Supplementary Information for: Explaining the symmetry breaking observed in the endofullerenes H₂@C₆₀, HF@C₆₀, and H₂O@C₆₀

Peter M. Felker,^{*,†} Vojtěch Vlček,[†] Isaac Hietanen,[‡] Stephen FitzGerald,[‡] Daniel Neuhauser,[†] and Zlatko Bačić^{*,¶,§}

†Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA

[‡]Department of Physics and Astronomy, Oberlin College, Oberlin, Ohio 44074, USA

¶Department of Chemistry, New York University, New York, New York 10003, USA

§NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China

E-mail: felker@chem.ucla.edu; zlatko.bacic@nyu.edu

1 Molecular and Crystal-fragment Parameters

Tables S1 and S2 summarize the geometries, inertial parameters, and BF quadrupole components that we have assumed for the H_2 and H_2O moieties in computing the TR states of $H_2@C_{60}$ and $H_2O@C_{60}$, respectively.

Table S3 gives the C nuclear coordinates for the C_{60} "master-cage" geometry assumed for all the C_{60} moieties relevant to this work. The geometry has shared-hexagon (6:6) CC bond lengths equal to 2.60820 bohrs (1.38020 Å) and hexagon-pentagon (6:5) CC bond lengths equal to 2.73047 bohrs (1.44490 Å). The cage-fixed cartesian axis system is centered at the C_{60} center of mass, has its z axis along one of the C_5 symmetry axes of the cage, and its x axis along one of the C_2 symmetry axes of the cage.

Tables S4 and S5 give the cage-center translation vectors $(\mathbf{T}(k))$ and the direction-cosine matrices $(\hat{R}(k))$ that define the positions and orientations of the thirteen cages in the P and H crystal fragments, respectively, w.r.t. the "space-fixed" (SF) cartesian axis system. These parameters conform to the C₆₀ crystal geometries described in Sachidanandam and Harris¹ and Harris and Sachidanandam² for the angle ϕ (defined in those papers) equal to 24° (P orientation) and 84° (H orientation). The SF frame has its origin at the center of the central cage (cage #13) and is oriented such that the C_3 symmetry axis of the fragment is along the (1,1,1) direction. To obtain the position vector, \mathbf{R}_i , of the *ith* C nucleus of cage k relative to the SF frame one uses

$$\mathbf{R}_i = \mathbf{T}(k) + \hat{R}(k)\mathbf{D}_i,\tag{1}$$

where \mathbf{D}_i is the position vector, as given in Table S3, of the *ith* C nucleus in the cage-fixed axis system. In Tables S4 and S5, cages 1 to 6 are the "axial" and cages 7 to 12 are the "equatorial" cages in the fragment.

2 Basis sets, Grid Parameters, and Lennard-Jones Potential-Energy Parameters

2.1 $H_2@C_{60}$

2.1.1 Basis Functions

The basis functions employed in the variational calculations of the TR states of H₂@C₆₀ are of the form $|n, l, m_l\rangle |j, m_j\rangle$.

The $|n, l, m_l\rangle$ are 3D isotropic harmonic-oscillator eigenfunctions:³

$$|n, l, m_l\rangle = N_{nl} R^l e^{-\beta R^2/2} L_k^{(l+1/2)}(\beta R^2) Y_{lm_l}(\Theta, \Phi),$$
(2)

where $\beta = 2.9888989$ au, $n = 0, 1, 2, \dots, n_{\text{max}}, l = n, n - 2, \dots \ge 0, k \equiv (n - l)/2, m_l = -l, (-l+1), \dots, (l-1), l,$

$$N_{nl} = 2 \left[\frac{\beta^{(2l+3/2)} 2^{k+l} k!}{\sqrt{\pi} [2(k+l)+1]!!} \right]^{1/2},$$
(3)

the $L_k^{(l+1/2)}$ are associated Laguerre polynomials, and the Y_{lm_l} are spherical harmonics. We used $n_{\max} = 8$.

The $|j, m_j\rangle$ are spherical harmonics

$$|j, m_j\rangle = Y_{jm_j}(\theta, \phi), \tag{4}$$

where $j = 0, 1, 2, \dots, j_{\text{max}}$ and $m_j = -j, (-j+1), \dots, (j-1), j$. We used $j_{\text{max}} = 8$.

2.1.2 Grid Parameters

The 5D grid described in Section 2.5 of the main body of the paper consists of (i) $N_a = 12$ Gauss-associated-Laguerre quadrature points R_a , generated as per Felker and Bačić⁴ for $\beta = 2.9888989$ au, (ii) $N_b = 10$ Gauss-Legendre quadrature points $(\cos \beta)_b$, (iii) $N_c = 18$ Fourier grid points α_c , (iv) $N_d = 10$ Gauss-Legendre quadrature points $(\cos \theta)_d$, and (v) $N_e = 18$ Fourier grid points ϕ_e .

2.1.3 Kinetic-Energy Operator, \hat{T}

For $H_2@C_{60}$ in the rigid-monomer approximation

$$\hat{T} = -\frac{\nabla^2}{2M} + \frac{\hat{J}^2}{2I},\tag{5}$$

where ∇^2 is the Laplacian associated with **R**, \hat{J}^2 is the operator corresponding to the square of the rotational angular momentum of the H₂, M is the mass of the H₂, and I is the moment of inertia of the H₂. The inertial parameters that we have employed are given in Table S1.

2.1.4 Lennard-Jones Potential-Energy Parameters

The V_{LJ} PES function appearing in \hat{H} for H₂@C₆₀ is taken from Xu, et al.⁵ and is given by

$$V_{LJ} = \sum_{i=1}^{3} \sum_{k=1}^{60} 4w_i \epsilon \left[\left(\frac{\sigma}{r_{ik}} \right)^{12} - \left(\frac{\sigma}{r_{ik}} \right)^6 \right], \tag{6}$$

where *i* runs over the three H₂ sites listed in Table S1, *k* runs over the 60 nuclear positions of the C atoms in the central cage, r_{ik} is the distance between site *i* and site *k*, $w_1 = 6.7$, $w_2 = w_3 = 1$, $\sigma = 5.574692$ bohrs (2.95 Å), and $\epsilon = 3.07$ cm⁻¹. Of course, the r_{ik} depend on the position of the H₂ moiety w.r.t. the SF axes, so V_{LJ} is a function of **R** and ω .

2.2 $H_2O@C_{60}$

2.2.1 Basis Functions

The basis functions employed in the variational calculations of the TR states of H₂O@C₆₀ are of the form $|n, l, m_l\rangle |j, m_j, k\rangle$. The $|n, l, m_l\rangle$ are the same as for H₂@C₆₀ except that $\beta = 24.38$ au. The $|j, m_j, k\rangle$ are normalized Wigner rotation matrix elements

$$|j, m_j, k\rangle = \sqrt{\frac{2j+1}{8\pi^2}} [D_{m_j,k}^{(j)}(\phi, \theta, \chi)]^*,$$
(7)

where $j = 0, 1, 2, \dots, j_{\text{max}}, m_j = -j, (-j+1), \dots, (j-1), j$, and $k = -j, (-j+1), \dots, (j-1), j$. 1), j. We used $j_{\text{max}} = 8$.

2.2.2 Grid Parameters

The 6D grid described in Section 2.5 of the main body of the paper consisted of (i) $N_a = 12$ Gauss-associated-Laguerre quadrature points R_a , generated as per Felker and Bačić⁴ for $\beta = 24.38$ au, (ii) $N_b = 10$ Gauss-Legendre quadrature points $(\cos \beta)_b$, (iii) $N_c = 18$ Fourier grid points α_c , (iv) $N_d = 10$ Gauss-Legendre quadrature points $(\cos \theta)_d$, and (v) $N_e = 18$ Fourier grid points ϕ_e , and (vi) $N_f = 18$ Fourier grid points χ_f .

2.2.3 Kinetic-Energy Operator, \hat{T}

For $H_2O@C_{60}$ in the rigid-monomer approximation

$$\hat{T} = -\frac{\nabla^2}{2M} + \sum_{k=x,y,z} \frac{\hat{J}_k^2}{2I_k},$$
(8)

where ∇^2 is the Laplacian associated with \mathbf{R} , \hat{J}_k^2 is the operator corresponding to the square of the rotational angular momentum of the H₂O about its *kth* principal axis, *M* is the mass of the H₂O, and I_k is the moment of inertia of H₂O about its *kth* principal axis. The inertial parameters that we have employed are given in Table S2.

2.2.4 Lennard-Jones Potential-Energy Parameters

The V_{LJ} PES function appearing in \hat{H} for H₂O@C₆₀ is taken from Felker and Bačić⁸ and is given by

$$V_{LJ} = \sum_{i=1}^{3} \sum_{k=1}^{60} 4\epsilon_i \left[\left(\frac{\sigma_i}{r_{ik}} \right)^{12} - \left(\frac{\sigma_i}{r_{ik}} \right)^6 \right],\tag{9}$$

where *i* runs over the three H₂O sites listed in Table S2, *k* runs over the 60 nuclear positions of the C atoms in the central cage, r_{ik} is the distance between site *i* and site *k*, $\sigma_1 = 6.37216$ bohrs (3.372 Å), $\sigma_2 = \sigma_3 = 4.988877$ bohrs (2.640 Å), $\epsilon_1 = 36.34$ cm⁻¹, and $\epsilon_2 = \epsilon_3 = 8.95384$ cm⁻¹. The r_{ik} depend on the position of the H₂O moiety w.r.t. the SF axes, so V_{LJ} is a function of **R** and ω .

3 Transformation properties of the electric-field-gradiant tensor, $I_m^{(2)}$

For arbitrary charge density $\rho(\mathbf{r})$ the internal moments of rank 2 (the components of the electric-field-gradient tensor) are given by⁶

$$I_m^{(2)} \equiv \int \frac{\rho(\mathbf{r})}{r^3} C_m^{(2)}(\hat{r}) d\mathbf{r} = \sqrt{\frac{4\pi}{5}} \int \frac{\rho(\mathbf{r})}{r^3} Y_{2m}(\hat{r}) d\mathbf{r}.$$
 (10)

We examine below how these moments transform subject to (a) inversion through the origin and (b) rotation about an axis going through the origin.

3.1 Transformation by inversion

Inversion (operation E^*) changes the charge density $\rho(\mathbf{r})$ to $\rho'(\mathbf{r})$ such that

$$\rho'(\mathbf{r}) = \rho(-\mathbf{r}). \tag{11}$$

The internal moments corresponding to this new charge density are given by

$$I_{m}^{(2)}(E^{*}) = \sqrt{\frac{4\pi}{5}} \int \frac{\rho'(\mathbf{r})}{r^{3}} Y_{2m}(\hat{r}) d\mathbf{r} = \sqrt{\frac{4\pi}{5}} \int \frac{\rho(-\mathbf{r})}{r^{3}} Y_{2m}(\hat{r}) d\mathbf{r}$$
$$= \sqrt{\frac{4\pi}{5}} \int \frac{\rho(\mathbf{r}')}{r'^{3}} Y_{2m}(-\hat{r}') d\mathbf{r}',$$
(12)

where we have substituted $\mathbf{r}' = -\mathbf{r}$ to obtain the final equality. Since $Y_{2m}(-\hat{r}') = Y_{2m}(\hat{r}')$, one sees from Eqs. (10) and (12) that

$$I_m^{(2)}(E^*) = I_m^{(2)}.$$
(13)

Inversion leaves internal moments of rank 2 unchanged.

3.2 Transformation by rotation about an axis through the origin

We start by expressing $\rho(\mathbf{r})$ as an expansion over spherical harmonics

$$\rho(\mathbf{r}) = \sum_{l,m} a_{lm}(r) Y_{lm}(\hat{r}), \qquad (14)$$

where

$$a_{lm}(r) = \int \rho(\mathbf{r}) Y_{lm}^*(\hat{r}) d\hat{r}.$$
(15)

Next we substitute this expansion for $\rho(\mathbf{r})$ into Eq. (10) to obtain

$$I_m^{(2)} = \sqrt{\frac{4\pi}{5}} \sum_{l,m'} \int \frac{a_{lm'}(r)}{r^3} Y_{lm'}(\hat{r}) Y_{2m}(\hat{r}) d\mathbf{r}$$
$$= \sqrt{\frac{4\pi}{5}} (-)^m \int \frac{a_{2,-m}(r)}{r^3} dr, \qquad (16)$$

where the last equality in Eq. (16) follows from the orthonormality of the spherical harmonics and the fact that

$$Y_{lm}^* = (-)^m Y_{l,-m}.$$
 (17)

Now we rotate the charge density $\rho(\mathbf{r})$ through an angle γ about an axis \hat{n} going through the origin. The density is transformed as follows

$$e^{-i\hat{J}_n\gamma}\rho(\mathbf{r}) = \sum_{l,m} a_{lm}(r)[e^{-i\hat{J}_n\gamma}Y_{lm}(\hat{r})],$$
(18)

where \hat{J}_n is the operator corresponding to angular momentum about \hat{n} .

Consider the new $I_m^{(2)}$ – call them $I_m^{(2)}(\hat{n},\gamma)$ – corresponding to this rotated density

$$\sqrt{\frac{5}{4\pi}} I_m^{(2)}(\hat{n}, \gamma) = \int \frac{[e^{-i\hat{J}_n\gamma}\rho(\mathbf{r})]}{r^3} Y_{2m}(\hat{r}) d\mathbf{r}
= \sum_{l,m'} \int \frac{a_{l,m'}(r)}{r^3} dr \int [e^{-i\hat{J}_n\gamma}Y_{lm'}] Y_{2m} d\hat{r}.$$
(19)

Now

$$e^{-i\hat{J}_{n}\gamma}Y_{lm'}(\hat{r}) = \sum_{m''} A_{m'',m'}^{(l)}(\hat{n},\gamma)Y_{lm''}(\hat{r}), \qquad (20)$$

where

$$A_{m'',m'}^{(l)}(\hat{n},\gamma) \equiv \int Y_{lm''}^{*}(\hat{r})e^{-i\hat{J}_{n}\gamma}Y_{lm'}(\hat{r})d\hat{r}.$$
(21)

Substituting Eq. (20) into Eq. (19) one obtains

$$\sqrt{\frac{5}{4\pi}} I_m^{(2)}(\hat{n}, \gamma) = \sum_{l,m'} \left[\int \frac{a_{l,m'}(r)}{r^3} dr \times \sum_{m''} A_{m''m'}^{(l)}(\hat{n}, \gamma) \int Y_{lm''}(\hat{r}) Y_{2m}(\hat{r}) d\hat{r} \right] \\
= \sum_{m'} (-)^m A_{-m,m'}^{(2)}(\hat{n}, \gamma) \int \frac{a_{2,m'}(r)}{r^3} dr.$$
(22)

By using Eq. (16) one then obtains

$$I_m^{(2)}(\hat{n},\gamma) = \sum_{m'} (-)^{m+m'} A_{-m,m'}^{(2)}(\hat{n},\gamma) I_{-m'}^{(2)} = \sum_{m'} (-)^{m+m'} A_{-m,-m'}^{(2)}(\hat{n},\gamma) I_{m'}^{(2)}.$$
 (23)

What remains is to evaluate the $A_{m,m'}^{(2)}(\hat{n},\gamma)$. If one specifies the direction of the axis \hat{n} by its polar angle β and azimuthal angle α , it is straightforward to show that

$$A_{m,m'}^{(l)}(\alpha,\beta,\gamma) \equiv A_{m,m'}^{(l)}(\hat{n},\gamma) = e^{i(m'-m)\alpha} \sum_{m''} e^{-im''\gamma} d_{m,m''}^{(l)}(\beta) d_{m',m''}^{(l)}(\beta),$$
(24)

where the $d_{m,m'}^{(l)}(\beta)$ are little-*d* Wigner rotation matrix elements. From Eq. (24), one can also easily show that

$$(-)^{m+m'} A^{(l)}_{-m,-m'}(\hat{n},\gamma) = [A^{(l)}_{m,m'}(\hat{n},\gamma)]^*$$
(25)

and that

$$(-)^{m+m'} A^{(l)}_{-m,-m'}(\hat{n},-\gamma) = A^{(l)}_{m',m}(\hat{n},\gamma).$$
(26)

Finally, with Eqs. (23), (25), and (26)

$$I_m^{(2)}(\hat{n},\gamma) = \sum_{m'} [A_{m,m'}^{(2)}(\hat{n},\gamma)]^* I_{m'}^{(2)}$$
(27)

and

$$I_m^{(2)}(\hat{n}, -\gamma) = \sum_{m'} A_{m',m}^{(2)}(\hat{n}, \gamma) I_{m'}^{(2)}.$$
(28)

Relevant to the M@C₆₀ crystal-fragment geometries in this work are the rotations by $\pm 2\pi/3$ about \hat{n} when \hat{n} lies along the (1,1,1) direction, so that $\beta = \cos^{-1}(\sqrt{1/3})$ and $\alpha = \pi/4$. Evaluation of Eq. (24) for $\gamma = +2\pi/3$ about this axis and for l = 2 yields the matrix of values

$$\mathbf{B} \equiv \mathbf{A}^{(2)}(\pi/4, \cos^{-1}(\sqrt{1/3}), 2\pi/3) = \begin{pmatrix} -\frac{1}{4} & \frac{1}{2} & -\sqrt{\frac{3}{8}} & \frac{1}{2} & -\frac{1}{4} \\ \frac{i}{2} & -\frac{i}{2} & 0 & \frac{i}{2} & -\frac{i}{2} \\ \sqrt{\frac{3}{8}} & 0 & -\frac{1}{2} & 0 & \sqrt{\frac{3}{8}} \\ -\frac{i}{2} & -\frac{i}{2} & 0 & \frac{i}{2} & \frac{i}{2} \\ -\frac{1}{4} & -\frac{1}{2} & -\sqrt{\frac{3}{8}} & -\frac{1}{2} & -\frac{1}{4} \end{pmatrix},$$
(29)

where the rows run from m = -2 to 2 and the columns from m' = -2 to 2.

3.3 Invariant $I_m^{(2)}$ for the M@C₆₀ Crystal Fragment

For this work we take the P and H crystal fragments to be invariant under the operations of the S_6 point group. In addition, we have chosen SF cartesian axes such that the C_3 symmetry axis of S_6 points along the (1, 1, 1) direction. Since the internal moments due to the NN cages must be invariant to a $2\pi/3$ rotation about the C_3 axis, then given Eqs. (27) and (29), the following must be obeyed

$$\mathbf{B}^* I^{(2)} = I^{(2)},\tag{30}$$

where $I^{(2)}$ is the column vector composed of internal moments produced by the charge density of the twelve NN cages

$$I^{(2)} \equiv \begin{pmatrix} I_{-2}^{(2)} \\ I_{-1}^{(2)} \\ I_{0}^{(2)} \\ I_{+1}^{(2)} \\ I_{+2}^{(2)} \end{pmatrix}.$$
 (31)

Equation (30) is satisfied if $I^{(2)}$ is an eigenvector of \mathbf{B}^* having eigenvalue equal to +1. These eigenvectors can be straightforwardly determined. They are given by

$$I^{(2)} = A \begin{pmatrix} i \\ (-1+i) \\ 0 \\ (1+i) \\ -i \end{pmatrix},$$
 (32)

where, in general, A is a complex constant.

4 Perturbation theory applied to j = 1 level splittings

4.1 $H_2@C_{60}$ and $HF@C_{60}$

We take the lowest-energy zeroth-order TR states of $H_2@C_{60}$ and $HF@C_{60}$ to be of the form $|T_0\rangle|j,m_j\rangle$,⁷ where $|T_0\rangle$ depends only on **R** and $|j,m_j\rangle$ is a rigid-rotor rotational eigenfunction. The matrix elements of V_{quad} connecting the states of a given j level are then given by

$$\langle T_0, j, m'_j | V_{\text{quad}} | T_0, j, m_j \rangle = \sum_m (-)^m I_{-m}^{(2)} \langle T_0, j, m'_j | Q_m^{(2)} | T_0, j, m_j \rangle.$$
(33)

By using Eq. (15) of the main text

$$\langle T_{0}, j, m'_{j} | Q_{m}^{(2)} | T_{0}, j, m_{j} \rangle = Q_{0}^{\text{BF}} \langle j, m'_{j} | [D_{m,0}^{(2)}(\omega)]^{*} | j, m_{j} \rangle + (-)^{m} \sqrt{40\pi} \mu_{z} \sum_{m'} \begin{pmatrix} 1 & 1 & 2 \\ m' & m - m' & -m \end{pmatrix} \times \langle T_{0} | RY_{1,m'}(\Theta, \Phi) | T_{0} \rangle \langle j, m'_{j} | [D_{m-m',0}^{(1)}(\omega)]^{*} | j, m_{j} \rangle.$$

$$(34)$$

Now the $|T_0, j, m_j\rangle$ have inversion symmetry (due to the I_h environment imposed by the central C₆₀ cage), as do the $|j, m_j\rangle$. In consequence, $|T_0\rangle$ also has inversion symmetry. The upshot is that the factors $\langle T_0 | RY_{1,m'}(\Theta, \Phi) | T_0 \rangle$ appearing in Eq. (34) are zero by symmetry, since $RY_{1m'}(\Theta, \Phi)$ changes sign upon inversion. Thus we need only consider the first term on the rhs of Eq. (34). One finds

$$\langle T_0, j, m'_j | Q_m^{(2)} | T_0, j, m_j \rangle = (-)^{m'_j} (2j+1) Q_0^{\rm BF} \begin{pmatrix} j & j & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} j & j & 2 \\ -m'_j & m_j & m \end{pmatrix}.$$
 (35)

Substituting Eq. (35) into Eq. (33) one obtains

$$\langle T_0, j, m'_j | V_{\text{quad}} | T_0, j, m_j \rangle = (-)^{m_j} I_{m_j - m'_j}^{(2)} \begin{pmatrix} j & j & 2 \\ -m'_j & m_j & m'_j - m_j \end{pmatrix}$$

$$\times (2j+1) Q_0^{\text{BF}} \begin{pmatrix} j & j & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$(36)$$

These matrix elements are readily evaluated for a given value of j. For j = 1 the full matrix (rows labeled by $m'_j = -1, 0, 1$ and columns by $m_j = -1, 0, 1$) is given by

$$\langle T_0, 1, \{m'_j\} | V_{\text{quad}} | T_0, 1, \{m_j\} \rangle = \frac{\sqrt{6}}{5} Q_0^{\text{BF}} A \begin{pmatrix} 0 & -\frac{(1+i)}{\sqrt{2}} & i \\ -\frac{(1-i)}{\sqrt{2}} & 0 & \frac{(1+i)}{\sqrt{2}} \\ -i & \frac{(1-i)}{\sqrt{2}} & 0 \end{pmatrix}, \quad (37)$$

where we have used Eq. (32) for the $I_m^{(2)}$. This matrix has eigenvalues $\frac{\sqrt{6}}{5}Q_0^{\text{BF}}A$, $\frac{\sqrt{6}}{5}Q_0^{\text{BF}}A$, and $-2\frac{\sqrt{6}}{5}Q_0^{\text{BF}}A$. These are the first-order corrections to the energies of the j = 1 states and give

$$\Delta_{\rm PT} \equiv E(g=2) - E(g=1) = 3A \frac{\sqrt{6}}{5} Q_0^{\rm BF}, \tag{38}$$

consistent with Eqs. (17) and (18) of the main text.

4.2 $H_2O@C_{60}$

For H₂O@C₆₀ the lowest-energy zeroth-order states⁸ are very well-approximated by $|T_0\rangle|j_{k_ak_c}, m_j\rangle$, where $|T_0\rangle$ depends only on **R**,

$$|j_{k_ak_c}, m_j\rangle = \sum_k a(j_{k_ak_c}, k)|j, m_j, k\rangle$$
(39)

is an eigenfunction of the rigid-H₂O rotational Hamiltonian, and the $|j, m_j, k\rangle$ are symmetrictop rotational eigenfunctions

$$|j, m_j, k\rangle = \sqrt{\frac{2j+1}{8\pi^2}} [D_{m_j,k}^{(j)}(\omega)]^*.$$
 (40)

Matrix elements of V_{quad} connecting states of a given $|T_0, j_{k_a k_c}\rangle$ level are given by

$$\langle T_0, j_{k_a k_c}, m'_j | V_{\text{quad}} | T_0, j_{k_a k_c}, m_j \rangle = \sum_m (-)^m I_{-m}^{(2)} \langle T_0, j_{k_a k_c}, m'_j | Q_m^{(2)} | T_0, j_{k_a k_c}, m_j \rangle.$$
(41)

To evaluate the matrix elements on the rhs of Eq. (41) we use Eq. (15) of the main text and note that, as for H₂ and HF, $|T_0\rangle$ has definite parity. Thus,

$$\langle T_0 | RY_{1,m'}(\Theta, \Phi) | T_0 \rangle = 0 \tag{42}$$

and

$$\langle T_0, j_{k_a k_c}, m'_j | Q_m^{(2)} | T_0, j_{k_a k_c}, m_j \rangle = \sum_{q=-2}^2 Q_q^{\rm BF} \langle j_{k_a k_c}, m'_j | [D_{m,q}^{(2)}]^* | j_{k_a k_c}, m_j \rangle.$$
(43)

By using Eqs. (39) and (40)

$$\begin{aligned} \langle j_{k_{a}k_{c}}, m'_{j} | [D^{(2)}_{m,q}]^{*} | j_{k_{a}k_{c}}, m_{j} \rangle &= \sum_{k,k'} a(j_{k_{a}k_{c}}, k') a(j_{k_{a}k_{c}}, k) \langle j, m'_{j}, k' | [D^{(2)}_{m,q}]^{*} | j, m_{j}, k \rangle \\ &= (-)^{m'_{j}} (2j+1) \begin{pmatrix} j & j & 2 \\ -m'_{j} & m_{j} & m \end{pmatrix} \\ &\times \sum_{k,k'} (-)^{k'} a(j_{k_{a}k_{c}}, k') a(j_{k_{a}k_{c}}, k) \begin{pmatrix} j & j & 2 \\ -k' & k & q \end{pmatrix}. \end{aligned}$$

$$(44)$$

Substituting Eq. (44) into Eq. (43) and then the latter into Eq. (41) one obtains

$$\langle T_0, j_{k_a k_c}, m'_j | V_{\text{quad}} | T_0, j_{k_a k_c}, m_j \rangle = (-)^{m_j} I_{m_j - m'_j}^{(2)} \begin{pmatrix} j & j & 2 \\ -m'_j & m_j & m'_j - m_j \end{pmatrix}$$

$$\times (2j+1) \sum_q Q_q^{\text{BF}} \sum_{k',k} (-)^{k'} a(j_{k_a k_c}, k') a(j_{k_a k_c}, k) \begin{pmatrix} j & j & 2 \\ -k' & k & q \end{pmatrix}.$$

$$(45)$$

For j = 1 the Eq.-(45) matrix (rows labeled by $m'_j = -1, 0, 1$ and columns by $m_j = -1, 0, 1$) is given by

$$\langle T_0, 1_{k_a k_c}, \{m'_j\} | V_{\text{quad}} | T_0, 1_{k_a k_c}, \{m_j\} \rangle = Af(Q^{\text{BF}}) \begin{pmatrix} 0 & -\frac{(1+i)}{\sqrt{2}} & i \\ -\frac{(1-i)}{\sqrt{2}} & 0 & \frac{(1+i)}{\sqrt{2}} \\ -i & \frac{(1-i)}{\sqrt{2}} & 0 \end{pmatrix}, \quad (46)$$

where we have used Eq. (32) for the $I_m^{(2)}$ and

$$f(Q^{\rm BF}) \equiv \frac{3}{\sqrt{5}} \left[\sum_{q} Q_q^{\rm BF} \sum_{k',k} (-)^{k'} a(j_{k_a k_c}, k') a(j_{k_a k_c}, k) \begin{pmatrix} 1 & 1 & 2 \\ -k' & k & q \end{pmatrix} \right].$$
(47)

Diagonalization of Eq. (46) yields the eigenvalues $Af(Q^{BF})$, $Af(Q^{BF})$, and $-2Af(Q^{BF})$ and the level splitting

$$\Delta_{\rm PT} = E(g=2) - E(g=1) = 3Af(Q^{\rm BF}).$$
(48)

For the 1_{01} level, the *ortho* ground state,

$$a(1_{01}, 1) = -a(1_{01}, -1) = \frac{1}{\sqrt{2}} \qquad a(1_{01}, 0) = 0$$
(49)

and

$$f(Q^{\rm BF}, 1_{01}) = \frac{3}{5} \left[-\frac{1}{\sqrt{6}} Q_0^{\rm BF} + \frac{1}{2} \left(Q_2^{\rm BF} + Q_{-2}^{\rm BF} \right) \right].$$
(50)

For the first excited rotational state of the *ortho* species, 1_{10} ,

$$a(1_{01}, 1) = a(1_{01}, -1) = \frac{1}{\sqrt{2}} \qquad a(1_{01}, 0) = 0$$
(51)

and

$$f(Q^{\rm BF}, 1_{10}) = \frac{3}{5} \left[+\frac{1}{\sqrt{6}} Q_0^{\rm BF} + \frac{1}{2} \left(Q_2^{\rm BF} + Q_{-2}^{\rm BF} \right) \right].$$
(52)

Finally, for the first excited rotational state of the *para* species, 1_{11} ,

$$a(1_{11}, 1) = a(1_{11}, -1) = 0$$
 $a(1_{11}, 0) = 1$ (53)

and

$$f(Q^{\rm BF}, 1_{11}) = \frac{\sqrt{6}}{5}Q_0^{\rm BF}.$$
(54)

References

- (1) R. Sachidanandam and A. B. Harris, Phys. Rev. Lett. **67**, 1467 (1991).
- (2) A. B. Harris and R. Sachidanandam, Phys. Rev. B 46, 4944 (1992).
- (3) For example, see https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
- (4) See P. M. Felker and Z. Bačić, J. Chem. Phys. 145, 084310 (2016), Supplementary Material, Section II.
- (5) M. Xu, S. Ye, A. Powers, R. Lawler, N. J. Turro, and Z. Bačić, J. Chem. Phys. 139, 064309 (2013).
- (6) For example, For example, R. N. Zare, Angular Momentum (Wiley, New York, 1988),
 Eq. (7), p. 246.
- (7) For example, M. Xu, F. Sebastianelli, Z. Bačić, R. Lawler, and N. J. Turro, J. Chem. Phys. **128**, 011101 (2008).
- (8) P. M. Felker and Z. Bačić, J. Chem. Phys. **145**, 084310 (2016).

Site # 1 2 3	$\begin{array}{c} x \\ 0.000000 \\ 0.000000 \\ 0.000000 \end{array}$	$egin{array}{c} y \\ 0.000000 \\ 0.000000 \\ 0.000000 \end{array}$	$z \\ 0.000000 \\ +0.699199 \\ -0.699199$	mass 0.0000 1.0078 1.0078
	$(2I)^{-1} = 58.378$			
	$Q_0^{\rm BF} = 0.499$			

Table 1: H_2 BF site coordinates (in bohrs), site masses (in amu), rotational constant (in cm⁻¹), and BF quadrupole (in au).

Site # 1 2 3	x 0.000000 1.453650 -1.453650	<i>y</i> 0.000000 0.000000 0.000000	z 0.125534 -0.996156 -0.996156	mass 15.9949 1.0078 1.0078
$(2I_x)^{-1}$ 27.877	$(2I_y)^{-1}$ 9.285	$(2I_z)^{-1}$ 14.512		
$Q_0^{(\mathrm{BF})} - 0.09973$	$Q_{\pm 2}^{(\mathrm{BF})}$ 1.53843	$\vec{\mu} = \mu \hat{z} \\ -0.737196$		

Table 2: H_2O BF site coordinates (in bohrs), site masses (in amu), rotational constants (in cm⁻¹), and BF quadrupole and dipole components (in au).

C nucleus	x	y	z
1	0.000000	2.322672	6.238707
2	-2.208993	0.717744	6.238707
3	-1.365233	-1.879081	6.238707
4	1.365233	-1.879081	6.238707
5	2.208993	0.717744	6.238707
6	4.319071	1.403350	4.867496
7	5.684303	-0.475731	3.432005
8	4.878326	-2.956276	3.432005
9	2.669332	-3.674020	4.867496
10	1.304100	-5.553102	3.432005
11	-1.304100	-5.553102	3.432005
12	-2.669332	-3.674020	4.867496
13	-4.878326	-2.956276	3.432005
14	-5.684303	-0.475731	3.432005
15	-4.319071	1.403350	4.867496
16	-4.319071	3.726024	3.432005
17	-5.684303	3.282433	1.109333
18	-6.528064	0.685606	1.109333
19	-6.528064	-0.685606	-1.109333
20	-5.684303	-3.282433	-1.109333
21	-4.878326	-4.391767	1.109333
22	-2.669332	-5.996694	1.109333
23	-1.365233	-6.420422	-1.109333

Table 3: Carbon nuclear coordinates (in bohrs) for the "master cage" C_{60} geometry. Coordinates are referenced to a cage-fixed cartesian axis system having its origin at the center of the cage, its z axis along one of the C_5 symmetry axes of the cage, and its x axis along one of the C_2 symmetry axes of the cage.

_

24	1.365233	-6.420422	-1.109333
25	2.669332	-5.996694	1.109333
26	4.878326	-4.391767	1.109333
27	5.684303	-3.282433	-1.109333
28	6.528064	-0.685606	-1.109333
29	6.528064	0.685606	1.109333
30	5.684303	3.282433	1.109333
31	4.878326	4.391767	-1.109333
32	4.878326	2.956276	-3.432005
33	5.684303	0.475731	-3.432005
34	4.319071	-1.403350	-4.867496
35	4.319071	-3.726024	-3.432005
36	2.208993	-5.259085	-3.432005
37	0.000000	-4.541340	-4.867496
38	-2.208993	-5.259085	-3.432005
39	-4.319071	-3.726024	-3.432005
40	-4.319071	-1.403350	-4.867496
41	-5.684303	0.475731	-3.432005
42	-4.878326	2.956276	-3.432005
43	-4.878326	4.391767	-1.109333
44	-2.669332	5.996694	-1.109333
45	-1.304100	5.553102	-3.432005
46	-2.669332	3.674020	-4.867496
47	-1.365233	1.879081	-6.238707
48	-2.208993	-0.717744	-6.238707
49	0.000000	-2.322672	-6.238707
50	2.208993	-0.717744	-6.238707

51	1.365233	1.879081	-6.238707
52	2.669332	3.674020	-4.867496
53	1.304100	5.553102	-3.432005
54	2.669332	5.996694	-1.109333
55	1.365233	6.420422	1.109333
56	-1.365233	6.420422	1.109333
57	-2.208993	5.259085	3.432005
58	0.000000	4.541340	4.867496
59	2.208993	5.259085	3.432005
60	4.319071	3.726024	3.432005

=

Cage $\#$ (k)	$\mathbf{T}(k)$	$\hat{R}(k)$
1	(13.265878, 0.000000, 13.265878)	$\begin{pmatrix} 0.556377 & -0.457993 & -0.693316 \\ -0.566903 & 0.400811 & -0.719702 \\ 0.607508 & 0.793469 & -0.036636 \end{pmatrix}$
2	(0.000000, 13.265878, 13.265878)	$\begin{pmatrix} 0.556377 & -0.457993 & -0.693316 \\ 0.566903 & -0.400811 & 0.719702 \\ -0.607508 & -0.793469 & 0.036636 \end{pmatrix}$
3	(13.265878, 13.265878, 0.000000)	$\begin{pmatrix} -0.556377 & 0.457993 & 0.693316 \\ -0.566903 & 0.400811 & -0.719702 \\ -0.607508 & -0.793469 & 0.036636 \end{pmatrix}$
4	(-13.265878, 0.000000, -13.265878)	$\begin{pmatrix} 0.556377 & -0.457993 & -0.693316 \\ -0.566903 & 0.400811 & -0.719702 \\ 0.607508 & 0.793469 & -0.036636 \end{pmatrix}$
5	(0.000000, -13.265878, -13.265878)	$\begin{pmatrix} 0.556377 & -0.457993 & -0.693316 \\ 0.566903 & -0.400811 & 0.719702 \\ -0.607508 & -0.793469 & 0.036636 \end{pmatrix}$

Table 4: Cage center translation vector, **T** (in bohrs) and rotation matrix, \hat{R} , defining the position of each of the cages in the 13-cage fragment corresponding to the P orientation of $M@C_{60}(s)$.

		(-0.556377)	0.457993	0.693316
13	(0.000000, 0.000000, 0.000000)	0.566903	-0.400811	0.719702
		0.607508	0.793469	-0.036636

Cage $\#$ (k)	$\mathbf{T}(k)$	$\hat{R}(k)$
1	(13.265878, 0.000000, 13.265878)	$\begin{pmatrix} 0.154881 & -0.967912 & -0.197886 \\ 0.195485 & 0.226368 & -0.954224 \\ 0.968400 & 0.109107 & 0.224272 \end{pmatrix}$
2	(0.000000, 13.265878, 13.265878)	$\begin{pmatrix} 0.154881 & -0.967912 & -0.197886 \\ -0.195485 & -0.226368 & 0.954224 \\ -0.968400 & -0.109107 & -0.224272 \end{pmatrix}$
3	(13.265878, 13.265878, 0.000000)	$\begin{pmatrix} -0.154881 & 0.967912 & 0.197886 \\ 0.195485 & 0.226368 & -0.954224 \\ -0.968400 & -0.109107 & -0.224272 \end{pmatrix}$
4	(-13.265878, 0.000000, -13.265878)	$\begin{pmatrix} 0.154881 & -0.967912 & -0.197886 \\ 0.195485 & 0.226368 & -0.954224 \\ 0.968400 & 0.109107 & 0.224272 \end{pmatrix}$
5	(0.000000, -13.265878, -13.265878)	$\begin{pmatrix} 0.154881 & -0.967912 & -0.197886 \\ -0.195485 & -0.226368 & 0.954224 \\ -0.968400 & -0.109107 & -0.224272 \end{pmatrix}$

Table 5: Cage center translation vector, **T** (in bohrs) and rotation matrix, \hat{R} , defining the position of each of the cages in the 13-cage fragment corresponding to the H orientation of $M@C_{60}(s)$.

		$\left(-0.154881\right)$	0.967912	0.197886
13	(0.000000, 0.000000, 0.000000)	-0.195485	-0.226368	0.954224
		0.968400	0.109107	0.224272