LIG C 10 c 1 LIG D 12 n 1 LIG N 13 hn 1 LIG C 14 $c3$ 1 LIG C 15 $c3$ 1 LIG N 18 hn 1 LIG N 18 hn 1 <td>rtyperesiresatomcgnr1$c3$1LIGC12os1LIG023$c3$1LIGC34$c3$1LIGC45$c3$1LIGC56$c3$1LIGC67$c3$1LIGC78oh1LIGM910c1LIGH910c1LIGM1213hn1LIGN1214$c3$1LIGC1415$c3$1LIGC1617n1LIGN1718hn1LIGH1819o1LIG01920$c3$1LIGC20</td> <td>rtyperesiresatomcgnrcharge1c31LIGC1$0.028003$2os1LIG02$-0.185718$3c31LIGC3$-0.317708$4c31LIGC4$0.411177$5c31LIGC5$-0.404402$6c31LIGC6$-0.289491$7c31LIGC7$-0.195934$8oh1LIGD8$-0.580049$9ho1LIGH9$0.396549$10c1LIGC10$0.704642$11o1LIGN12$-0.498288$13hn1LIGN12$-0.498288$13hn1LIGC14$0.332134$14c31LIGC16$0.726795$17n1LIGN17$-0.718367$18hn1LIGH18$0.459514$19o1LIGD19$-0.546523$20c31LIGC20$0.064949$</td> <td>rtyperesiresatomcgnrchargemass1c31LIGC1$0.028003$$12.01000$2os1LIG02$-0.185718$$16.00000$3c31LIGC3$-0.317708$$12.01000$4c31LIGC4$0.411177$$12.01000$5c31LIGC5$-0.404402$$12.01000$6c31LIGC6$-0.289491$$12.01000$7c31LIGC7$-0.195934$$12.01000$8oh1LIG08$-0.580049$$16.00000$9ho1LIGH9$0.396549$$1.00800$10c1LIGC$10$$0.704642$$12.01000$11o1LIGN$12$$-0.498288$$14.01000$12n1LIGN$12$$-0.498288$$14.01000$13hn1LIGC$14$$0.332134$$12.01000$14c31LIGC$16$$0.726795$$12.01000$15c31LIGC$16$$0.726795$$12.01000$16c1LIGN$17$$-0.718367$$14.01000$18hn1LIGN$17$$-0.546523$$16.00000$19</td> <td>nrtyperesiresatomcgnrchargemass1c31LIGC1$0.028003$$12.01000$;2os1LIG02$-0.185718$$16.00000$;3c31LIGC3$-0.317708$$12.01000$;4c31LIGC4$0.411177$$12.01000$;5c31LIGC5$-0.404402$$12.01000$;6c31LIGC6$-0.289491$$12.01000$;7c31LIGC7$-0.195934$$12.01000$;8oh1LIG08$-0.580049$$16.00000$;9ho1LIGH9$0.396549$$1.00800$;10c1LIGC10$0.704642$$12.01000$;11o1LIGN$12$$-0.498288$$14.01000$;12n1LIGN$12$$-0.498288$$14.01000$;13hn1LIGC14$0.332134$$12.01000$;14c31LIGC16$0.726795$$12.01000$;15c31LIGC16$0.726795$$12.01000$;16c1LIGN17$-0.718367$$14.01000$;18hn1LIGN17$-0.546523$$16.00000$;19</td>	rtyperesiresatomcgnr1 $c3$ 1LIGC12os1LIG023 $c3$ 1LIGC34 $c3$ 1LIGC45 $c3$ 1LIGC56 $c3$ 1LIGC67 $c3$ 1LIGC78oh1LIGM910c1LIGH910c1LIGM1213hn1LIGN1214 $c3$ 1LIGC1415 $c3$ 1LIGC1617n1LIGN1718hn1LIGH1819o1LIG01920 $c3$ 1LIGC20	rtyperesiresatomcgnrcharge1c31LIGC1 0.028003 2os1LIG02 -0.185718 3c31LIGC3 -0.317708 4c31LIGC4 0.411177 5c31LIGC5 -0.404402 6c31LIGC6 -0.289491 7c31LIGC7 -0.195934 8oh1LIGD8 -0.580049 9ho1LIGH9 0.396549 10c1LIGC10 0.704642 11o1LIGN12 -0.498288 13hn1LIGN12 -0.498288 13hn1LIGC14 0.332134 14c31LIGC16 0.726795 17n1LIGN17 -0.718367 18hn1LIGH18 0.459514 19o1LIGD19 -0.546523 20c31LIGC20 0.064949	rtyperesiresatomcgnrchargemass1c31LIGC1 0.028003 12.01000 2os1LIG02 -0.185718 16.00000 3c31LIGC3 -0.317708 12.01000 4c31LIGC4 0.411177 12.01000 5c31LIGC5 -0.404402 12.01000 6c31LIGC6 -0.289491 12.01000 7c31LIGC7 -0.195934 12.01000 8oh1LIG08 -0.580049 16.00000 9ho1LIGH9 0.396549 1.00800 10c1LIGC 10 0.704642 12.01000 11o1LIGN 12 -0.498288 14.01000 12n1LIGN 12 -0.498288 14.01000 13hn1LIGC 14 0.332134 12.01000 14c31LIGC 16 0.726795 12.01000 15c31LIGC 16 0.726795 12.01000 16c1LIGN 17 -0.718367 14.01000 18hn1LIGN 17 -0.546523 16.00000 19	nrtyperesiresatomcgnrchargemass1c31LIGC1 0.028003 12.01000 ;2os1LIG02 -0.185718 16.00000 ;3c31LIGC3 -0.317708 12.01000 ;4c31LIGC4 0.411177 12.01000 ;5c31LIGC5 -0.404402 12.01000 ;6c31LIGC6 -0.289491 12.01000 ;7c31LIGC7 -0.195934 12.01000 ;8oh1LIG08 -0.580049 16.00000 ;9ho1LIGH9 0.396549 1.00800 ;10c1LIGC10 0.704642 12.01000 ;11o1LIGN 12 -0.498288 14.01000 ;12n1LIGN 12 -0.498288 14.01000 ;13hn1LIGC14 0.332134 12.01000 ;14c31LIGC16 0.726795 12.01000 ;15c31LIGC16 0.726795 12.01000 ;16c1LIGN17 -0.718367 14.01000 ;18hn1LIGN17 -0.546523 16.00000 ;19

21	c3	1	LIG	С	21	0.116089	12.01000 ; qtot -1.335	
22	SS	1	LIG	S	22	-0.220764	32.06000 ; qtot -1.556	
23	с	1	LIG	С	23	0.283013	12.01000 ; qtot -1.273	
24	0	1	LIG	0	24	-0.286551	16.00000 ; qtot -1.559	
25	c3	1	LIG	С	25	-0.199664	12.01000 ; qtot -1.759	
26	n4	1	LIG	Ν	26	-0.379375	14.01000 ; qtot -2.139	
27	hn	1	LIG	Н	27	0.326271	1.00800 ; qtot -1.812	
28	hn	1	LIG	Н	28	0.348370	1.00800 ; qtot -1.464	
29	hn	1	LIG	Н	29	0.353612	1.00800 ; qtot -1.110	
30	c3	1	LIG	С	30	0.256880	12.01000 ; qtot -0.853	
31	c3	1	LIG	С	31	-0.545099	12.01000 ; qtot -1.398	
32	oh	1	LIG	0	32	-0.623469	16.00000 ; qtot -2.022	
33	ho	1	LIG	Н	33	0.458110	1.00800 ; qtot -1.564	
34	h1	1	LIG	Н	34	0.023394	1.00800 ; qtot -1.540	
35	h1	1	LIG	Н	35	0.035041	1.00800 ; qtot -1.505	
36	h1	1	LIG	Н	36	0.160190	1.00800 ; qtot -1.345	
37	h1	1	LIG	Н	37	0.121151	1.00800 ; qtot -1.224	
38	h1	1	LIG	Н	38	0.117080	1.00800 ; qtot -1.107	
39	hc	1	LIG	Н	39	0.123884	1.00800 ; qtot -0.983	
40	hc	1	LIG	Н	40	0.092629	1.00800 ; qtot -0.890	
41	hc	1	LIG	Н	41	0.089118	1.00800 ; qtot -0.801	
42	hc	1	LIG	Н	42	0.057960	1.00800 ; qtot -0.743	
43	hc	1	LIG	Н	43	0.041257	1.00800 ; qtot -0.702	
44	hc	1	LIG	Н	44	0.077798	1.00800 ; qtot -0.624	
45	h1	1	LIG	Н	45	0.100299	1.00800 ; qtot -0.524	
46	h1	1	LIG	Н	46	-0.020691	1.00800 ; qtot -0.545	
47	h1	1	LIG	Н	47	0.026070	1.00800 ; qtot -0.519	
48	hc	1	LIG	Н	48	0.151272	1.00800 ; qtot -0.367	
49	hc	1	LIG	Н	49	0.164587	1.00800 ; qtot -0.203	
50	h1	1	LIG	Н	50	0.093264	1.00800 ; qtot -0.110	
51	h1	1	LIG	Н	51	0.079883	1.00800 ; qtot -0.030	
52	h1	1	LIG	Н	52	0.100083	1.00800 ; qtot 0.070	
53	h1	1	LIG	Н	53	0.078269	1.00800 ; qtot 0.149	
54	hx	1	LIG	Н	54	0.220092	1.00800 ; qtot 0.369	
55	h1	1	LIG	Н	55	0.121156	1.00800 ; qtot 0.490	
56	hc	1	LIG	Н	56	0.168836	1.00800 ; qtot 0.659	
57	hc	1	LIG	Н	57	0.191533	1.00800 ; qtot 0.850	
58	hc	1	LIG	Н	58	0.149672	1.00800 ; qtot 1.000	

ABA

;	nr	type	resi	res	atom	cgnr	charge	mass	;	qtot	bond_type
	1	с	1	LIG	С	1	0.563045	12.01000	; qt	ot 0.5	563
	2	n	1	LIG	N	2	-0.541920	14.01000	; qt	ot 0.0)21
	3	hn	1	LIG	Н	3	0.367593	1.00800	; qt	ot 0.3	389
	4	0	1	LIG	0	4	-0.527199	16.00000	; qt	ot -0.	138
	5	c3	1	LIG	C1	5	-0.219109	12.01000	; qt	ot -0.	358
	6	c3	1	LIG	C2	6	0.100436	12.01000	; qt	ot -0.	257
	7	n	1	LIG	N1	7	-0.315634	14.01000	; qt	ot -0.	573
	8	hn	1	LIG	H1	8	0.225383	1.00800	; qt	ot -0.	347
	9	с	1	LIG	C3	9	0.681581	12.01000	; qt	ot 0.3	334
	10	о	1	LIG	01	10	-0.667566	16.00000	; qt	ot -0.	333
	11	c3	1	LIG	C4	11	-0.161290	12.01000	; qt	ot -0.	495
	12	c3	1	LIG	C5	12	0.424332	12.01000	; qt	ot -0.	070
	13	c3	1	LIG	C6	13	-0.309853	12.01000	; qt	ot -0.	380
	14	c3	1	LIG	C7	14	-0.320006	12.01000	; qt	ot -0.	700
	15	c3	1	LIG	C8	15	0.031176	12.01000	; qt	ot -0.	669
	16	os	1	LIG	02	16	-0.271069	16.00000	; qt	ot -0.	940
	17	c3	1	LIG	C9	17	-0.194687	12.01000	; qt	ot -1.	135
	18	oh	1	LIG	03	18	-0.610788	16.00000	; qt	ot -1.	746
	19	ho	1	LIG	H2	19	0.412076	1.00800	; qt	ot -1.	333
	20	c3	1	LIG	C10	20	0.017000	12.01000	; qt	ot -1.	316

21	c3	1	LIG	C11	21	0.013460	12.01000	;	qtot	-1.303
22	SS	1	LIG	S	22	-0.141459	32.06000	;	qtot	-1.444
23	с	1	LIG	C12	23	0.236091	12.01000	;	qtot	-1.208
24	0	1	LIG	04	24	-0.363981	16.00000	;	qtot	-1.572
25	c3	1	LIG	C13	25	0.122405	12.01000	;	qtot	-1.450
26	n4	1	LIG	N2	26	-0.439849	14.01000	;	qtot	-1.890
27	hn	1	LIG	HЗ	27	0.356848	1.00800	;	qtot	-1.533
28	hn	1	LIG	H4	28	0.381851	1.00800	;	qtot	-1.151
29	hn	1	LIG	H5	29	0.334026	1.00800	;	qtot	-0.817
30	c3	1	LIG	C14	30	0.179588	12.01000	;	qtot	-0.638
31	c3	1	LIG	C15	31	-0.303564	12.01000	;	qtot	-0.941
32	hc	1	LIG	H6	32	0.089303	1.00800	;	qtot	-0.852
33	hc	1	LIG	H7	33	0.084175	1.00800	;	qtot	-0.768
34	h1	1	LIG	H8	34	0.063493	1.00800	;	qtot	-0.704
35	h1	1	LIG	Н9	35	0.031689	1.00800	;	qtot	-0.672
36	h1	1	LIG	H10	36	0.086124	1.00800	;	qtot	-0.586
37	hc	1	LIG	H11	37	0.055773	1.00800	;	qtot	-0.531
38	hc	1	LIG	H12	38	0.075055	1.00800	;	qtot	-0.455
39	hc	1	LIG	H13	39	0.058690	1.00800	;	qtot	-0.397
40	hc	1	LIG	H14	40	0.061600	1.00800	;	qtot	-0.335
41	hc	1	LIG	H15	41	0.073139	1.00800	;	qtot	-0.262
42	hc	1	LIG	H16	42	0.064882	1.00800	;	qtot	-0.197
43	h1	1	LIG	H17	43	0.046192	1.00800	;	qtot	-0.151
44	h1	1	LIG	H18	44	0.045894	1.00800	;	qtot	-0.105
45	h1	1	LIG	H19	45	0.123584	1.00800	;	qtot	0.019
46	h1	1	LIG	H20	46	0.093463	1.00800	;	qtot	0.112
47	h1	1	LIG	H21	47	0.091840	1.00800	;	qtot	0.204
48	h1	1	LIG	H22	48	0.092664	1.00800	;	qtot	0.296
49	h1	1	LIG	H23	49	0.092444	1.00800	;	qtot	0.389
50	h1	1	LIG	H24	50	0.130940	1.00800	;	qtot	0.520
51	h1	1	LIG	H25	51	0.077285	1.00800	;	qtot	0.597
52	hx	1	LIG	H26	52	0.112270	1.00800	;	qtot	0.709
53	hc	1	LIG	H27	53	0.022432	1.00800	;	qtot	0.732
54	hc	1	LIG	H28	54	-0.004045	1.00800	;	qtot	0.728
55	hc	1	LIG	H29	55	0.079242	1.00800	;	qtot	0.807
56	hc	1	LIG	H30	56	0.084802	1.00800	;	qtot	0.892
57	hc	1	LIG	H31	57	0.108150	1.00800	;	qtot	1.000

NVA

;	nr	type	resi	res	atom	cgnr	charge	mass	;	qtot	bond_type
	1	с	1	LIG	С	1	0.594353	12.01000	; q	tot O	.594
	2	n	1	LIG	N	2	-0.642777	14.01000	; c	tot -	0.048
	3	hn	1	LIG	Н	3	0.377152	1.00800	; c	tot O	.329
	4	о	1	LIG	0	4	-0.533358	16.00000	; q	tot -	0.205
	5	c3	1	LIG	C1	5	-0.221485	12.01000	; ç	tot -	0.426
	6	c3	1	LIG	C2	6	0.076077	12.01000	; ç	tot -	0.350
	7	n	1	LIG	N1	7	-0.353068	14.01000	; c	tot -	0.703
	8	hn	1	LIG	H1	8	0.245176	1.00800	; q	tot -	0.458
	9	с	1	LIG	CЗ	9	0.689601	12.01000	; ç	tot O	. 232
	10	о	1	LIG	01	10	-0.664014	16.00000	; ç	tot -	0.432
	11	c3	1	LIG	C4	11	-0.160891	12.01000	; q	tot -	0.593
	12	c3	1	LIG	C5	12	0.363843	12.01000	; ç	tot -	0.229
	13	c3	1	LIG	C6	13	-0.351007	12.01000	; ç	tot -	0.580
	14	c3	1	LIG	C7	14	-0.345587	12.01000	; ç	tot -	0.926
	15	c3	1	LIG	C8	15	0.143370	12.01000	; q	tot -	0.783
	16	os	1	LIG	02	16	-0.289542	16.00000	; q	tot -	1.072
	17	c3	1	LIG	C9	17	-0.208274	12.01000	; ç	tot -	1.280
	18	oh	1	LIG	03	18	-0.603889	16.00000	; q	tot -	1.884
	19	ho	1	LIG	H2	19	0.406190	1.00800	; q	tot -	1.478
	20	c3	1	LIG	C10	20	0.229184	12.01000	; q	tot -	1.249
	21	c3	1	LIG	C11	21	-0.019238	12.01000	; q	tot -	1.268

22	SS	1	LIG	S	22	-0.149641	32.06000	;	qtot	-1.418
23	с	1	LIG	C12	23	0.314334	12.01000	;	qtot	-1.103
24	0	1	LIG	04	24	-0.387219	16.00000	;	qtot	-1.491
25	c3	1	LIG	C13	25	0.021667	12.01000	;	qtot	-1.469
26	n4	1	LIG	N2	26	-0.534559	14.01000	;	qtot	-2.004
27	hn	1	LIG	H3	27	0.375569	1.00800	;	qtot	-1.628
28	hn	1	LIG	H4	28	0.412932	1.00800	;	qtot	-1.215
29	hn	1	LIG	H5	29	0.373633	1.00800	;	qtot	-0.841
30	c3	1	LIG	C14	30	-0.032791	12.01000	;	qtot	-0.874
31	c3	1	LIG	C15	31	0.303287	12.01000	;	qtot	-0.571
32	c3	1	LIG	C16	32	-0.372728	12.01000	;	qtot	-0.944
33	hc	1	LIG	H6	33	0.095783	1.00800	;	qtot	-0.848
34	hc	1	LIG	H7	34	0.088785	1.00800	;	qtot	-0.759
35	h1	1	LIG	H8	35	0.073853	1.00800	;	qtot	-0.685
36	h1	1	LIG	H9	36	0.040517	1.00800	;	qtot	-0.645
37	h1	1	LIG	H10	37	0.095754	1.00800	;	qtot	-0.549
38	hc	1	LIG	H11	38	0.069619	1.00800	;	qtot	-0.479
39	hc	1	LIG	H12	39	0.085855	1.00800	;	qtot	-0.394
40	hc	1	LIG	H13	40	0.079225	1.00800	;	qtot	-0.314
41	hc	1	LIG	H14	41	0.067648	1.00800	;	qtot	-0.247
42	hc	1	LIG	H15	42	0.090665	1.00800	;	qtot	-0.156
43	hc	1	LIG	H16	43	0.071043	1.00800	;	qtot	-0.085
44	h1	1	LIG	H17	44	0.026701	1.00800	;	qtot	-0.058
45	h1	1	LIG	H18	45	0.020637	1.00800	;	qtot	-0.038
46	h1	1	LIG	H19	46	0.129349	1.00800	;	qtot	0.092
47	h1	1	LIG	H20	47	0.095040	1.00800	;	qtot	0.187
48	h1	1	LIG	H21	48	0.092330	1.00800	;	qtot	0.279
49	h1	1	LIG	H22	49	0.037340	1.00800	;	qtot	0.316
50	h1	1	LIG	H23	50	0.050219	1.00800	;	qtot	0.367
51	h1	1	LIG	H24	51	0.128813	1.00800	;	qtot	0.495
52	h1	1	LIG	H25	52	0.072863	1.00800	;	qtot	0.568
53	hx	1	LIG	H26	53	0.145235	1.00800	;	qtot	0.714
54	hc	1	LIG	H27	54	0.017256	1.00800	;	qtot	0.731
55	hc	1	LIG	H28	55	0.065916	1.00800	;	qtot	0.797
56	hc	1	LIG	H29	56	-0.036007	1.00800	;	qtot	0.761
57	hc	1	LIG	H30	57	-0.036148	1.00800	;	qtot	0.725
58	hc	1	LIG	H31	58	0.091636	1.00800	;	qtot	0.816
59	hc	1	LIG	H32	59	0.098584	1.00800	;	qtot	0.915
60	hc	1	LIG	H33	60	0.085185	1.00800	:	qtot	1.000

1.4 QM/MM setup

For the purposes of the microiterative QM/MM optimisations¹⁸, the system is divided into an inner region, which is updated less frequently, and an outer region, which is optimised to convergence for every step taken in the inner region. The inner region comprised all residues with at least one QM atom (106 atoms for **THR**). Only atoms in the active region are allowed to move in optimisations; the active region included all residues within 8 Å of any atom in the inner region (1550 atoms for **THR**). The HDLC residues used for optimisations coincided with the standard amino-acid resides of the protein; non-standard components (substrate, active-site iron complex) were grouped into chemically meaningful HDLC residues (substrate, [FeCl(2OG)(O₂)]).

The reaction coordinate was implemented by a harmonic restraint with a force constant of 3.0 $E_{\rm h}a_0^{-2}$.

Figure S1: Partitioning of the system for QM/MM calculations and microiterative optimisations (illustrated for **THR**). Left: QM region (without link atoms). Right: Inner region for microiterative optimisations.

2 Supplementary Results

2.1 Docking

Pose	Affinity (kJ/mol)	$\mathbf{RMSD}(\mathbf{A})$
1	-31.8	0.00
2	-31.4	1.69
3	-31.0	1.86
4	-30.1	2.26
5	-28.9	2.06
6	-28.5	9.75
7	-28.0	9.60
8	-28.0	5.46
9	-28.0	9.43
10	-28.0	7.86

Table S3: The ten docked poses of NVA with highest affinity $\frac{1}{2}$

Pose	Affinity (kJ/mol)	RMSD (A)
1	-32.6	0.00
2	-32.2	1.88
3	-31.4	2.08
4	-30.1	2.44
5	-29.7	9.33
6	-29.3	5.19
7	-29.3	9.51
8	-29.3	9.59
9	-29.3	9.67
10	-29.3	9.704

Table S4: The ten docked poses of ABA with highest affinity

2.2 MD simulations

2.2.1 Simulations of the apoprotein, holoprotein, and substrate-A complexes

In addition to the three substrate– \mathbf{A} complexes, the holoprotein ($\mathbf{A}-\mathbf{H}_2\mathbf{O}$, containing the active-site iron complex with 2OG, Cl, and H₂O ligands, but no substrate) and the apoprotein (i.e., the "bare" protein) were also simulated using the same protocol. In all cases, the equilibrated structures remained very close to the crystal structure of the holoprotein (PDB code 2FCT): the RMSDs (calculated for backbone atoms, averaged over the equilibrated section of the trajectory) were 1.24 Å (apoprotein), 1.15 Å (holoprotein), 1.95 Å (**THR-A**), 1.33 Å (**ABA-A**), 1.24 Å (**NVA-A**).

The conformation of the benzyl side-chain of the "gate-keeper" residue Phe196 is determined by the $C-C^{\alpha}-C^{\beta}-C^{\gamma}$ and $C^{\alpha}-C^{\beta}-C^{\gamma}-C^{\delta}$ torsions (see Table S5). The side-chain conformations for the three docked structures are nearly identical, with the phenyl ring being positioned such as to allow the substrate access to the active-site channel. In the MD simulations, we find different rotamers for the different systems, including cases where two rotamers are significantly populated (Figure S4). As the protein is fully flexible in the MD simulations, the channel and "gate" on the one hand and the bound substrate on the other are able to adjust their conformations to allow a best (induced) fit; for instance, the Phe196 side-chain adopts the "closed" conformation of the holoprotein in **THR-A**. The "gate" is thus more aptly characterised as a "curtain", which can flexibly wrap around, and yield to, an obstacle placed in the doorway.

	Method	$C-C^{\alpha}-C^{\beta}-C^{\gamma}$ (°)	C^{α} - C^{β} - C^{γ} - C^{δ} (°)
\mathbf{A} - $\mathbf{H}_2\mathbf{O}$ (holoprotein)	X-ray	-167	-77
	MD	-170	-68
THR-A	Docking	135	-31
	MD	175	-70
ABA-A	Docking	134	-35
	MD	68, 156	-50
NVA-A	Docking	133	-33
	MD	75	90

Table S5: Side-chain torsions of the "gate-keeper" residue Phe196; values from docking refer to the top pose, MD values are converged averages.

Hydrogen Bonding Partners of the THR OH group

Figure S2: Hydrogen-bonding partners of the **THR-A** OH group over the course of the MD trajectory. Time zero refers to the start of the equilibrated section of the trajectory. 2OG O(1) and O(2) refer to the oxygen atoms of the 2OG tail carboxylate; Glu102 O(1) and O(2) to the carboxylate oxygens of Glu102.

Figure S3: Representative snapshot illustrating the hydrogen-bonding network around the 2OG carboxylate tail as found in the equilibrated structures of **ABA-A** and **NVA-A**.

Figure S4: Distribution of the $C-C^{\alpha}-C^{\beta}-C^{\gamma}$ dihedral angle of Phe196. In the crystal structure of the SyrB2 holoprotein (PDB 2FCT), the value of this torsion is -167° .

2.2.2 Accessibility of the active site for small molecules

Over the course of the catalytic cycle, O_2 is consumed and CO_2 is generated. The crystal structure of the SyrB2 holoprotein features two channels connecting the active-site cavity to the surface: the main substrate channel (T_1) and an allosteric channel (T_2) ; see Figure S5. Two questions arise as to the accessibility of the active site for small molecules: (i) Do the channels identified in the crystal structure remain intact and open during the course of MD? (ii) Does the bound substrate plug the main channel, leaving only (T_2) as a route for small molecules to access the active-site cavity?

The MD trajectories for the holoprotein and the enzyme–substrate complexes were analysed using the program Caver.¹⁹ Caver searches the trajectory frame-by-frame for tunnels, then groups related tunnels from different frames into channels; a tunnel is represented as an "elastic hose", whose shape, length, and diameter vary over the course of the trajectory, reflecting the conformational dynamics of the protein. Each channel is assigned an importance (priority) value according to its length, width, and the duration for which it persists. This value is calculated from a cost function (Eq. 1), which depends on overall length L and the varying radius along the tunnel, r(s); long, narrow tunnels have a high cost. The cost may be understood as a measure of the energy required to traverse the tunnel. The priority (Eq. 2) is then calculated from the cost by Boltzmann-weighting and averaging over time (N is the number of frames). The priority value effectively measures the transport capacity of a channel.

$$C = \int_0^L r(s)^{-2} \mathrm{d}s \tag{1}$$

$$Priority = \frac{1}{N} \sum_{i=1}^{N} e^{-C_i}$$
(2)

The results of this analysis are shown in Table S6. No new channels opened during the MD simulations, but both T_1 and T_2 remained open in all simulations, even when the substrate was bound.

Figure S5: Channels in SyrB2 **THR-A** (T_1 shown in red, T_2 shown in green).

main enamier, as the and service the substrate.									
Simulation		T_1		T_2					
	Priority	r_{\min} (Å)	L (Å)	Priority	r_{\min} (Å)	L (Å)			
Holoprotein	0.192	0.96	21.7	0.081	0.96	23.6			
\mathbf{THR}	0.280	1.00	16.1	0.203	1.00	22.3			
ABA	0.031	0.96	14.8	0.008	0.96	25.1			
	0.009	0.93	29.1						
NVA	0.008	0.96	15.7	0.028	0.94	22.7			

Table S6: Channels leading to active site. r_{\min} is the bottleneck radius, L is the average length. **ABA** yielded two routes through the main channel, above and below the substrate.

2.2.3 Simulations of substrate–D complexes

Figure S6: Representative snapshots of THR-D2 (left) and THR-D5 (right).

Figure S7: Representative snapshots of **ABA-D3** (left), which adopts a stable conformation, and **ABA-D4** (right), which did not settle into a stable conformation during the simulations.

Figure S8: Representative snapshots of **NVA-D2** in the major (left) and minor (right) C³-C⁴ rotamer.

Figure S9: Representative snapshots of **THR-D2** (left) and **ABA-D2** (right). As seen already in the simulations with **B**, **ABA-D** maintains the direct salt bridge between the ammonium group and Glu102 whilst for **THR-D** this salt bridge is indirect, i.e., mediated by a water molecule.

2.2.4 Hydrogen-bond coordination number of the oxido oxygen

In the Mössbauer spectrum of SyrB2 with its native **THR** substrate, two distinct [Fe=O] species are observed²⁰. This was explained by Wong *et al.*²¹ by different numbers of hydrogen bonds to the oxido ligand, rather than by geometrical isomerism²². We therefore analysed the trajectories with the isomers **D1** and **D2** with respect to the hydrogen-bond coordination numbers of the oxido ligand (see Table S7). If we presume that the two species differ by one hydrogen bond, none of the ratios for **THR** (1 vs. 0 and 2 vs. 1 H-bonds, respectively) matches particularly well with the experimental ratio between the two [Fe=O] species of 4:1. For **ABA**, the experimental ratio is 7:1, which agrees nicely with the ratio of 8:1 for 0 vs. 1 H-bond in **ABA-D2**. However, based on these limited data, we can neither support nor reject Wong *et al.*'s proposal.

Substrate	Isomer	% of frames with n H-bonds to oxid								
		n = 0	n = 1	n=2						
\mathbf{THR}	D1	38	55	7						
	$\mathbf{D2}$	26	68	6						
ABA	D1	33	52	14						
	$\mathbf{D2}$	88	11	0						
NVA	D1	26	68	6						
	$\mathbf{D2}$	33	52	14						

Table S7: Prevalence of hydrogen-bond coordination numbers to oxido.

2.3 QM/MM calculations

2.3.1 O_2 complexes

Figure S10: QM/MM-optimised structures of the O_2 complexes in the quintet state, ⁵**B**. Selected bond lengths are given in Å.

Parameter		THR			NVA		
	$S=1^{*}$	S=2	S=3	S=1	S=2	S=3	S=2
Fe–N _{His235} (Å)	2.02	1.99	2.05	1.98	2.00	2.09	2.12
Fe–N _{His116} (Å)	2.11	2.02	2.12	2.00	2.01	2.11	2.13
Fe–Cl (Å)	2.32	2.31	2.27	2.24	2.29	2.24	2.28
Fe–O _P (Å)	2.01	1.95	2.22	1.95	1.94	2.13	2.04
Fe– O_{A1} (Å)	2.06	1.98	2.06	1.95	1.99	2.05	2.02
Fe– O_K (Å)	2.30	2.29	2.08	1.99	2.32	2.28	2.25
O–O (Å)	1.24	1.28	1.28	1.29	1.29	1.28	1.28
$\mathrm{N_{His235}\text{-}Fe\text{-}O_P}~(^\circ)$	169	164	157	178	171	164	158

Table S8: Selected structural parameters of the O₂ complexes **B**. (*The structure of **THR-B** (S = 1) was optimised at def2-SVP level.)

Figure S11: Schematic representation of the electronic structures of the O₂ complexes with S = 1, 2, 3. For **THR** and **ABA** (S = 3) and **NVA** (S = 2), the other direct donor atoms together carry another ~0.5 majority spins, which is included in the Fe spin count in the schematic.

2.3.2 O2 complexes: QM/MM vs. HYSCORE

The pulsed-EPR (HYSCORE) experiments of Martinie *et al.*²³ provide distance and angle measurements between O_p , Fe, and specific hydrogens of the substrate; see Figure S12. In the experiment, NO is used as a non-reactive, EPR-active structural mimick of O_2 , and substrates need to be deuterated at the position to be measured. Comparing to QM/MM-optimised structures, distances agree well, but angles do not (Table S12).

Figure S12: Structure of NVA-⁵B, with the Fe–(C⁵)H distance and the O_p –Fe–(C⁵)H angle highlighted in green and orange, respectively.

Table S9: Fe–H distances and O–Fe–H angles in O_2 complexes **B** from QM/MM optimisations and HYSCORE experiments²³.

		THR		Al	BA	NVA		
		$(C^3)H$ $(C^4)H$		$(C^3)H$ $(C^4)H$		$(C^4)H$	$(C^5)H$	
Fe-H (Å)	QM/MM	4.42	4.11	4.3	3.9	3.2	5.14	
	Expt	4.7 ± 0.4	4.2 ± 0.3	4.7 ± 0.3	3.7 ± 0.2	3.7 ± 0.3	3.4 ± 0.3	
O_p –Fe– $(C^3)H$ (°)	QM/MM	10	24	39	25	50	65	
	Expt	81 ± 10	85 ± 10	85 ± 10	85 ± 10	64 ± 7	81 ± 15	

2.3.3 O_2 activation/decarboxylation intermediates

structure of THR- [°] B was optimised at def2-SVP level.)													
Substrate	Parameter	${}^{3}\mathbf{B}$	$^{3}C1$	$^{3}C2a$	${}^{3}\mathbf{D}$	$^{5}\mathbf{B}$	${}^{5}\mathrm{C1}$	${}^{5}\mathrm{C2a}$	$^{5}C2c$	${}^{5}\mathbf{D}$	$^{7}\mathbf{B}$	7 C2b	$^{7}\mathrm{D}$
THR	Fe–N ₂₃₅ (Å)	2.05*	1.98	2.27	1.94	1.99	2.09	2.15		2.10	2.05	2.09	2.07
	Fe–N ₁₁₆ (Å)	2.12*	1.98	2.02	2.10	2.02	2.01	2.13		2.10	2.12	2.11	2.16
	Fe–Cl (Å)	2.27^{*}	2.27	2.28	2.29	2.31	2.25	2.32		2.25	2.27	2.25	2.32
	$Fe-O_p$ (Å)	2.22^{*}	1.82	1.91	1.60	1.95	2.40	2.05		1.63	2.22	1.94	1.90
	Fe–O _k (Å)	2.08^{*}	1.84	2.01	1.96	2.29	1.91	2.26		1.93	2.08	2.29	1.92
	O_p-O_d (Å)	1.28^{*}	1.41	1.48		1.28	1.30	1.44			1.28		
	O_d – C^2 (Å)	2.57^{*}	1.45	1.91	1.22	2.25	1.60	1.32		1.22	1.93		1.22
	N_{235} –Fe– O_p (°)	157^{*}	171	165	111	164	157	114		95	157	155	106
ABA	Fe–N ₂₃₅ (Å)	1.98			2.08	2.00	2.11	2.12	2.10	2.07	2.09	2.11	2.07
	Fe–N ₁₁₆ (Å)	2.00		_	1.96	2.01	1.99	2.11	2.10	2.10	2.11	2.17	2.12
	Fe–Cl (Å)	2.24			2.33	2.29	2.26	2.35	2.33	2.26	2.24	2.24	2.36
	Fe–O _p (Å)	1.95		_	1.59	1.94	2.27	2.02	1.77	1.64	2.13	1.98	1.87
	Fe–O _k (Å)	1.99		_	1.99	2.32	2.01	2.33	2.17	1.94	2.28	2.21	1.95
	O_p-O_d (Å)	1.29		_		1.29	1.28	1.44			1.28		—
	O_d – C^2 (Å)	2.23		_	1.23	2.47	2.07	1.32		1.22	2.43		1.23
	N_{235} –Fe– O_p (°)	178		_	156	171	169	139	127	93	164	166	101
NVA	Fe–N ₂₃₅ (Å)	—		_		2.12		2.10		2.05			_
	Fe–N ₁₁₆ (Å)			_		2.13		2.11		2.12	—		—
	Fe–Cl (Å)	_		_	_	2.28	—	2.37		2.29			_
	$Fe-O_p$ (Å)	—		—		2.04	—	2.00		1.63	—		
	Fe–O _k (Å)			—		2.25		2.33		1.95			—
	O_p-O_d (Å)	—		—		1.28		1.45					—
	O_d – C^2 (Å)			—		2.47		1.32		1.22			—
	N_{235} –Fe– O_p (°)					158		132	—	96		—	

Table S10: Selected structural parameters of intermediates along the O_2 activation/decarboxylation pathway, optimised at B3LYP-D3/def-TZVP/MM level. C² designates the keto-carbon of 2OG, labelled as C_K above. (*The structure of **THR**-³**B** was optimised at def2-SVP level.)

Figure S13: Energetic profiles of the reaction coordinate scans for **THR** on the triplet, quintet, and septet surfaces. Large, labelled symbols denote optimised intermediates. Scans and optimisations done at B3LYP-D3/def2-SVP/MM level.

Figure S14: Energetic profiles of the reaction coordinate scans for **ABA** on the triplet, quintet, and septet surfaces. Large, labelled symbols denote optimised intermediates. Scans and optimisations done at B3LYP-D3/def2-SVP/MM level.

Figure S15: Energetic profiles of the reaction coordinate scans for **THR**, **ABA**, and **NVA** on the quintet surface. Large, labelled symbols denote optimised intermediates. Scans and optimisations done at B3LYP-D3/def2-SVP/MM level.

Figure S16: QM/MM-optimised structures of the preferred [Fe=O] species, 5 D1, for the three substrates. In all three structures, Arg254 is hydrogen-bonding with one "arm" each to the oxido oxygen and the free carbonyl oxygen of the succinate ligand.

References

- [1] A. Jarnuczak, MSci Thesis, School of Chemistry, University of Glasgow, 2011.
- [2] A. Šali and T. L. Blundell, J. Mol. Biol., 1993, 234, 779–815.
- [3] Modeller 9v8, 2010.
- [4] A. Fiser, R. K. G. Do and A. Šali, Protein Sci., 2000, 9, 1753–1773.
- [5] J. Word, S. C. Lovell, J. S. Richardson and D. C. Richardson, J. Mol. Biol., 1999, 285, 1735–1747.
- [6] Reduce 3.14, 2010.
- [7] V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson and D. C. Richardson, Acta Crystallogr. Sect. D-Biol. Crystallogr., 2009, 66, 12–21.
- [8] H. Li, A. D. Robertson and J. H. Jensen, Proteins: Struct., Funct., Bioinf., 2005, 61, 704–721.
- [9] *PropKa 2.0*, 2008.
- [10] U. C. Singh and P. A. Kollman, J. Comput. Chem., 1984, 5, 129-145.
- [11] Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang and P. Kollman, J. Comput. Chem., 2003, 24, 1999–2012.
- [12] O. Treutler and R. Ahlrichs, J. Chem. Phys., 1995, 102, 346–354.
- [13] M. Von Arnim and R. Ahlrichs, J. Comput. Chem., 1998, 19, 1746-1757.
- [14] TURBOMOLE V6.4 2012, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TUR-BOMOLE GmbH, since 2007; available from http://www.turbomole.com.
- [15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09 Rev. A.02*, Gaussian Inc., Wallingford, CT, 2009.
- [16] H. M. Senn, S. Thiel and W. Thiel, J. Chem. Theory Comput., 2005, 1, 494–505.
- [17] S. K. Schiferl and D. C. Wallace, J. Chem. Phys., 1985, 83, 5203-5209.
- [18] J. Kästner, S. Thiel, H. M. Senn, P. Sherwood and W. Thiel, J. Chem. Theory Comput., 2007, 3, 1064–1072.
- [19] E. Chovancova, A. Pavelka, P. Benes, O. Strnad, J. Brezovsky, B. Kozlikova, A. Gora, V. Sustr, M. Klvana, P. Medek, L. Biedermannova, J. Sochor and J. Damborsky, *PLoS Comput. Biol.*, 2012, 8, e1002708.
- [20] M. Matthews, C. Krest, E. Barr, F. Vaillancourt, C. Walsh, M. Green, C. Krebs and J. Bollinger Jr, Biochemistry, 2009, 48, 4331–4343.
- [21] S. D. Wong, M. Srnec, M. L. Matthews, L. V. Liu, Y. Kwak, K. Park, C. B. Bell III, E. E. Alp, J. Zhao, Y. Yoda, S. Kitao, M. Seto, C. Krebs, J. M. Bollinger and E. I. Solomon, *Nature*, 2013, 499, 320–323.
- [22] T. Borowski, H. Noack, M. Radon, K. Zych and P. E. M. Siegbahn, J. Am. Chem. Soc., 2010, 132, 12887–12898.
- [23] R. J. Martinie, J. Livada, W. C. Chang, M. T. Green, C. Krebs, J. Bollinger, J. M. and A. Silakov, J. Am. Chem. Soc., 2015, 137, 6912–6919.