Supplementary Information

Spin-polarized transport properties in some transition metal dithiolene complexes

Vu Thi Thu Huong,^a Truong Ba Tai,^a Jyh-Chiang Jiang^b and Minh Tho Nguyen^{a,c,*}

^a Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

^b Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (R.O.C)

^c Institute for Computational Science and Technology (ICST), Ho Chi Minh City, Vietnam Email: minh.nguyen@chem.kuleuven.be

Figure S1 The spin-resolved transmission spectra at zero bias of complexes 1a-1c, 2a-2c and 3a-3c.

Figure S2: The first eigenchannels at Fermi level for complexes 2a-2c and 3a-3c

 α -spin MPSH orbitals of 2a

β-473	β-474	β-475
β-480	β-486	β-493
		- 10 - 12 - 12 - 1
β-495	β-498	β-500

β-506	β-507	

 β -spin MPSH orbitals of 2a

 $\alpha\text{-spin}$ MPSH orbitals of $\mathbf{2b}$

 β -spin MPSH orbitals of **2b**

α-479	α-482	α- 488
	2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	
α-495	α-497	α-501
α-502	α-507	α-508

 $\alpha\text{-spin}$ MPSH orbitals of 2c

 β -spin MPSH orbitals of 2c

 α -spin MPSH orbitals of **3a**

 β -spin MPSH orbitals of **3a**

 α -spin MPSH orbitals of **3b**

 β -spin MPSH orbitals of **3b**

α-479	α-482	α-488
*** ***		
α-495	α-497	α-499

 $\alpha\text{-spin}$ MPSH orbitals of 3c

 β -spin MPSH orbitals of 3c

Figure S4 The shapes of all complexes **1a-3a**, **1b-3b** and **1c-3c** obtained at PBE/6-31G(d,p) level of theory