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1 Molecular and Crystal-fragment Parameters

Tables S1 and S2 summarize the geometries, inertial parameters, and BF quadrupole com-

ponents that we have assumed for the H2 and H2O moieties in computing the TR states of

H2@C60 and H2O@C60, respectively.

Table S3 gives the C nuclear coordinates for the C60 “master-cage” geometry assumed for

all the C60 moieties relevant to this work. The geometry has shared-hexagon (6:6) CC bond

lengths equal to 2.60820 bohrs (1.38020 Å) and hexagon-pentagon (6:5) CC bond lengths

equal to 2.73047 bohrs (1.44490 Å). The cage-fixed cartesian axis system is centered at the
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C60 center of mass, has its z axis along one of the C5 symmetry axes of the cage, and its x

axis along one of the C2 symmetry axes of the cage.

Tables S4 and S5 give the cage-center translation vectors (T(k)) and the direction-cosine

matrices (R̂(k)) that define the positions and orientations of the thirteen cages in the P and

H crystal fragments, respectively, w.r.t. the “space-fixed” (SF) cartesian axis system. These

parameters conform to the C60 crystal geometries described in Sachidanandam and Harris1

and Harris and Sachidanandam2 for the angle φ (defined in those papers) equal to 24◦ (P

orientation) and 84◦ (H orientation). The SF frame has its origin at the center of the central

cage (cage #13) and is oriented such that the C3 symmetry axis of the fragment is along the

(1, 1, 1) direction. To obtain the position vector, Ri, of the ith C nucleus of cage k relative

to the SF frame one uses

Ri = T(k) + R̂(k)Di, (1)

where Di is the position vector, as given in Table S3, of the ith C nucleus in the cage-fixed

axis system. In Tables S4 and S5, cages 1 to 6 are the “axial” and cages 7 to 12 are the

“equatorial” cages in the fragment.

2 Basis sets, Grid Parameters, and Lennard-Jones Potential-

Energy Parameters

2.1 H2@C60

2.1.1 Basis Functions

The basis functions employed in the variational calculations of the TR states of H2@C60 are

of the form |n, l,ml〉|j,mj〉.

The |n, l,ml〉 are 3D isotropic harmonic-oscillator eigenfunctions:3

|n, l,ml〉 = NnlR
le−βR

2/2L
(l+1/2)
k (βR2)Ylml

(Θ,Φ), (2)
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where β = 2.9888989 au, n = 0, 1, 2, . . . , nmax, l = n, n − 2, . . . ≥ 0, k ≡ (n − l)/2, ml =

−l, (−l + 1), . . . , (l − 1), l,

Nnl = 2

[
β(2l+3/2)2k+lk!√
π[2(k + l) + 1]!!

]1/2
, (3)

the L
(l+1/2)
k are associated Laguerre polynomials, and the Ylml

are spherical harmonics. We

used nmax = 8.

The |j,mj〉 are spherical harmonics

|j,mj〉 = Yjmj
(θ, φ), (4)

where j = 0, 1, 2, . . . , jmax and mj = −j, (−j + 1), . . . , (j − 1), j. We used jmax = 8.

2.1.2 Grid Parameters

The 5D grid described in Section 2.5 of the main body of the paper consists of (i) Na = 12

Gauss-associated-Laguerre quadrature points Ra, generated as per Felker and Bačić4 for

β = 2.9888989 au, (ii) Nb = 10 Gauss-Legendre quadrature points (cos β)b, (iii) Nc = 18

Fourier grid points αc, (iv) Nd = 10 Gauss-Legendre quadrature points (cos θ)d, and (v)

Ne = 18 Fourier grid points φe.

2.1.3 Kinetic-Energy Operator, T̂

For H2@C60 in the rigid-monomer approximation

T̂ = − ∇
2

2M
+
Ĵ2

2I
, (5)

where ∇2 is the Laplacian associated with R, Ĵ2 is the operator corresponding to the square

of the rotational angular momentum of the H2, M is the mass of the H2, and I is the moment

of inertia of the H2. The inertial parameters that we have employed are given in Table S1.
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2.1.4 Lennard-Jones Potential-Energy Parameters

The VLJ PES function appearing in Ĥ for H2@C60 is taken from Xu, et al.5 and is given by

VLJ =
3∑
i=1

60∑
k=1

4wiε

[(
σ

rik

)12

−
(
σ

rik

)6]
, (6)

where i runs over the three H2 sites listed in Table S1, k runs over the 60 nuclear positions

of the C atoms in the central cage, rik is the distance between site i and site k, w1 = 6.7,

w2 = w3 = 1, σ = 5.574692 bohrs (2.95 Å), and ε = 3.07 cm−1. Of course, the rik depend

on the position of the H2 moiety w.r.t. the SF axes, so VLJ is a function of R and ω.

2.2 H2O@C60

2.2.1 Basis Functions

The basis functions employed in the variational calculations of the TR states of H2O@C60

are of the form |n, l,ml〉|j,mj, k〉. The |n, l,ml〉 are the same as for H2@C60 except that

β = 24.38 au. The |j,mj, k〉 are normalized Wigner rotation matrix elements

|j,mj, k〉 =

√
2j + 1

8π2
[D

(j)
mj ,k

(φ, θ, χ)]∗, (7)

where j = 0, 1, 2, . . . , jmax, mj = −j, (−j + 1), . . . , (j − 1), j, and k = −j, (−j + 1), . . . , (j −

1), j. We used jmax = 8.

2.2.2 Grid Parameters

The 6D grid described in Section 2.5 of the main body of the paper consisted of (i) Na = 12

Gauss-associated-Laguerre quadrature points Ra, generated as per Felker and Bačić4 for

β = 24.38 au, (ii) Nb = 10 Gauss-Legendre quadrature points (cos β)b, (iii) Nc = 18 Fourier

grid points αc, (iv) Nd = 10 Gauss-Legendre quadrature points (cos θ)d, and (v) Ne = 18

Fourier grid points φe, and (vi) Nf = 18 Fourier grid points χf .
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2.2.3 Kinetic-Energy Operator, T̂

For H2O@C60 in the rigid-monomer approximation

T̂ = − ∇
2

2M
+
∑

k=x,y,z

Ĵ2
k

2Ik
, (8)

where ∇2 is the Laplacian associated with R, Ĵ2
k is the operator corresponding to the square

of the rotational angular momentum of the H2O about its kth principal axis, M is the mass

of the H2O, and Ik is the moment of inertia of H2O about its kth principal axis. The inertial

parameters that we have employed are given in Table S2.

2.2.4 Lennard-Jones Potential-Energy Parameters

The VLJ PES function appearing in Ĥ for H2O@C60 is taken from Felker and Bačić8 and is

given by

VLJ =
3∑
i=1

60∑
k=1

4εi

[(
σi
rik

)12

−
(
σi
rik

)6]
, (9)

where i runs over the three H2O sites listed in Table S2, k runs over the 60 nuclear positions

of the C atoms in the central cage, rik is the distance between site i and site k, σ1 = 6.37216

bohrs (3.372 Å), σ2 = σ3 = 4.988877 bohrs (2.640 Å), ε1 = 36.34 cm−1, and ε2 = ε3 = 8.95384

cm−1. The rik depend on the position of the H2O moiety w.r.t. the SF axes, so VLJ is a

function of R and ω.
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3 Transformation properties of the electric-field-grad-

iant tensor, I
(2)
m

For arbitrary charge density ρ(r) the internal moments of rank 2 (the components of the

electric-field-gradient tensor) are given by6

I(2)m ≡
∫
ρ(r)

r3
C(2)
m (r̂)dr =

√
4π

5

∫
ρ(r)

r3
Y2m(r̂)dr. (10)

We examine below how these moments transform subject to (a) inversion through the origin

and (b) rotation about an axis going through the origin.

3.1 Transformation by inversion

Inversion (operation E∗) changes the charge density ρ(r) to ρ′(r) such that

ρ′(r) = ρ(−r). (11)

The internal moments corresponding to this new charge density are given by

I(2)m (E∗) =

√
4π

5

∫
ρ′(r)

r3
Y2m(r̂)dr =

√
4π

5

∫
ρ(−r)

r3
Y2m(r̂)dr

=

√
4π

5

∫
ρ(r′)

r′3
Y2m(−r̂′)dr′,

(12)

where we have substituted r′ = −r to obtain the final equality. Since Y2m(−r̂′) = Y2m(r̂′),

one sees from Eqs. (10) and (12) that

I(2)m (E∗) = I(2)m . (13)

Inversion leaves internal moments of rank 2 unchanged.
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3.2 Transformation by rotation about an axis through the origin

We start by expressing ρ(r) as an expansion over spherical harmonics

ρ(r) =
∑
l,m

alm(r)Ylm(r̂), (14)

where

alm(r) =

∫
ρ(r)Y ∗lm(r̂)dr̂. (15)

Next we substitute this expansion for ρ(r) into Eq. (10) to obtain

I(2)m =

√
4π

5

∑
l,m′

∫
alm′(r)

r3
Ylm′(r̂)Y2m(r̂)dr

=

√
4π

5
(−)m

∫
a2,−m(r)

r3
dr, (16)

where the last equality in Eq. (16) follows from the orthonormality of the spherical harmonics

and the fact that

Y ∗lm = (−)mYl,−m. (17)

Now we rotate the charge density ρ(r) through an angle γ about an axis n̂ going through

the origin. The density is transformed as follows

e−iĴnγρ(r) =
∑
l,m

alm(r)[e−iĴnγYlm(r̂)], (18)

where Ĵn is the operator corresponding to angular momentum about n̂.

Consider the new I
(2)
m – call them I

(2)
m (n̂, γ) – corresponding to this rotated density

√
5

4π
I(2)m (n̂, γ) =

∫
[e−iĴnγρ(r)]

r3
Y2m(r̂)dr

=
∑
l,m′

∫
al,m′(r)

r3
dr

∫
[e−iĴnγYlm′ ]Y2mdr̂. (19)
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Now

e−iĴnγYlm′(r̂) =
∑
m′′

A
(l)
m′′,m′(n̂, γ)Ylm′′(r̂), (20)

where

A
(l)
m′′,m′(n̂, γ) ≡

∫
Y ∗lm′′(r̂)e−iĴnγYlm′(r̂)dr̂. (21)

Substituting Eq. (20) into Eq. (19) one obtains

√
5

4π
I(2)m (n̂, γ) =

∑
l,m′

[ ∫
al,m′(r)

r3
dr ×

∑
m′′

A
(l)
m′′m′(n̂, γ)

∫
Ylm′′(r̂)Y2m(r̂)dr̂

]
=

∑
m′

(−)mA
(2)
−m,m′(n̂, γ)

∫
a2,m′(r)

r3
dr. (22)

By using Eq. (16) one then obtains

I(2)m (n̂, γ) =
∑
m′

(−)m+m′
A

(2)
−m,m′(n̂, γ)I

(2)
−m′ =

∑
m′

(−)m+m′
A

(2)
−m,−m′(n̂, γ)I

(2)
m′ . (23)

What remains is to evaluate the A
(2)
m,m′(n̂, γ). If one specifies the direction of the axis n̂

by its polar angle β and azimuthal angle α, it is straightforward to show that

A
(l)
m,m′(α, β, γ) ≡ A

(l)
m,m′(n̂, γ) = ei(m

′−m)α
∑
m′′

e−im
′′γd

(l)
m,m′′(β)d

(l)
m′,m′′(β), (24)

where the d
(l)
m,m′(β) are little-d Wigner rotation matrix elements. From Eq. (24), one can

also easily show that

(−)m+m′
A

(l)
−m,−m′(n̂, γ) = [A

(l)
m,m′(n̂, γ)]∗ (25)

and that

(−)m+m′
A

(l)
−m,−m′(n̂,−γ) = A

(l)
m′,m(n̂, γ). (26)
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Finally, with Eqs. (23), (25), and (26)

I(2)m (n̂, γ) =
∑
m′

[A
(2)
m,m′(n̂, γ)]∗I

(2)
m′ (27)

and

I(2)m (n̂,−γ) =
∑
m′

A
(2)
m′,m(n̂, γ)I

(2)
m′ . (28)

Relevant to the M@C60 crystal-fragment geometries in this work are the rotations by

±2π/3 about n̂ when n̂ lies along the (1, 1, 1) direction, so that β = cos−1(
√

1/3) and

α = π/4. Evaluation of Eq. (24) for γ = +2π/3 about this axis and for l = 2 yields the

matrix of values

B ≡ A(2)(π/4, cos−1(
√

1/3), 2π/3) =



−1
4

1
2
−
√

3
8

1
2
−1

4

i
2
− i

2
0 i

2
− i

2

√
3
8

0 −1
2

0
√

3
8

− i
2
− i

2
0 i

2
i
2

−1
4
−1

2
−
√

3
8
−1

2
−1

4



, (29)

where the rows run from m = −2 to 2 and the columns from m′ = −2 to 2.

3.3 Invariant I
(2)
m for the M@C60 Crystal Fragment

For this work we take the P and H crystal fragments to be invariant under the operations

of the S6 point group. In addition, we have chosen SF cartesian axes such that the C3

symmetry axis of S6 points along the (1, 1, 1) direction. Since the internal moments due to

the NN cages must be invariant to a 2π/3 rotation about the C3 axis, then given Eqs. (27)

9



and (29), the following must be obeyed

B∗I(2) = I(2), (30)

where I(2) is the column vector composed of internal moments produced by the charge density

of the twelve NN cages

I(2) ≡



I
(2)
−2

I
(2)
−1

I
(2)
0

I
(2)
+1

I
(2)
+2



. (31)

Equation (30) is satisfied if I(2) is an eigenvector of B∗ having eigenvalue equal to +1. These

eigenvectors can be straightforwardly determined. They are given by

I(2) = A



i

(−1 + i)

0

(1 + i)

−i



, (32)
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where, in general, A is a complex constant.

4 Perturbation theory applied to j = 1 level splittings

4.1 H2@C60 and HF@C60

We take the lowest-energy zeroth-order TR states of H2@C60 and HF@C60 to be of the form

|T0〉|j,mj〉,7 where |T0〉 depends only on R and |j,mj〉 is a rigid-rotor rotational eigenfunc-

tion. The matrix elements of Vquad connecting the states of a given j level are then given

by

〈T0, j,m′j|Vquad|T0, j,mj〉 =
∑
m

(−)mI
(2)
−m〈T0, j,m′j|Q(2)

m |T0, j,mj〉. (33)

By using Eq. (15) of the main text

〈T0, j,m′j|Q(2)
m |T0, j,mj〉 = QBF

0 〈j,m′j|[D
(2)
m,0(ω)]∗|j,mj〉

+ (−)m
√

40πµz
∑
m′

 1 1 2

m′ m−m′ −m


× 〈T0|RY1,m′(Θ,Φ)|T0〉〈j,m′j|[D

(1)
m−m′,0(ω)]∗|j,mj〉.

(34)

Now the |T0, j,mj〉 have inversion symmetry (due to the Ih environment imposed by the

central C60 cage), as do the |j,mj〉. In consequence, |T0〉 also has inversion symmetry. The

upshot is that the factors 〈T0|RY1,m′(Θ,Φ)|T0〉 appearing in Eq. (34) are zero by symmetry,

since RY1m′(Θ,Φ) changes sign upon inversion. Thus we need only consider the first term

on the rhs of Eq. (34). One finds

〈T0, j,m′j|Q(2)
m |T0, j,mj〉 = (−)m

′
j(2j + 1)QBF

0

j j 2

0 0 0


 j j 2

−m′j mj m

 . (35)
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Substituting Eq. (35) into Eq. (33) one obtains

〈T0, j,m′j|Vquad|T0, j,mj〉 = (−)mjI
(2)

mj−m′
j

 j j 2

−m′j mj m′j −mj


×(2j + 1)QBF

0

j j 2

0 0 0

 . (36)

These matrix elements are readily evaluated for a given value of j. For j = 1 the full matrix

(rows labeled by m′j = −1, 0, 1 and columns by mj = −1, 0, 1) is given by

〈T0, 1, {m′j}|Vquad|T0, 1, {mj}〉 =

√
6

5
QBF

0 A


0 − (1+i)√

2
i

− (1−i)√
2

0 (1+i)√
2

−i (1−i)√
2

0

 , (37)

where we have used Eq. (32) for the I
(2)
m . This matrix has eigenvalues

√
6
5
QBF

0 A,
√
6
5
QBF

0 A,

and −2
√
6
5
QBF

0 A. These are the first-order corrections to the energies of the j = 1 states and

give

∆PT ≡ E(g = 2)− E(g = 1) = 3A

√
6

5
QBF

0 , (38)

consistent with Eqs. (17) and (18) of the main text.

4.2 H2O@C60

For H2O@C60 the lowest-energy zeroth-order states8 are very well-approximated by |T0〉|jkakc ,mj〉,

where |T0〉 depends only on R,

|jkakc ,mj〉 =
∑
k

a(jkakc , k)|j,mj, k〉 (39)
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is an eigenfunction of the rigid-H2O rotational Hamiltonian, and the |j,mj, k〉 are symmetric-

top rotational eigenfunctions

|j,mj, k〉 =

√
2j + 1

8π2
[D

(j)
mj ,k

(ω)]∗. (40)

Matrix elements of Vquad connecting states of a given |T0, jkakc〉 level are given by

〈T0, jkakc ,m′j|Vquad|T0, jkakc ,mj〉 =
∑
m

(−)mI
(2)
−m〈T0, jkakc ,m′j|Q(2)

m |T0, jkakc ,mj〉. (41)

To evaluate the matrix elements on the rhs of Eq. (41) we use Eq. (15) of the main text

and note that, as for H2 and HF, |T0〉 has definite parity. Thus,

〈T0|RY1,m′(Θ,Φ)|T0〉 = 0 (42)

and

〈T0, jkakc ,m′j|Q(2)
m |T0, jkakc ,mj〉 =

2∑
q=−2

QBF
q 〈jkakc ,m′j|[D(2)

m,q]
∗|jkakc ,mj〉. (43)

By using Eqs. (39) and (40)

〈jkakc ,m′j|[D(2)
m,q]

∗|jkakc ,mj〉 =
∑
k,k′

a(jkakc , k
′)a(jkakc , k)〈j,m′j, k′|[D(2)

m,q]
∗|j,mj, k〉

= (−)m
′
j(2j + 1)

 j j 2

−m′j mj m


×

∑
k,k′

(−)k
′
a(jkakc , k

′)a(jkakc , k)

 j j 2

−k′ k q

 .

(44)
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Substituting Eq. (44) into Eq. (43) and then the latter into Eq. (41) one obtains

〈T0, jkakc ,m′j|Vquad|T0, jkakc ,mj〉 = (−)mjI
(2)

mj−m′
j

 j j 2

−m′j mj m′j −mj


×(2j + 1)

∑
q

QBF
q

∑
k′,k

(−)k
′
a(jkakc , k

′)a(jkakc , k)

 j j 2

−k′ k q

 .

(45)

For j = 1 the Eq.-(45) matrix (rows labeled by m′j = −1, 0, 1 and columns by mj = −1, 0, 1)

is given by

〈T0, 1kakc , {m′j}|Vquad|T0, 1kakc , {mj}〉 = Af(QBF)


0 − (1+i)√

2
i

− (1−i)√
2

0 (1+i)√
2

−i (1−i)√
2

0

 , (46)

where we have used Eq. (32) for the I
(2)
m and

f(QBF) ≡ 3√
5

[∑
q

QBF
q

∑
k′,k

(−)k
′
a(jkakc , k

′)a(jkakc , k)

 1 1 2

−k′ k q

]. (47)

Diagonalization of Eq. (46) yields the eigenvalues Af(QBF), Af(QBF), and −2Af(QBF) and

the level splitting

∆PT = E(g = 2)− E(g = 1) = 3Af(QBF). (48)

For the 101 level, the ortho ground state,

a(101, 1) = −a(101,−1) =
1√
2

a(101, 0) = 0 (49)
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and

f(QBF, 101) =
3

5

[
− 1√

6
QBF

0 +
1

2

(
QBF

2 +QBF
−2
)]
. (50)

For the first excited rotational state of the ortho species, 110,

a(101, 1) = a(101,−1) =
1√
2

a(101, 0) = 0 (51)

and

f(QBF, 110) =
3

5

[
+

1√
6
QBF

0 +
1

2

(
QBF

2 +QBF
−2
)]
. (52)

Finally, for the first excited rotational state of the para species, 111,

a(111, 1) = a(111,−1) = 0 a(111, 0) = 1 (53)

and

f(QBF, 111) =

√
6

5
QBF

0 . (54)
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Table 1: H2 BF site coordinates (in bohrs), site masses (in amu), rotational constant (in
cm−1), and BF quadrupole (in au).

Site # x y z mass
1 0.000000 0.000000 0.000000 0.0000
2 0.000000 0.000000 +0.699199 1.0078
3 0.000000 0.000000 −0.699199 1.0078

(2I)−1 = 58.378

QBF
0 = 0.499
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Table 2: H2O BF site coordinates (in bohrs), site masses (in amu), rotational constants (in
cm−1), and BF quadrupole and dipole components (in au).

Site # x y z mass
1 0.000000 0.000000 0.125534 15.9949
2 1.453650 0.000000 −0.996156 1.0078
3 −1.453650 0.000000 −0.996156 1.0078

(2Ix)
−1 (2Iy)

−1 (2Iz)
−1

27.877 9.285 14.512

Q
(BF)
0 Q

(BF)
±2 ~µ = µẑ

−0.09973 1.53843 −0.737196
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Table 3: Carbon nuclear coordinates (in bohrs) for the “master cage” C60 geometry. Coor-
dinates are referenced to a cage-fixed cartesian axis system having its origin at the center of
the cage, its z axis along one of the C5 symmetry axes of the cage, and its x axis along one
of the C2 symmetry axes of the cage.

C nucleus x y z

1 0.000000 2.322672 6.238707

2 −2.208993 0.717744 6.238707

3 −1.365233 −1.879081 6.238707

4 1.365233 −1.879081 6.238707

5 2.208993 0.717744 6.238707

6 4.319071 1.403350 4.867496

7 5.684303 −0.475731 3.432005

8 4.878326 −2.956276 3.432005

9 2.669332 −3.674020 4.867496

10 1.304100 −5.553102 3.432005

11 −1.304100 −5.553102 3.432005

12 −2.669332 −3.674020 4.867496

13 −4.878326 −2.956276 3.432005

14 −5.684303 −0.475731 3.432005

15 −4.319071 1.403350 4.867496

16 −4.319071 3.726024 3.432005

17 −5.684303 3.282433 1.109333

18 −6.528064 0.685606 1.109333

19 −6.528064 −0.685606 −1.109333

20 −5.684303 −3.282433 −1.109333

21 −4.878326 −4.391767 1.109333

22 −2.669332 −5.996694 1.109333

23 −1.365233 −6.420422 −1.109333
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24 1.365233 −6.420422 −1.109333

25 2.669332 −5.996694 1.109333

26 4.878326 −4.391767 1.109333

27 5.684303 −3.282433 −1.109333

28 6.528064 −0.685606 −1.109333

29 6.528064 0.685606 1.109333

30 5.684303 3.282433 1.109333

31 4.878326 4.391767 −1.109333

32 4.878326 2.956276 −3.432005

33 5.684303 0.475731 −3.432005

34 4.319071 −1.403350 −4.867496

35 4.319071 −3.726024 −3.432005

36 2.208993 −5.259085 −3.432005

37 0.000000 −4.541340 −4.867496

38 −2.208993 −5.259085 −3.432005

39 −4.319071 −3.726024 −3.432005

40 −4.319071 −1.403350 −4.867496

41 −5.684303 0.475731 −3.432005

42 −4.878326 2.956276 −3.432005

43 −4.878326 4.391767 −1.109333

44 −2.669332 5.996694 −1.109333

45 −1.304100 5.553102 −3.432005

46 −2.669332 3.674020 −4.867496

47 −1.365233 1.879081 −6.238707

48 −2.208993 −0.717744 −6.238707

49 0.000000 −2.322672 −6.238707

50 2.208993 −0.717744 −6.238707
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51 1.365233 1.879081 −6.238707

52 2.669332 3.674020 −4.867496

53 1.304100 5.553102 −3.432005

54 2.669332 5.996694 −1.109333

55 1.365233 6.420422 1.109333

56 −1.365233 6.420422 1.109333

57 −2.208993 5.259085 3.432005

58 0.000000 4.541340 4.867496

59 2.208993 5.259085 3.432005

60 4.319071 3.726024 3.432005
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Table 4: Cage center translation vector, T (in bohrs) and rotation matrix, R̂, defining the
position of each of the cages in the 13-cage fragment corresponding to the P orientation of
M@C60(s).

Cage # (k) T(k) R̂(k)

1 (13.265878, 0.000000, 13.265878)


0.556377 −0.457993 −0.693316

−0.566903 0.400811 −0.719702

0.607508 0.793469 −0.036636



2 (0.000000, 13.265878, 13.265878)


0.556377 −0.457993 −0.693316

0.566903 −0.400811 0.719702

−0.607508 −0.793469 0.036636



3 (13.265878, 13.265878, 0.000000)


−0.556377 0.457993 0.693316

−0.566903 0.400811 −0.719702

−0.607508 −0.793469 0.036636



4 (−13.265878, 0.000000,−13.265878)


0.556377 −0.457993 −0.693316

−0.566903 0.400811 −0.719702

0.607508 0.793469 −0.036636



5 (0.000000,−13.265878,−13.265878)


0.556377 −0.457993 −0.693316

0.566903 −0.400811 0.719702

−0.607508 −0.793469 0.036636
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6 (−13.265878,−13.265878, 0.000000)


−0.556377 0.457993 0.693316

−0.566903 0.400811 −0.719702

−0.607508 −0.793469 0.036636



7 (0.000000, 13.265878,−13.265878)


0.556377 −0.457993 −0.693316

0.566903 −0.400811 0.719702

−0.607508 −0.793469 0.036636



8 (13.265878, 0.000000,−13.265878)


0.556377 −0.457993 −0.693316

−0.566903 0.400811 −0.719702

0.607508 0.793469 −0.036636



9 (0.000000,−13.265878, 13.265878)


0.556377 −0.457993 −0.693316

0.566903 −0.400811 0.719702

−0.607508 −0.793469 0.036636



10 (13.265878,−13.265878, 0.000000)


−0.556377 0.457993 0.693316

−0.566903 0.400811 −0.719702

−0.607508 −0.793469 0.036636



11 (−13.265878, 0.000000, 13.265878)


0.556377 −0.457993 −0.693316

−0.566903 0.400811 −0.719702

0.607508 0.793469 −0.036636



12 (−13.265878, 13.265878, 0.000000)


−0.556377 0.457993 0.693316

−0.566903 0.400811 −0.719702

−0.607508 −0.793469 0.036636
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13 (0.000000, 0.000000, 0.000000)


−0.556377 0.457993 0.693316

0.566903 −0.400811 0.719702

0.607508 0.793469 −0.036636
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Table 5: Cage center translation vector, T (in bohrs) and rotation matrix, R̂, defining the
position of each of the cages in the 13-cage fragment corresponding to the H orientation of
M@C60(s).

Cage # (k) T(k) R̂(k)

1 (13.265878, 0.000000, 13.265878)


0.154881 −0.967912 −0.197886

0.195485 0.226368 −0.954224

0.968400 0.109107 0.224272



2 (0.000000, 13.265878, 13.265878)


0.154881 −0.967912 −0.197886

−0.195485 −0.226368 0.954224

−0.968400 −0.109107 −0.224272



3 (13.265878, 13.265878, 0.000000)


−0.154881 0.967912 0.197886

0.195485 0.226368 −0.954224

−0.968400 −0.109107 −0.224272



4 (−13.265878, 0.000000,−13.265878)


0.154881 −0.967912 −0.197886

0.195485 0.226368 −0.954224

0.968400 0.109107 0.224272



5 (0.000000,−13.265878,−13.265878)


0.154881 −0.967912 −0.197886

−0.195485 −0.226368 0.954224

−0.968400 −0.109107 −0.224272



25



6 (−13.265878,−13.265878, 0.000000)


−0.154881 0.967912 0.197886

0.195485 0.226368 −0.954224

−0.968400 −0.109107 −0.224272



7 (0.000000, 13.265878,−13.265878)


0.154881 −0.967912 −0.197886

−0.195485 −0.226368 0.954224

−0.968400 −0.109107 −0.224272



8 (13.265878, 0.000000,−13.265878)


0.154881 −0.967912 −0.197886

0.195485 0.226368 −0.954224

0.968400 0.109107 0.224272



9 (0.000000,−13.265878, 13.265878)


0.154881 −0.967912 −0.197886

−0.195485 −0.226368 0.954224

−0.968400 −0.109107 −0.224272



10 (13.265878,−13.265878, 0.000000)


−0.154881 0.967912 0.197886

0.195485 0.226368 −0.954224

−0.968400 −0.109107 −0.224272



11 (−13.265878, 0.000000, 13.265878)


0.154881 −0.967912 −0.197886

0.195485 0.226368 −0.954224

0.968400 0.109107 0.224272



12 (−13.265878, 13.265878, 0.000000)


−0.154881 0.967912 0.197886

0.195485 0.226368 −0.954224

−0.968400 −0.109107 −0.224272
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13 (0.000000, 0.000000, 0.000000)


−0.154881 0.967912 0.197886

−0.195485 −0.226368 0.954224

0.968400 0.109107 0.224272
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