Supplementary Information

Chemical Surface Exchange of Oxygen on $CeO_{2-\delta}$ in O_2/H_2O atmosphere

Ho-II Ji ac, Xin Xu b, and Sossina M. Haile *abcd

^a Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA ^b Applied Physics, Northwestern University, Evanston, IL 60208, USA

^c Materials Science, California Institute of Technology, Pasadena, CA 91125, USA

^d Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

Calculation of pH₂O at 1400 °C

For converting pH_2O at ~90 °C to that at 1400 °C, the reaction of thermolysis of $H_2O(g)$ is considered as below. Hereafter, subscripts *LT* and *HT* indicate the measured at low and high temperatures, respectively.

$$\begin{array}{cccc} & H_2O(g) & \rightarrow & H_2(g) & + & \frac{1}{2}O_2(g) \\ & \text{initial (90 °C)} & (pH_2O_{LT}/p_{tot}) & \sim 0 & (pO_{2,LT}/p_{tot}) \\ & \text{change} & -x & x & \frac{1}{2}x \\ & \text{final (1400 °C)} & \overline{(pH_2O_{LT}/p_{tot}) - x & x & (pO_{2,LT}/p_{tot}) + \frac{1}{2}x} \end{array}$$
(S1)

where p_{tot} is total pressure considered as 1 atm here, $pO_{2, LT}$ is the oxygen partial pressure at ~90 °C which is unknown, and x is a fractional concentration of H₂O consumed by thermolysis. The pH_2O_{LT} & $pO_{2, HT}$ are the experimentally measured values by the *ex-situ* humidity sensor (~ 90 °C) and *in-situ* oxygen sensor (1400 °C), respectively, at total pressure of 1 atm, therefore,

$$\frac{pO_{2,HT}}{p_{\text{tot}}} = \frac{pO_{2,LT} + (\frac{1}{2}x \cdot p_{\text{tot}})}{p_{\text{tot}} + (\frac{1}{2}x \cdot p_{\text{tot}})}$$
(S2)

$$\frac{pH_2O_{HT}}{p_{tot}} = \frac{pH_2O_{LT} - (x \cdot p_{tot})}{p_{tot} + (\frac{1}{2}x \cdot p_{tot})}$$
(S3)

The expression for the thermodynamic equilibrium constant, $K_{\rm H_2O}$, for reduction reaction at 1400 °C is given

$$K_{\rm H_{2}O, \, red}(1400 \, ^{\circ}\rm{C}) = \frac{x \cdot [(pO_{2,LT}/p_{tot}) + \frac{1}{2}x]^{\frac{1}{2}}}{(pH_{2}O_{LT}/p_{tot}) - x}$$
(S4)

By solving simultaneous equations of Equation (S2) and (S4) for $pO_{2,LT}$ and x, pH_2O at 1400 °C is simply calculated by Equation (S3). The results for actual experimental conditions are summarized in Table S1.

<i>p</i> O ₂ at 1400 °C /	pH_2O at ~ 90 °C /	pO_2 at ~ 90 °C /	<i>p</i> H ₂ O at 1400 °C /
atm	atm	atm	atm
(in-situ)	(<i>ex-situ</i>)	(calculation)	(calculation)
2.258×10^{-4}	0.1640	1.455×10^{-4}	0.1638
3.850 × 10 ⁻⁴	0.1743	3.195×10^{-4}	0.1742
3.922×10^{-4}	0.0750	3.643×10^{-4}	0.0749
3.783 × 10 ⁻⁴	0.0232	3.695×10^{-4}	0.0232
7.694 × 10 ⁻⁴	0.1519	7.291 × 10 ⁻⁴	0.1518
1.378 × 10 ⁻³	0.1637	1.345×10^{-3}	0.1636

Table S1. Thermodynamic calculation of pH_2O at 1400 °C

Figure S1. SEM micrograph of surface of dense ceria.

Figure S2. Normalized conductivity relaxation profiles at various flow rates (a) in dry and (b-c) humidified atmosphere at 1400 °C.

Figure S3. Surface reaction constant of O₂, k_{Chem,O_2} , of ceria as a function of pO_2 at 1400 °C obtained from the best fits to the relaxation profiles in Figure 4 and 5. Shown for comparison is the previous result reported by Ji *et al.*²³