Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supporting information

Computational Details

The chemical potential of each absorbed intermediate μ (*Int) at the electrochemical equilibrium condition is calculated using the following equation:

$$\mu(*Int) = E_{elec} + ZPE + \int C_p dT - TS + G_{solv}$$
$$\mu[X(aq)] = E_{elec} + ZPE + \int C_p dT - TS$$

- (1). ZPE denotes the zero-point energy. The ZPE of the chemical-adsorbed species of all models are approximated using Ru-4N2v-CNT(5,5) model with the site density at 1/8. For the species in the solution phase, including CH₂O, CH₃OH, CH₄, CO, CO₂, H₂, H₂O and HCOOH, the values of ZPE reported in Ref. (a) are adapted and also tabulated in the computational details section of ESI.
- (2). All of the integrals of C_pdT (the enthalpy thermal correction) adapte the results reported by Ref. (a) and (b). These terms are relatively small and at the magnitude of 0.1 eV.
- (3). TS denotes the entropy thermal correction. We approximate the TS of the chemical-adsorbed species of all models using Ru-4N2v-CNT(5,5) model with the site density at 1/8. We adapte the values of TS from Ref. (a) for the species in the solution phase where the TS terms of Ref. (a) contain the fugacity correction $RT * ln(P/p_0)$. By doing so, we assume the same Faraday yield for the products of CO₂ electrochemical reduction using TM-4N2v-CNT models as that being observed on Cu surface by Hori et al. in Ref. (c). Therefore, the partial pressure of HCOOH in this study is assumed to be 2 Pa. It should be noted that the further revision for the TS terms could be important if the experimental Faraday field using TM-4N2v-CNT type of catalysts are available.
- (4). G_{solv} denotes the solvation energy correction at -0.30 eV for all of the chemical-adsorbed species containing OH group.
- (5). E_{elec} of CO(aq) on is corrected by +0.24 eV due to the use of PBE functional as suggested by Ref (d). E_{elec} of other models are directly obtained from the PBE calculations.
- (6). References: (a) A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, *Energy Environ. Sci.*, 2010, 3, 1311-1315. (b) P. Hisunsit, *J. Phys. Chem. C* 2013, 117, 8262-8268. (c) Y. Hori, A. Murata and R. Takahashi, *J. Chem. Soc. Faraday T. 1*, 1989, 85, 2309-2326. (d) F. Calle-Vallejo and M. T. M. Koper, *Angew. Chem. Int. Ed.* 2013, 52, 7282-7285.

Numerical values of the correction terms (eV)							
Chemical-adsorbed	7DE	$\int C dT$	ТС				
Intermediates		$\int c_p u r$	15				
*COOH	0.722	0.096	-0.112				
*OCHO	0.681	0.102	-0.103				
*СОНОН	0.988	0.096	-0.169				
*CO	0.156	0.076	-0.009				
*СНО	0.546	0.086	-0.063				
*COH	0.542	0.068	-0.112				

*CH ₂ O	0.829	0.091	-0.153
*СНОН	0.880	0.068	-0.158
*OCH ₃	1.161	0.093	-0.179
*CH ₂ OH	1.170	0.093	-0.106
*СН	0.370	0.028	-0.084
*CH ₂	0.686	0.049	-0.100
*CH ₃	0.994	0.060	-0.102
*Н	0.200	0.005	-0.024
Non-adsorbed	ZDE	$\int C dT$	a T S
Intermediates		$\int c_p dr$	10
CH ₂ O	0.700	0.100	-0.660
CH ₃ OH	1.350	0.110	-0.790
CH_4	1.200	0.100	-0.600
СО	0.140	0.090	-0.670
CO_2	0.310	0.100	-0.650
H_2	0.270	0.090	-0.420
H_2O	0.580	0.100	-0.650
НСООН	0.900	0.110	-1.020

a. TS contains ${}^{RT \cdot ln(p/p_0)}$ correction.

k-point configurations:

The following k-point configurations are used for the simulations at $\rho_s = 1/3 \sim 1/8$								
$\rho_s = 1/m$ 1/3 1/4 1/5 1/6 1/7 1/8								
k-point	1*1*10	1*1*8	1*1*6	1*1*4	1*1*3	1*1*3		

Table	Table S1. The predicted N-Ru-N angle (θ_{NRuN} , degree) and N-Ru bond length (r_{RuN} , Å) of Ru-4N2v-CNT models												
CNT	(5,	5)	(6,	6)	(7,	(7, 7)		(8, 8)		(10, 10)		(12, 12)	
ρ_s	θ_{NRuN}	r _{RuN}	θ_{NRuN}	r _{RuN}	θ_{NRuN}	r_{RuN}	θ_{NRuN}	r _{RuN}	θ_{NRuN}	r _{RuN}	θ_{NRuN}	r _{RuN}	
1/3	151.51°	1.96	153.92°	1.95	155.60°	1.95	156.99°	1.95	159.24°	1.95	159.81°	1.95	
1/4	152.39°	1.95	154.96°	1.95	156.93°	1.94	158.16°	1.95	160.30°	1.95	161.77°	1.95	
1/5	153.15°	1.95	155.60°	1.95	157.31°	1.95	159.02°	1.95	160.89°	1.95	163.23°	1.95	
1/6	152.77°	1.96	155.28°	1.96	157.16°	1.96	158.58°	1.95	160.80°	1.95	162.56°	1.95	
1/7	152.99°	1.96	155.54°	1.95	157.21°	1.95	158.87°	1.96	160.97°	1.96	162.05°	1.96	
1/8	153.26°	1.97	155.65°	1.96	157.71°	1.96	159.05°	1.96	159.95°	1.96	162.63°	1.96	
Avg.	152.68°	1.96	155.16°	1.95	156.99°	1.95	158.45°	1.95	160.36°	1.95	162.01°	1.95	
	0												

 \blacksquare θ_{NRuN} is the average angle of N₁-TM-N₂ where N₁ and N₂ are the nitrogen substitutions across each other.

Table S2. The calculated d-band center of Ru-4N2V-CNT models.									
	(5,5)	(6,6)	(7,7)	(8,8)	(10,10)	(12,12)			
ρ _s	d-center	d-center	d-center	d-center	d-center	d-center			
1/3	-0.69	-0.65	-0.61	-0.42	-0.32	-0.35			
1/4	-0.52	-0.69	-0.60	-0.41	-0.45	-0.51			
1/5	-0.68	-0.61	-0.59	-0.58	-0.60	-0.27			
1/6	-0.57	-0.63	-0.76	-0.67	-0.40	-0.42			
1/7	-0.41	-0.32	-0.60	-0.62	-0.48	-0.43			
1/8	-0.51	-0.38	-0.57	-0.30	-0.21	-0.28			
Avg.	-0.57	-0.54	-0.62	-0.50	-0.41	-0.38			

Table. S3. ΔE_{TM} , r_{NM} , θ_{NMN} and d-band center in various TM-4N2V-CNT models at $\rho_S = 1/8$.										
Т	ſΜ	Fe	Ru	Os	Со	Rh	Ir	Ni	Pt	Cu
Atomi (.	c radius Å)	1.17	1.25	1.26	1.16	1.25	1.27	1.15	1.30	1.17
Multi.	(5,5)	2	2	2	1	1	1	0	0	1
	(12,12)	2	2	2	1	1	1	0	0	1
	(5,5)	-1.93	-0.13	0.69	-1.14	-0.16	-0.42	-2.86	-3.36	-1.35
ΔE_{TM}	(12,12)	-2.64	-0.57	0.29	-1.82	-1.02	-1.02	-3.44	-4.03	-1.90
	² GR	-2.52	-0.34	0.35	-1.99	-1.63	-1.25	-3.09	-2.32	-1.66
	(5,5)	1.88	1.97	1.96	1.85	1.95	1.95	1.85	1.96	1.90
r _{NM}	(12,12)	1.88	1.96	1.95	1.86	1.94	1.94	1.85	1.95	1.91
	diff.	0.00	0.01	0.01	-0.01	0.01	0.00	0.00	0.01	-0.01
	(5,5)	170.57°	153.26°	155.57°	167.66°	163.10°	164.72°	173.37°	170.41°	174.25°
θ_{NMN}	(12,12)	179.47°	162.63°	164.93°	174.24°	173.17°	173.13°	179.98°	177.36°	179.60°
	diff.	8.89°	9.37°	9.36°	6.58°	10.06°	8.40°	6.61°	6.95°	5.35°
	(5,5)	-0.99	-0.51	-0.60	-0.46	-0.76	-0.79	-1.49	-2.44	-3.32
d-band center ³	(12,12)	-0.88	-0.28	-0.29	-0.66	-0.41	-0.82	-1.56	-2.33	-3.12
	diff.	0.11	0.23	0.31	0.20	0.35	0.03	0.07	0.12	0.20
1. ΔΕ 2. GI 3. Th	 ΔE_{emb} is in eV, r_{NM} is in Å and θ_{NMN} is in degree. GR denotes ΔE_{TM} predicted by the 4N2v-graphene models in Ref 79. The schematic representations of partial density of state (PDOS) are summarized in Figure S5. 									

Table S4. Adsorption energy in eV of CO_2 , CO and H_2O on Ru-4N2V-CNT models.

Adsorbate (n, n)	CO ₂	СО	$\mathrm{H}_2\mathrm{O}^1$				
(5,5)	-0.56	-1.84	-				
(6,6)	-0.58	-1.91	-				
(7,7)	-0.76	-2.27	-				
(8,8)	-0.79	-2.21	-0.18				
(10,10)	-0.82	-2.30	-0.21				
(12,12)	-0.87	-2.37	-0.27				
1. The absence of adsorpt	The absence of adsorption energy denotes that H ₂ O binding is repulsive.						

Table S5. The formation energy (in eV) of possible intermediates for CO ₂ RR.								
# of e-+H+	(1) * +	$CO_2(aq) + 0.5H_2$	$(aq) \rightarrow$	$(2) * + \mathrm{CO}_2(\mathrm{aq}) + \mathrm{H}_2(\mathrm{aq}) \rightarrow$				
	$*H + CO_2(aq)$	*C(=O)OH	*OCH(=O)	*C(OH)OH	$^{3}\text{CO} + \text{H}_{2}\text{O}(\text{aq})$	*HC(=O)OH(aq) ¹		
Fe	0.271	0.421	0.872	0.770	-0.276	0.268		
Ru	-0.206	-0.072	0.880	0.176	-0.835	0.268		
Os	-0.365	-0.228	0.757	-0.105	-1.148	0.268		
Со	0.314	0.555	1.305	1.522	0.374	0.268		
Rh	0.077	0.405	1.559	1.635	0.374	0.268		
Ir	-0.172	0.154	1.516	1.225	0.293	0.268		
Ni	1.839	2.027	2.126	2.521	0.374	0.268		
Pt	1.579	2.033	2.477	2.614	0.374	0.268		
Cu	1.960	2.071	1.945	2.224	0.374	0.268		
Ru_12	-0.514	-0.293	0.564	-0.140	-1.163	0.268		
Ru_G	-0.138	-0.265	0.357	-0.310	-1.360	0.268		
Rh_12	0.073	0.465	1.577	1.482	0.374	0.268		
Rh_G	0.149	0.143	1.186	1.480	0.374	0.268		

(1). All *HC(=O)OH intermediates are nearly desorbed from the metal binding site.

(2). The bold denotes the favorable formation of intermediate at each electrochemical step.

(3). *CO are used for the cases of $\Delta G < 0$ while others use CO(aq) (0.374 eV) for the formation energy.

Table S6. Calculated potentials for the CO ₂ RR, main product and potential-determining step (PDS).									
ТМ	¹ Main product	² Potential (V)	PDS						
Fe	*CO	-0.421	$CO_2(g) \rightarrow *COOH$						
Ru	*CO	> 0							
Os	*CO	> 0							
Со	НСООН	-0.555	$CO_2(g) \rightarrow *COOH$						
Rh	НСООН	-0.405	$CO_2(g) \rightarrow *COOH$						
Ir	НСООН	-0.154	$*COOH \rightarrow HCOOH$						
Ni	НСООН	-2.027	$CO_2(g) \rightarrow *COOH$						
Pt	НСООН	-2.033	$CO_2(g) \rightarrow *COOH$						
Cu	НСООН	-1.945	$CO_2(g) \rightarrow *OCHO$						
Ru_12	*CO	> 0							
Ru_G	*CO	> 0							
Rh_12	НСООН	-0.465	$CO_2(g) \rightarrow *COOH$						
Rh_G	НСООН	-0.143	$*COOH \rightarrow HCOOH$						
1. *CO could cont	tinuously undergo COR	R mechanism as shown in	Tables S6-S7.						

2. For $CO_2(aq) + 1/2H_2 \rightarrow HCOOH(aq)$, $\Delta G = 0.547 \text{ eV}$.

Table S7. 7	The formation end	ergy (in eV) of po	ossible intermedia	ates for CORR				
# of e ⁻⁺ H ⁺ (I) CO(aq) + $0.5H_2(aq) \rightarrow$			(II) CO(aq)	$+ H_2(aq) \rightarrow$	(III) $CO(aq) + 1.5H_2(aq) \rightarrow$			
	*СНО	*СОН	*CH ₂ O	*СНОН	*ОСН.	*СН-ОН	*CH + H-O	
	CIIO	COII	to desorb	Chon	00113	CH2011		
Fe	0.092	1.116	0.132	0.040	0.000	-0.007	1.592	
Ru	-0.408	0.530	0.132	-0.624	-0.103	-0.327	0.554	
Os	-0.573	-0.175	0.132	-0.964	-0.357	-0.498	-0.376	
Co	0.137	1.576	0.132	1.062	0.645	0.037	2.698	
Rh	0.008	1.457	0.132	1.050	0.876	-0.101	2.397	
Ir	-0.235	1.191	0.132	0.503	0.736	-0.244	1.817	
Ni	1.692	2.979	0.132	2.479	1.577	1.366	4.576	
Pt	1.703	3.305	0.132	2.636	1.909	1.297	4.175	
Cu	1.907	2.980	0.132	2.089	1.613	1.492	4.357	
Ru_12	-0.544	-0.037	0.132	-0.861	-0.322	-0.591	0.026	
Ru_G	-0.479	0.080	0.132	-0.982	-0.499	-0.659	0.525	
Rh_12	0.146	1.699	0.132	0.917	0.925	-0.007	2.610	
Rh_G	-0.151	1.425	0.132	1.050	0.550	-0.291	2.485	
# of or II+			``````````````````````````````````````	(V) CO(aq) +				
$\#$ of e $+H^{+}$	(1V)	$CO(aq) + 2H_2(aq)$	q) →	$2.5H_2(aq) \rightarrow$	$(VI) CO(aq) + 3H_2(aq) \rightarrow$		1) →	
	$O + CH_4(g)$	CH ₃ OH(aq)	$*CH_2 + H_2O$	$*CH_3 + H^2O$	$* + CH_4 + H_2O$	*CO		
Fe	-0.296	-0.497	0.295	-0.690	-1.587	-0.649		
Ru	-0.674	-0.497	-0.575	-1.090	-1.587	-1.209		
Os	-1.502	-0.497	-1.087	-1.310	-1.587	-1.521		
Со	1.109	-0.497	1.286	-0.614	-1.587	> 0		
Rh	1.282	-0.497	1.084	-0.768	-1.587	> 0		
Ir	0.766	-0.497	0.644	-0.960	-1.587	-0.081		
Ni	2.678	-0.497	2.810	0.800	-1.587	> 0		
Pt	2.930	-0.497	2.686	0.687	-1.587	> 0		
Cu	2.625	-0.497	2.696	0.858	-1.587	> 0		
Ru_12	-0.874	-0.497	-0.813	-1.387	-1.587	-1.537		
Ru_G	1.898	-0.497	-0.742	-1.285	-1.587	-1.734		
Rh_12	1.378	-0.497	1.118	-0.724	-1.587	> 0		
Rh_G	2.948	-0.497	1.019	-0.860	-1.587	> 0		

Figure S1. The schematic representation of (a) site density, denoted as $\rho_s = 1/m$ in which *m* is the number of unit cells of CNT for repeating TM, and (b) curvature of CNT.

Figure S2. Partial density of states (PDOS) of Ru-4N2v-CNT(n,n) models, n = 5-8, 10 and 12. The d-band center of Ru is denoted in pink with total d-band in gray and the contribution of each d orbital in different color.

Figure S3. Schematic representations of the various adsorbent on Ru-4N2V-CNT models.

Figure S4. Schematic representations of (a) unit cell of graphene and (b) M-4N2v-graphene model at ρ_s = 4.

Fe

Os

Figure S5. Partial density of states of TM-4N2v-CNT(n,n), n = 5 or 12, models.

Ni

Pt

Cu

Figure S6. The scaling relations of d-band centers and G(*CHO) vs. G(*H) using TM-4N2v-CNT(5,5) models. Blue at the primary *y*-axis denotes the d-band centers and red at the secondary *y*-axis denotes G(*CHO).