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(1)ReaxFF Potential Function

This document contains all the general ReaxFF-potential functions. In the current ReaxFF 

code all the energy contributions in this document are calculated regardless of system 

composition. All parameters that do not bear a direct physical meaning are named after the 

partial energy contribution that they appear in. For example, pval1 and pval2 are parameters in 

the valence angle potential function. Parameters with a more direct physical meaning, like 

the torsional rotational barriers (V1, V2, V3) bear their more recognizable names.

1. Oveall system energy

Equation (1) describes the ReaxFF overall system energy.
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Below follows a description of the partial energies introduced in eq (1).

2. Bond Order and Bond Energy

A fundamental assumption of ReaxFF is that the bond order BO’ij between a pair of atoms can 

be obtained directly from the interatomic distance rij as given in eq (2). In calculating the bond 

orders, ReaxFF distinguishes between contributions from sigma bonds, pi-bonds and double pi 

bonds.
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Based on the uncorrected bond orders BO’, derived from eq (2), an uncorrected overcoordination 

Δ’ can be defined for the atoms as the difference between the total bond order around the atom and 

the number of its bonding electrons Val.
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ReaxFF then uses these uncorrected overcoordination definitions to correct the bond orders BO’ij 

using the scheme described in eq (5-11). To soften the correction for atoms bearing lone electron 

pairs a second overcoordination definition  (eq (4)) is used in eqs (10) and (11). This allows ∆'𝑏𝑜𝑐

atoms like nitrogen and oxygen, which bear lone electron pairs after filling their valence, to break 

up these electron pairs and involve them in bonding without obtaining a full bond order correction.
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A corrected overcoordination Δi can be derived from the corrected bond orders using eq (12).
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Equation (13) is used to calculate the bond energies from the corrected bond orders BOij.
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3. Lone pair energy

Equation (15) is used to determine the number of lone pairs around an atom. is determined in ∆𝑒
𝑖  

eq (7) and describes the difference between the total number of outer shell electrons (6 for oxygen, 

4 for silicon, 1 for hydrogen) and the sum of bond orders around an atomic center.
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For oxygen with normal coordination (total bond order=2, =4), eq (15) leads to 2 lone pairs. ∆𝑒
𝑖

As the total bond order associated with a particular O starts to exceed 2, eq (15) causes a lone pair 

to gradually break up, causing a deviation , defined in eq (16), from the optimal number of lone Δ𝑙𝑝
𝑖

pairs nlp,opt (e.g. 2 for oxygen, 0 for silicon and hydrogen).
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This is accompanied by an energy penalty, as calculated by eq (17).
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4. Overcoordination

For an overcoordinated atom (Δi>0), eqs (18-19) impose an energy penalty on the system. The 

degree of overcoordination Δ is decreased if the atom contains a broken-up lone electron pair. This 

is done by calculating a corrected overcoordination (eq (19)), taking the deviation from the optimal 

number of lone pairs, as calculated in eq (16), into account.
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5. Undercoordination



For an undercoordinated atom (Δi<0), we want to take into account the energy contribution for 

the resonance of the π-electron between attached under-coordinated atomic centers. This is done by 

eq (20) where Eunder is only important if the bonds between under-coordinated atom i and its under-

coordinated neighbors j partly have π-bond character.
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6. Valence Angle Terms

6.1 Angle energy. Just as for bond terms, it is important that the energy contribution from valence 

angle terms goes to zero as the bond orders in the valence angle goes to zero. Equations (22-28) are 

used to calculate the valence angle energy contribution. The equilibrium angle Θo for Θijk depends 

on the sum of π-bond orders (SBO) around the central atom j as described in eq (25). Thus, the 

equilibrium angle changes from around 109.47 for sp3 hybridization (π-bond=0) to 120 for sp2 (π-

bond=1) to 180 for sp (π-bond=2) based on the geometry of the central atom j and its neighbors. In 

addition to including the effects of π-bonds on the central atom j, eq (25) also takes into account the 

effects of over- and under-coordination in central atom j, as determined by eq (26), on the 

equilibrium valency angle, including the influence of a lone electron pair. Valangle is the valency of 

the atom used in the valency and torsion angle evaluation. Valangle is the same as Valboc used in eq 

(4) for non-metals. The functional form of eq (27) is designed to avoid singularities when SBO=0 

and SBO=2. The angles in eqs (22)-(28) are in radians.
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0 0,0 10*{1 exp[ *(2 2)]}valp SBO      ( 28 )

6.2 Penalty energy. To reproduce the stability of systems with two double bonds sharing an atom 

in a valency angle, like allene, an additional energy penalty, as described in eqs (29) and (30), is 

imposed for such systems. Equation (30) deals with the effects of over/undercoordination in central 

atom j on the penalty energy.
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6.3 Three-body conjugation term. The hydrocarbon ReaxFF potential contained only a 

conjugation term, which was sufficient to describe most conjugated hydrocarbon systems. However, 



this term failed to describe the stability obtained from conjugation by the –NO2- group. To describe 

the stability of such groups a three-body conjugation term is included (eq (31)).
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7. Torsion angle terms

7.1 Torsion rotation barriers. Just as with angle terms we need to ensure that dependence of the 

energy of torsion angle ωijkl accounts properly for BO → 0 and for BO greater than 1. This is done 

by eqs (32)-(34).
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7.2 Four body conjugation term. Equations (35-36) describe the contribution of conjugation 

effects to the molecular energy. A maximum contribution of conjugation energy is obtained when 

successive bonds have bond order values of 1.5 as in benzene and other aromatics.
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8. Hydrogen bond interactions

Equation (37) described the bond-order dependent hydrogen bond term for a X-H—Z system as 

incorporated in ReaxFF.
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9. Correction for C2

ReaxFF erroneously predicts that two carbons in the C2-molecule form a very strong (triple) bond, 

while in fact the triple bond would get de-stabilized by terminal radical electrons, and for that reason 

the carbon-carbon bond is not any stronger than a double bond. To capture the stability of C2, the 

partial energy contribution ( ) was introduced. Equation (38) shows the potential function used 
𝐸𝐶2

to de-stabilize the C2 molecule:
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where Δi is the level of under/overcoordination on atom i as obtained from subtracting the valency 

of the atom (4 for carbon) from the sum of the bond orders around that atom and kc2 the force field 

parameter associated with this partial energy contribution.



10. Triple bond energy correction.

To describe the triple bond in carbon monoxide a triple bond stabilization energy is used, making 

CO both stable and inert. This energy term only affects C-O bonded pairs. Equation (39) shows the 

energy function used to describe the triple bond stabilization energy.
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11. Nonbonded interactions

In addition to valence interactions which depend on overlap, there are repulsive interactions at 

short interatomic distances due to Pauli principle orthogonalization and attraction energies at long 

distances due to dispersion. These interactions, comprised of van der Waals and Coulomb forces, 

are included for all atom pairs, thus avoiding awkward alterations in the energy description during 

bond dissociation.

11.1 Taper correction. To avoid energy discontinuities when charged species move in and out 

of the non-bonded cutoff radius ReaxFF employs a Taper correction, as developed by de Vos 

Burchart. Each nonbonded energy and derivative is multiplied by a Taper-term, which is taken from 

a distance-dependent 7th order polynomial (eq (40)).
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11.2 van der Waals interactions. To account for the van der Waals interactions we use a 

distance-corrected Morse-potential (eqs (42-43)). By including a shielded interaction (eq (43)) 

excessively high repulsions between bonded atoms (1-2 interactions) and atoms sharing a valence 

angle (1-3 interactions) are avoided.
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11.3 Coulomb Interactions. As with the van der Waals-interactions, Coulomb interactions are 

taken into account between all atom pairs. To adjust for orbital overlap between atoms at close 

distances a shielded Coulomb-potential is used (eq (44)).
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Atomic charges are calculated using the Electron Equilibration Method (EEM)-approach. The 

EEM charge derivation method is similar to the QEq-scheme; the only differences, apart from 

parameter definitions, are that EEM does not use an iterative scheme for hydrogen charges (as in 

QEq) and that QEq uses a more rigorous Slater orbital approach to account for charge overlap.



(2) MEAM Potential Function

1. Total Energy

The total energy E of a system of atoms in the modified embedded-atom method (MEAM) has 

been shown by the form:
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In this form, the embedding function Fi is the energy to embed an atom of type i into the 

background electron density at site i, фij is a pair interaction between atoms i and j whose �̅�𝑖 

separation is given by Rij.

2. Pair Interaction

Ei is the total energy of the direct contribution from the ith atom and indirection contribution 

through its interaction with its neigbors: 
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where, Zi is the number of nearest neighbors of a type-i atom of reference structure. The reference 

structure is always a equilibrium crystal structure of type-i atoms. 

By limiting the interactions to first neighbors only, a number of important questions about cutoffs 

or screening was introduced.
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where is the background electron density for the reference structure of atom i and R is the �̅�𝑖
0(𝑅) 

nearestneighbor distance. Here  is the energy per atom of the reference structure as a function 𝐸𝑢
𝑖 (𝑅)

of nearest-neighbor distance. Assuming that  is known, we derived the pair interaction for 𝐸𝑢
𝑖 (𝑅)

type-i atoms:
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3. Background Electron Density

The embedded- atom method (EAM) used a linear superposition of spherically averaged atomic 

electron densities, while in the MEAM,  is augmented by an angularly dependent term. The �̅�𝑖

background electron density at each atomic site i is computed considering the directionality of 

bonding, that is, by combining several partial electron density terms for different angular 

contributions with weight factors t(h) (h = 1–3). Each partial electron density is a function of atomic 

configuration and atomic electron density. The atomic electron densities  are given 𝜌𝑎(ℎ) (ℎ = 0 ‒ 4)

as:
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where  is the atomic electron density scaling factor and  decay lengths are adjustable 𝜌0 𝛽(ℎ)

parameters, and re is the nearest-neighbor distance in the equilibrium reference structure.



(3) Means Square Displacement

Diffusion coefficient was obtained by calculating the means square displacement (MSD) as 

follow:

2MSD=<|r(t)-r(0)| > ( 50 )

Δt 0

1 MSD(t+Δt)-MSD(t)D= lim
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where, r represent the position of particle, t is the time and D is the abbreviation of diffusion 

coefficient.

(4) Arrhenius Equation

The diffusion barrier was fitted by using Arrhenius equation:
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where, Ea is the activation energy, D0 is the pre-exponential factor and κ is the Boltzmann factor 

and T represents the temperature.

(5) The top view of all structures in Figure 5

(a) The structures with carbon on different sites on Fe(100)





(b): The structures with carbon on different sites on Fe(110)



(c): The structures with carbon on different sites on Fe(111)



(d): The predicted structures


