Supplementary Information for: Explaining the symmetry breaking observed in the endofullerenes $\mathbf{H}_{2} @ C_{60}$, $\mathbf{H F @ C}_{60}$, and $\mathbf{H}_{2} \mathbf{O} @ C_{60}$

Peter M. Felker, ${ }^{*, \dagger}$ Vojtěch VIček, ${ }^{\dagger}$ Isaac Hietanen, ${ }^{\ddagger}$ Stephen FitzGerald, ${ }^{\ddagger}$ Daniel Neuhauser, ${ }^{\dagger}$ and Zlatko Bačić ${ }^{*}, \boldsymbol{q}$, §
\dagger Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
\ddagger Department of Physics and Astronomy, Oberlin College, Oberlin, Ohio 44074, USA
【Department of Chemistry, New York University, New York, New York 10003, USA
§NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
E-mail: felker@chem.ucla.edu; zlatko.bacic@nyu.edu

1 Molecular and Crystal-fragment Parameters

Tables S1 and S2 summarize the geometries, inertial parameters, and BF quadrupole components that we have assumed for the H_{2} and $\mathrm{H}_{2} \mathrm{O}$ moieties in computing the TR states of $\mathrm{H}_{2} @ \mathrm{C}_{60}$ and $\mathrm{H}_{2} \mathrm{O} @ \mathrm{C}_{60}$, respectively.

Table S 3 gives the C nuclear coordinates for the C_{60} "master-cage" geometry assumed for all the C_{60} moieties relevant to this work. The geometry has shared-hexagon (6:6) CC bond lengths equal to 2.60820 bohrs (1.38020 \AA) and hexagon-pentagon (6:5) CC bond lengths equal to 2.73047 bohrs ($1.44490 \AA$). The cage-fixed cartesian axis system is centered at the
C_{60} center of mass, has its z axis along one of the C_{5} symmetry axes of the cage, and its x axis along one of the C_{2} symmetry axes of the cage.

Tables S4 and S5 give the cage-center translation vectors $(\mathbf{T}(k))$ and the direction-cosine matrices $(\hat{R}(k))$ that define the positions and orientations of the thirteen cages in the P and H crystal fragments, respectively, w.r.t. the "space-fixed" (SF) cartesian axis system. These parameters conform to the C_{60} crystal geometries described in Sachidanandam and Harris ${ }^{1}$ and Harris and Sachidanandam ${ }^{2}$ for the angle ϕ (defined in those papers) equal to 24° (P orientation) and 84° (H orientation). The SF frame has its origin at the center of the central cage (cage $\# 13$) and is oriented such that the C_{3} symmetry axis of the fragment is along the $(1,1,1)$ direction. To obtain the position vector, \mathbf{R}_{i}, of the i th C nucleus of cage k relative to the SF frame one uses

$$
\begin{equation*}
\mathbf{R}_{i}=\mathbf{T}(k)+\hat{R}(k) \mathbf{D}_{i}, \tag{1}
\end{equation*}
$$

where \mathbf{D}_{i} is the position vector, as given in Table S3, of the $i t h$ C nucleus in the cage-fixed axis system. In Tables S 4 and S5, cages 1 to 6 are the "axial" and cages 7 to 12 are the "equatorial" cages in the fragment.

2 Basis sets, Grid Parameters, and Lennard-Jones PotentialEnergy Parameters

$2.1 \quad \mathrm{H}_{2} @ \mathrm{C}_{60}$

2.1.1 Basis Functions

The basis functions employed in the variational calculations of the TR states of $\mathrm{H}_{2} @ \mathrm{C}_{60}$ are of the form $\left|n, l, m_{l}\right\rangle\left|j, m_{j}\right\rangle$.

The $\left|n, l, m_{l}\right\rangle$ are 3D isotropic harmonic-oscillator eigenfunctions: ${ }^{3}$

$$
\begin{equation*}
\left|n, l, m_{l}\right\rangle=N_{n l} R^{l} e^{-\beta R^{2} / 2} L_{k}^{(l+1 / 2)}\left(\beta R^{2}\right) Y_{l m_{l}}(\Theta, \Phi) \tag{2}
\end{equation*}
$$

where $\beta=2.9888989 \mathrm{au}, n=0,1,2, \ldots, n_{\max }, l=n, n-2, \ldots \geq 0, k \equiv(n-l) / 2, m_{l}=$ $-l,(-l+1), \ldots,(l-1), l$,

$$
\begin{equation*}
N_{n l}=2\left[\frac{\beta^{(2 l+3 / 2)} 2^{k+l} k!}{\sqrt{\pi}[2(k+l)+1]!!}\right]^{1 / 2} \tag{3}
\end{equation*}
$$

the $L_{k}^{(l+1 / 2)}$ are associated Laguerre polynomials, and the $Y_{l m_{l}}$ are spherical harmonics. We used $n_{\max }=8$.

The $\left|j, m_{j}\right\rangle$ are spherical harmonics

$$
\begin{equation*}
\left|j, m_{j}\right\rangle=Y_{j m_{j}}(\theta, \phi), \tag{4}
\end{equation*}
$$

where $j=0,1,2, \ldots, j_{\max }$ and $m_{j}=-j,(-j+1), \ldots,(j-1), j$. We used $j_{\max }=8$.

2.1.2 Grid Parameters

The 5D grid described in Section 2.5 of the main body of the paper consists of (i) $N_{a}=12$ Gauss-associated-Laguerre quadrature points R_{a}, generated as per Felker and Bačić ${ }^{4}$ for $\beta=2.9888989$ au, (ii) $N_{b}=10$ Gauss-Legendre quadrature points $(\cos \beta)_{b}$, (iii) $N_{c}=18$ Fourier grid points α_{c}, (iv) $N_{d}=10$ Gauss-Legendre quadrature points $(\cos \theta)_{d}$, and (v) $N_{e}=18$ Fourier grid points ϕ_{e}.

2.1.3 Kinetic-Energy Operator, \hat{T}

For $\mathrm{H}_{2} @ \mathrm{C}_{60}$ in the rigid-monomer approximation

$$
\begin{equation*}
\hat{T}=-\frac{\nabla^{2}}{2 M}+\frac{\hat{J}^{2}}{2 I} \tag{5}
\end{equation*}
$$

where ∇^{2} is the Laplacian associated with \mathbf{R}, \hat{J}^{2} is the operator corresponding to the square of the rotational angular momentum of the H_{2}, M is the mass of the H_{2}, and I is the moment of inertia of the H_{2}. The inertial parameters that we have employed are given in Table S1.

2.1.4 Lennard-Jones Potential-Energy Parameters

The $V_{L J}$ PES function appearing in \hat{H} for $\mathrm{H}_{2} @ \mathrm{C}_{60}$ is taken from Xu , et al. ${ }^{5}$ and is given by

$$
\begin{equation*}
V_{L J}=\sum_{i=1}^{3} \sum_{k=1}^{60} 4 w_{i} \epsilon\left[\left(\frac{\sigma}{r_{i k}}\right)^{12}-\left(\frac{\sigma}{r_{i k}}\right)^{6}\right] \tag{6}
\end{equation*}
$$

where i runs over the three H_{2} sites listed in Table $\mathrm{S} 1, k$ runs over the 60 nuclear positions of the C atoms in the central cage, $r_{i k}$ is the distance between site i and site $k, w_{1}=6.7$, $w_{2}=w_{3}=1, \sigma=5.574692$ bohrs $(2.95 \AA)$, and $\epsilon=3.07 \mathrm{~cm}^{-1}$. Of course, the $r_{i k}$ depend on the position of the H_{2} moiety w.r.t. the SF axes, so $V_{L J}$ is a function of \mathbf{R} and ω.

$2.2 \quad \mathrm{H}_{2} \mathrm{O} @ \mathrm{C}_{60}$

2.2.1 Basis Functions

The basis functions employed in the variational calculations of the TR states of $\mathrm{H}_{2} \mathrm{O} @ \mathrm{C}_{60}$ are of the form $\left|n, l, m_{l}\right\rangle\left|j, m_{j}, k\right\rangle$. The $\left|n, l, m_{l}\right\rangle$ are the same as for $\mathrm{H}_{2} @ \mathrm{C}_{60}$ except that $\beta=24.38$ au. The $\left|j, m_{j}, k\right\rangle$ are normalized Wigner rotation matrix elements

$$
\begin{equation*}
\left|j, m_{j}, k\right\rangle=\sqrt{\frac{2 j+1}{8 \pi^{2}}}\left[D_{m_{j}, k}^{(j)}(\phi, \theta, \chi)\right]^{*}, \tag{7}
\end{equation*}
$$

where $j=0,1,2, \ldots, j_{\max }, m_{j}=-j,(-j+1), \ldots,(j-1), j$, and $k=-j,(-j+1), \ldots,(j-$ 1), j. We used $j_{\max }=8$.

2.2.2 Grid Parameters

The 6D grid described in Section 2.5 of the main body of the paper consisted of (i) $N_{a}=12$ Gauss-associated-Laguerre quadrature points R_{a}, generated as per Felker and Bačić ${ }^{4}$ for $\beta=24.38$ au, (ii) $N_{b}=10$ Gauss-Legendre quadrature points $(\cos \beta)_{b}$, (iii) $N_{c}=18$ Fourier grid points α_{c}, (iv) $N_{d}=10$ Gauss-Legendre quadrature points $(\cos \theta)_{d}$, and (v) $N_{e}=18$ Fourier grid points ϕ_{e}, and (vi) $N_{f}=18$ Fourier grid points χ_{f}.

2.2.3 Kinetic-Energy Operator, \hat{T}

For $\mathrm{H}_{2} \mathrm{O} @ \mathrm{C}_{60}$ in the rigid-monomer approximation

$$
\begin{equation*}
\hat{T}=-\frac{\nabla^{2}}{2 M}+\sum_{k=x, y, z} \frac{\hat{J}_{k}^{2}}{2 I_{k}}, \tag{8}
\end{equation*}
$$

where ∇^{2} is the Laplacian associated with $\mathbf{R}, \hat{J}_{k}^{2}$ is the operator corresponding to the square of the rotational angular momentum of the $\mathrm{H}_{2} \mathrm{O}$ about its $k t h$ principal axis, M is the mass of the $\mathrm{H}_{2} \mathrm{O}$, and I_{k} is the moment of inertia of $\mathrm{H}_{2} \mathrm{O}$ about its $k t h$ principal axis. The inertial parameters that we have employed are given in Table S2.

2.2.4 Lennard-Jones Potential-Energy Parameters

The $V_{L J}$ PES function appearing in \hat{H} for $\mathrm{H}_{2} \mathrm{O} @ \mathrm{C}_{60}$ is taken from Felker and Bačić ${ }^{8}$ and is given by

$$
\begin{equation*}
V_{L J}=\sum_{i=1}^{3} \sum_{k=1}^{60} 4 \epsilon_{i}\left[\left(\frac{\sigma_{i}}{r_{i k}}\right)^{12}-\left(\frac{\sigma_{i}}{r_{i k}}\right)^{6}\right] \tag{9}
\end{equation*}
$$

where i runs over the three $\mathrm{H}_{2} \mathrm{O}$ sites listed in Table $\mathrm{S} 2, k$ runs over the 60 nuclear positions of the C atoms in the central cage, $r_{i k}$ is the distance between site i and site $k, \sigma_{1}=6.37216$ bohrs $(3.372 \AA), \sigma_{2}=\sigma_{3}=4.988877$ bohrs $(2.640 \AA), \epsilon_{1}=36.34 \mathrm{~cm}^{-1}$, and $\epsilon_{2}=\epsilon_{3}=8.95384$ cm^{-1}. The $r_{i k}$ depend on the position of the $\mathrm{H}_{2} \mathrm{O}$ moiety w.r.t. the SF axes, so $V_{L J}$ is a function of \mathbf{R} and ω.

3 Transformation properties of the electric-field-gradiant tensor, $I_{m}^{(2)}$

For arbitrary charge density $\rho(\mathbf{r})$ the internal moments of rank 2 (the components of the electric-field-gradient tensor) are given by ${ }^{6}$

$$
\begin{equation*}
I_{m}^{(2)} \equiv \int \frac{\rho(\mathbf{r})}{r^{3}} C_{m}^{(2)}(\hat{r}) d \mathbf{r}=\sqrt{\frac{4 \pi}{5}} \int \frac{\rho(\mathbf{r})}{r^{3}} Y_{2 m}(\hat{r}) d \mathbf{r} \tag{10}
\end{equation*}
$$

We examine below how these moments transform subject to (a) inversion through the origin and (b) rotation about an axis going through the origin.

3.1 Transformation by inversion

Inversion (operation E^{*}) changes the charge density $\rho(\mathbf{r})$ to $\rho^{\prime}(\mathbf{r})$ such that

$$
\begin{equation*}
\rho^{\prime}(\mathbf{r})=\rho(-\mathbf{r}) . \tag{11}
\end{equation*}
$$

The internal moments corresponding to this new charge density are given by

$$
\begin{align*}
I_{m}^{(2)}\left(E^{*}\right) & =\sqrt{\frac{4 \pi}{5}} \int \frac{\rho^{\prime}(\mathbf{r})}{r^{3}} Y_{2 m}(\hat{r}) d \mathbf{r}=\sqrt{\frac{4 \pi}{5}} \int \frac{\rho(-\mathbf{r})}{r^{3}} Y_{2 m}(\hat{r}) d \mathbf{r} \\
& =\sqrt{\frac{4 \pi}{5}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{r^{\prime 3}} Y_{2 m}\left(-\hat{r}^{\prime}\right) d \mathbf{r}^{\prime} \tag{12}
\end{align*}
$$

where we have substituted $\mathbf{r}^{\prime}=-\mathbf{r}$ to obtain the final equality. Since $Y_{2 m}\left(-\hat{r}^{\prime}\right)=Y_{2 m}\left(\hat{r}^{\prime}\right)$, one sees from Eqs. (10) and (12) that

$$
\begin{equation*}
I_{m}^{(2)}\left(E^{*}\right)=I_{m}^{(2)} \tag{13}
\end{equation*}
$$

Inversion leaves internal moments of rank 2 unchanged.

3.2 Transformation by rotation about an axis through the origin

We start by expressing $\rho(\mathbf{r})$ as an expansion over spherical harmonics

$$
\begin{equation*}
\rho(\mathbf{r})=\sum_{l, m} a_{l m}(r) Y_{l m}(\hat{r}), \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{l m}(r)=\int \rho(\mathbf{r}) Y_{l m}^{*}(\hat{r}) d \hat{r} \tag{15}
\end{equation*}
$$

Next we substitute this expansion for $\rho(\mathbf{r})$ into Eq. (10) to obtain

$$
\begin{align*}
I_{m}^{(2)} & =\sqrt{\frac{4 \pi}{5}} \sum_{l, m^{\prime}} \int \frac{a_{l m^{\prime}}(r)}{r^{3}} Y_{l m^{\prime}}(\hat{r}) Y_{2 m}(\hat{r}) d \mathbf{r} \\
& =\sqrt{\frac{4 \pi}{5}}(-)^{m} \int \frac{a_{2,-m}(r)}{r^{3}} d r, \tag{16}
\end{align*}
$$

where the last equality in Eq. (16) follows from the orthonormality of the spherical harmonics and the fact that

$$
\begin{equation*}
Y_{l m}^{*}=(-)^{m} Y_{l,-m} . \tag{17}
\end{equation*}
$$

Now we rotate the charge density $\rho(\mathbf{r})$ through an angle γ about an axis \hat{n} going through the origin. The density is transformed as follows

$$
\begin{equation*}
e^{-i \hat{J}_{n} \gamma} \rho(\mathbf{r})=\sum_{l, m} a_{l m}(r)\left[e^{-i \hat{J}_{n} \gamma} Y_{l m}(\hat{r})\right] \tag{18}
\end{equation*}
$$

where \hat{J}_{n} is the operator corresponding to angular momentum about \hat{n}.
Consider the new $I_{m}^{(2)}$ - call them $I_{m}^{(2)}(\hat{n}, \gamma)$ - corresponding to this rotated density

$$
\begin{align*}
\sqrt{\frac{5}{4 \pi}} I_{m}^{(2)}(\hat{n}, \gamma) & =\int \frac{\left[e^{-i \hat{J}_{n} \gamma} \rho(\mathbf{r})\right]}{r^{3}} Y_{2 m}(\hat{r}) d \mathbf{r} \\
& =\sum_{l, m^{\prime}} \int \frac{a_{l, m^{\prime}}(r)}{r^{3}} d r \int\left[e^{-i \hat{J}_{n} \gamma} Y_{l m^{\prime}}\right] Y_{2 m} d \hat{r} \tag{19}
\end{align*}
$$

Now

$$
\begin{equation*}
e^{-i \hat{J}_{n} \gamma} Y_{l m^{\prime}}(\hat{r})=\sum_{m^{\prime \prime}} A_{m^{\prime \prime}, m^{\prime}}^{(l)}(\hat{n}, \gamma) Y_{l m^{\prime \prime}}(\hat{r}), \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{m^{\prime \prime}, m^{\prime}}^{(l)}(\hat{n}, \gamma) \equiv \int Y_{l m^{\prime \prime}}^{*}(\hat{r}) e^{-i \hat{J}_{n} \gamma} Y_{l m^{\prime}}(\hat{r}) d \hat{r} \tag{21}
\end{equation*}
$$

Substituting Eq. (20) into Eq. (19) one obtains

$$
\begin{align*}
\sqrt{\frac{5}{4 \pi}} I_{m}^{(2)}(\hat{n}, \gamma) & =\sum_{l, m^{\prime}}\left[\int \frac{a_{l, m^{\prime}}(r)}{r^{3}} d r \times \sum_{m^{\prime \prime}} A_{m^{\prime \prime} m^{\prime}}^{(l)}(\hat{n}, \gamma) \int Y_{l m^{\prime \prime}}(\hat{r}) Y_{2 m}(\hat{r}) d \hat{r}\right] \\
& =\sum_{m^{\prime}}(-)^{m} A_{-m, m^{\prime}}^{(2)}(\hat{n}, \gamma) \int \frac{a_{2, m^{\prime}}(r)}{r^{3}} d r . \tag{22}
\end{align*}
$$

By using Eq. (16) one then obtains

$$
\begin{equation*}
I_{m}^{(2)}(\hat{n}, \gamma)=\sum_{m^{\prime}}(-)^{m+m^{\prime}} A_{-m, m^{\prime}}^{(2)}(\hat{n}, \gamma) I_{-m^{\prime}}^{(2)}=\sum_{m^{\prime}}(-)^{m+m^{\prime}} A_{-m,-m^{\prime}}^{(2)}(\hat{n}, \gamma) I_{m^{\prime}}^{(2)} \tag{23}
\end{equation*}
$$

What remains is to evaluate the $A_{m, m^{\prime}}^{(2)}(\hat{n}, \gamma)$. If one specifies the direction of the axis \hat{n} by its polar angle β and azimuthal angle α, it is straightforward to show that

$$
\begin{equation*}
A_{m, m^{\prime}}^{(l)}(\alpha, \beta, \gamma) \equiv A_{m, m^{\prime}}^{(l)}(\hat{n}, \gamma)=e^{i\left(m^{\prime}-m\right) \alpha} \sum_{m^{\prime \prime}} e^{-i m^{\prime \prime} \gamma} d_{m, m^{\prime \prime}}^{(l)}(\beta) d_{m^{\prime}, m^{\prime \prime}}^{(l)}(\beta) \tag{24}
\end{equation*}
$$

where the $d_{m, m^{\prime}}^{(l)}(\beta)$ are little- d Wigner rotation matrix elements. From Eq. (24), one can also easily show that

$$
\begin{equation*}
(-)^{m+m^{\prime}} A_{-m,-m^{\prime}}^{(l)}(\hat{n}, \gamma)=\left[A_{m, m^{\prime}}^{(l)}(\hat{n}, \gamma)\right]^{*} \tag{25}
\end{equation*}
$$

and that

$$
\begin{equation*}
(-)^{m+m^{\prime}} A_{-m,-m^{\prime}}^{(l)}(\hat{n},-\gamma)=A_{m^{\prime}, m}^{(l)}(\hat{n}, \gamma) . \tag{26}
\end{equation*}
$$

Finally, with Eqs. (23), (25), and (26)

$$
\begin{equation*}
I_{m}^{(2)}(\hat{n}, \gamma)=\sum_{m^{\prime}}\left[A_{m, m^{\prime}}^{(2)}(\hat{n}, \gamma)\right]^{*} I_{m^{\prime}}^{(2)} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{m}^{(2)}(\hat{n},-\gamma)=\sum_{m^{\prime}} A_{m^{\prime}, m}^{(2)}(\hat{n}, \gamma) I_{m^{\prime}}^{(2)} \tag{28}
\end{equation*}
$$

Relevant to the $\mathrm{M}^{(} \mathrm{C}_{60}$ crystal-fragment geometries in this work are the rotations by $\pm 2 \pi / 3$ about \hat{n} when \hat{n} lies along the $(1,1,1)$ direction, so that $\beta=\cos ^{-1}(\sqrt{1 / 3})$ and $\alpha=\pi / 4$. Evaluation of Eq. (24) for $\gamma=+2 \pi / 3$ about this axis and for $l=2$ yields the matrix of values

$$
\mathbf{B} \equiv \mathbf{A}^{(2)}\left(\pi / 4, \cos ^{-1}(\sqrt{1 / 3}), 2 \pi / 3\right)=\left(\begin{array}{ccccc}
-\frac{1}{4} & \frac{1}{2} & -\sqrt{\frac{3}{8}} & \frac{1}{2} & -\frac{1}{4} \tag{29}\\
\frac{i}{2} & -\frac{i}{2} & 0 & \frac{i}{2} & -\frac{i}{2} \\
\sqrt{\frac{3}{8}} & 0 & -\frac{1}{2} & 0 & \sqrt{\frac{3}{8}} \\
-\frac{i}{2} & -\frac{i}{2} & 0 & \frac{i}{2} & \frac{i}{2} \\
-\frac{1}{4} & -\frac{1}{2} & -\sqrt{\frac{3}{8}} & -\frac{1}{2} & -\frac{1}{4}
\end{array}\right),
$$

where the rows run from $m=-2$ to 2 and the columns from $m^{\prime}=-2$ to 2 .

3.3 Invariant $I_{m}^{(2)}$ for the $\mathrm{M} @ \mathrm{C}_{60}$ Crystal Fragment

For this work we take the P and H crystal fragments to be invariant under the operations of the S_{6} point group. In addition, we have chosen SF cartesian axes such that the C_{3} symmetry axis of S_{6} points along the $(1,1,1)$ direction. Since the internal moments due to the NN cages must be invariant to a $2 \pi / 3$ rotation about the C_{3} axis, then given Eqs. (27)
and (29), the following must be obeyed

$$
\begin{equation*}
\mathbf{B}^{*} I^{(2)}=I^{(2)}, \tag{30}
\end{equation*}
$$

where $I^{(2)}$ is the column vector composed of internal moments produced by the charge density of the twelve NN cages

$$
I^{(2)} \equiv\left(\begin{array}{c}
I_{-2}^{(2)} \tag{31}\\
I_{-1}^{(2)} \\
I_{0}^{(2)} \\
I_{+1}^{(2)} \\
I_{+2}^{(2)}
\end{array}\right) .
$$

Equation (30) is satisfied if $I^{(2)}$ is an eigenvector of \mathbf{B}^{*} having eigenvalue equal to +1 . These eigenvectors can be straightforwardly determined. They are given by

$$
I^{(2)}=A\left(\begin{array}{c}
i \tag{32}\\
(-1+i) \\
0 \\
(1+i) \\
-i
\end{array}\right),
$$

where, in general, A is a complex constant.

4 Perturbation theory applied to $j=1$ level splittings

$4.1 \quad \mathrm{H}_{2} @ \mathrm{C}_{60}$ and $\mathrm{HF} @ \mathrm{C}_{60}$

We take the lowest-energy zeroth-order TR states of $\mathrm{H}_{2} @ \mathrm{C}_{60}$ and $\mathrm{HF}^{(} \mathrm{C}_{60}$ to be of the form $\left|T_{0}\right\rangle\left|j, m_{j}\right\rangle,{ }^{7}$ where $\left|T_{0}\right\rangle$ depends only on \mathbf{R} and $\left|j, m_{j}\right\rangle$ is a rigid-rotor rotational eigenfunction. The matrix elements of $V_{\text {quad }}$ connecting the states of a given j level are then given by

$$
\begin{equation*}
\left\langle T_{0}, j, m_{j}^{\prime}\right| V_{\mathrm{quad}}\left|T_{0}, j, m_{j}\right\rangle=\sum_{m}(-)^{m} I_{-m}^{(2)}\left\langle T_{0}, j, m_{j}^{\prime}\right| Q_{m}^{(2)}\left|T_{0}, j, m_{j}\right\rangle . \tag{33}
\end{equation*}
$$

By using Eq. (15) of the main text

$$
\begin{align*}
\left\langle T_{0}, j, m_{j}^{\prime}\right| Q_{m}^{(2)}\left|T_{0}, j, m_{j}\right\rangle & =Q_{0}^{\mathrm{BF}}\left\langle j, m_{j}^{\prime}\right|\left[D_{m, 0}^{(2)}(\omega)\right]^{*}\left|j, m_{j}\right\rangle \\
& +(-)^{m} \sqrt{40 \pi} \mu_{z} \sum_{m^{\prime}}\left(\begin{array}{ccc}
1 & 1 & 2 \\
m^{\prime} & m-m^{\prime} & -m
\end{array}\right) \\
& \times\left\langle T_{0}\right| R Y_{1, m^{\prime}}(\Theta, \Phi)\left|T_{0}\right\rangle\left\langle j, m_{j}^{\prime}\right|\left[D_{m-m^{\prime}, 0}^{(1)}(\omega)\right]^{*}\left|j, m_{j}\right\rangle . \tag{34}
\end{align*}
$$

Now the $\left|T_{0}, j, m_{j}\right\rangle$ have inversion symmetry (due to the I_{h} environment imposed by the central C_{60} cage), as do the $\left|j, m_{j}\right\rangle$. In consequence, $\left|T_{0}\right\rangle$ also has inversion symmetry. The upshot is that the factors $\left\langle T_{0}\right| R Y_{1, m^{\prime}}(\Theta, \Phi)\left|T_{0}\right\rangle$ appearing in Eq. (34) are zero by symmetry, since $R Y_{1 m^{\prime}}(\Theta, \Phi)$ changes sign upon inversion. Thus we need only consider the first term on the rhs of Eq. (34). One finds

$$
\left\langle T_{0}, j, m_{j}^{\prime}\right| Q_{m}^{(2)}\left|T_{0}, j, m_{j}\right\rangle=(-)^{m_{j}^{\prime}}(2 j+1) Q_{0}^{\mathrm{BF}}\left(\begin{array}{lll}
j & j & 2 \tag{35}\\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
j & j & 2 \\
-m_{j}^{\prime} & m_{j} & m
\end{array}\right)
$$

Substituting Eq. (35) into Eq. (33) one obtains

$$
\begin{array}{r}
\left\langle T_{0}, j, m_{j}^{\prime}\right| V_{\mathrm{quad}}\left|T_{0}, j, m_{j}\right\rangle=(-)^{m_{j}} I_{m_{j}-m_{j}^{\prime}}^{(2)}\left(\begin{array}{ccc}
j & j & 2 \\
-m_{j}^{\prime} & m_{j} & m_{j}^{\prime}-m_{j}
\end{array}\right) \\
\times(2 j+1) Q_{0}^{\mathrm{BF}}\left(\begin{array}{lll}
j & j & 2 \\
0 & 0 & 0
\end{array}\right) . \tag{36}
\end{array}
$$

These matrix elements are readily evaluated for a given value of j. For $j=1$ the full matrix (rows labeled by $m_{j}^{\prime}=-1,0,1$ and columns by $m_{j}=-1,0,1$) is given by

$$
\left\langle T_{0}, 1,\left\{m_{j}^{\prime}\right\}\right| V_{\mathrm{quad}}\left|T_{0}, 1,\left\{m_{j}\right\}\right\rangle=\frac{\sqrt{6}}{5} Q_{0}^{\mathrm{BF}} A\left(\begin{array}{ccc}
0 & -\frac{(1+i)}{\sqrt{2}} & i \tag{37}\\
-\frac{(1-i)}{\sqrt{2}} & 0 & \frac{(1+i)}{\sqrt{2}} \\
-i & \frac{(1-i)}{\sqrt{2}} & 0
\end{array}\right)
$$

where we have used Eq. (32) for the $I_{m}^{(2)}$. This matrix has eigenvalues $\frac{\sqrt{6}}{5} Q_{0}^{\mathrm{BF}} A, \frac{\sqrt{6}}{5} Q_{0}^{\mathrm{BF}} A$, and $-2 \frac{\sqrt{6}}{5} Q_{0}^{\mathrm{BF}} A$. These are the first-order corrections to the energies of the $j=1$ states and give

$$
\begin{equation*}
\Delta_{\mathrm{PT}} \equiv E(g=2)-E(g=1)=3 A \frac{\sqrt{6}}{5} Q_{0}^{\mathrm{BF}}, \tag{38}
\end{equation*}
$$

consistent with Eqs. (17) and (18) of the main text.

$4.2 \quad \mathrm{H}_{2} \mathrm{O} @ \mathrm{C}_{60}$

For $\mathrm{H}_{2} \mathrm{O} @ \mathrm{C}_{60}$ the lowest-energy zeroth-order states ${ }^{8}$ are very well-approximated by $\left|T_{0}\right\rangle\left|j_{k_{a} k_{c}}, m_{j}\right\rangle$, where $\left|T_{0}\right\rangle$ depends only on \mathbf{R},

$$
\begin{equation*}
\left|j_{k_{a} k_{c}}, m_{j}\right\rangle=\sum_{k} a\left(j_{k_{a} k_{c}}, k\right)\left|j, m_{j}, k\right\rangle \tag{39}
\end{equation*}
$$

is an eigenfunction of the rigid- $\mathrm{H}_{2} \mathrm{O}$ rotational Hamiltonian, and the $\left|j, m_{j}, k\right\rangle$ are symmetrictop rotational eigenfunctions

$$
\begin{equation*}
\left|j, m_{j}, k\right\rangle=\sqrt{\frac{2 j+1}{8 \pi^{2}}}\left[D_{m_{j}, k}^{(j)}(\omega)\right]^{*} . \tag{40}
\end{equation*}
$$

Matrix elements of $V_{\text {quad }}$ connecting states of a given $\left|T_{0}, j_{k_{a} k_{c}}\right\rangle$ level are given by

$$
\begin{equation*}
\left\langle T_{0}, j_{k_{a} k_{c}}, m_{j}^{\prime}\right| V_{\mathrm{quad}}\left|T_{0}, j_{k_{a} k_{c}}, m_{j}\right\rangle=\sum_{m}(-)^{m} I_{-m}^{(2)}\left\langle T_{0}, j_{k_{a} k_{c}}, m_{j}^{\prime}\right| Q_{m}^{(2)}\left|T_{0}, j_{k_{a} k_{c}}, m_{j}\right\rangle \tag{41}
\end{equation*}
$$

To evaluate the matrix elements on the rhs of Eq. (41) we use Eq. (15) of the main text and note that, as for H_{2} and $\mathrm{HF},\left|T_{0}\right\rangle$ has definite parity. Thus,

$$
\begin{equation*}
\left\langle T_{0}\right| R Y_{1, m^{\prime}}(\Theta, \Phi)\left|T_{0}\right\rangle=0 \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle T_{0}, j_{k_{a} k_{c}}, m_{j}^{\prime}\right| Q_{m}^{(2)}\left|T_{0}, j_{k_{a} k_{c}}, m_{j}\right\rangle=\sum_{q=-2}^{2} Q_{q}^{\mathrm{BF}}\left\langle j_{k_{a} k_{c}}, m_{j}^{\prime}\right|\left[D_{m, q}^{(2)}\right]^{*}\left|j_{k_{a} k_{c}}, m_{j}\right\rangle . \tag{43}
\end{equation*}
$$

By using Eqs. (39) and (40)

$$
\begin{align*}
\left\langle j_{k_{a} k_{c}}, m_{j}^{\prime}\right|\left[D_{m, q}^{(2)}\right]^{*}\left|j_{k_{a} k_{c}}, m_{j}\right\rangle & =\sum_{k, k^{\prime}} a\left(j_{k_{a} k_{c}}, k^{\prime}\right) a\left(j_{k_{a} k_{c}}, k\right)\left\langle j, m_{j}^{\prime}, k^{\prime}\right|\left[D_{m, q}^{(2)}\right]^{*}\left|j, m_{j}, k\right\rangle \\
& =(-)^{m_{j}^{\prime}}(2 j+1)\left(\begin{array}{ccc}
j & j & 2 \\
-m_{j}^{\prime} & m_{j} & m
\end{array}\right) \\
& \times \sum_{k, k^{\prime}}(-)^{k^{\prime}} a\left(j_{k_{a} k_{c}}, k^{\prime}\right) a\left(j_{k_{a} k_{c}}, k\right)\left(\begin{array}{ccc}
j & j & 2 \\
-k^{\prime} & k & q
\end{array}\right) . \tag{44}
\end{align*}
$$

Substituting Eq. (44) into Eq. (43) and then the latter into Eq. (41) one obtains

$$
\begin{align*}
& \left\langle T_{0}, j_{k_{a} k_{c}}, m_{j}^{\prime}\right| V_{\mathrm{quad}}\left|T_{0}, j_{k_{a} k_{c}}, m_{j}\right\rangle=(-)^{m_{j}} I_{m_{j}-m_{j}^{\prime}}^{(2)}\left(\begin{array}{ccc}
j & j & 2 \\
-m_{j}^{\prime} & m_{j} & m_{j}^{\prime}-m_{j}
\end{array}\right) \\
& \quad \times(2 j+1) \sum_{q} Q_{q}^{\mathrm{BF}} \sum_{k^{\prime}, k}(-)^{k^{\prime}} a\left(j_{k_{a} k_{c}}, k^{\prime}\right) a\left(j_{k_{a} k_{c}}, k\right)\left(\begin{array}{ccc}
j & j & 2 \\
-k^{\prime} & k & q
\end{array}\right) . \tag{45}
\end{align*}
$$

For $j=1$ the Eq.-(45) matrix (rows labeled by $m_{j}^{\prime}=-1,0,1$ and columns by $m_{j}=-1,0,1$) is given by

$$
\left\langle T_{0}, 1_{k_{a} k_{c}},\left\{m_{j}^{\prime}\right\}\right| V_{\text {quad }}\left|T_{0}, 1_{k_{a} k_{c}},\left\{m_{j}\right\}\right\rangle=A f\left(Q^{\mathrm{BF}}\right)\left(\begin{array}{ccc}
0 & -\frac{(1+i)}{\sqrt{2}} & i \tag{46}\\
-\frac{(1-i)}{\sqrt{2}} & 0 & \frac{(1+i)}{\sqrt{2}} \\
-i & \frac{(1-i)}{\sqrt{2}} & 0
\end{array}\right)
$$

where we have used Eq. (32) for the $I_{m}^{(2)}$ and

$$
f\left(Q^{\mathrm{BF}}\right) \equiv \frac{3}{\sqrt{5}}\left[\sum_{q} Q_{q}^{\mathrm{BF}} \sum_{k^{\prime}, k}(-)^{k^{\prime}} a\left(j_{k_{a} k_{c}}, k^{\prime}\right) a\left(j_{k_{a} k_{c}}, k\right)\left(\begin{array}{ccc}
1 & 1 & 2 \tag{47}\\
-k^{\prime} & k & q
\end{array}\right)\right]
$$

Diagonalization of Eq. (46) yields the eigenvalues $\operatorname{Af}\left(Q^{\mathrm{BF}}\right), \operatorname{Af}\left(Q^{\mathrm{BF}}\right)$, and $-2 A f\left(Q^{\mathrm{BF}}\right)$ and the level splitting

$$
\begin{equation*}
\Delta_{\mathrm{PT}}=E(g=2)-E(g=1)=3 A f\left(Q^{\mathrm{BF}}\right) \tag{48}
\end{equation*}
$$

For the 1_{01} level, the ortho ground state,

$$
\begin{equation*}
a\left(1_{01}, 1\right)=-a\left(1_{01},-1\right)=\frac{1}{\sqrt{2}} \quad a\left(1_{01}, 0\right)=0 \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(Q^{\mathrm{BF}}, 1_{01}\right)=\frac{3}{5}\left[-\frac{1}{\sqrt{6}} Q_{0}^{\mathrm{BF}}+\frac{1}{2}\left(Q_{2}^{\mathrm{BF}}+Q_{-2}^{\mathrm{BF}}\right)\right] . \tag{50}
\end{equation*}
$$

For the first excited rotational state of the ortho species, 1_{10},

$$
\begin{equation*}
a\left(1_{01}, 1\right)=a\left(1_{01},-1\right)=\frac{1}{\sqrt{2}} \quad a\left(1_{01}, 0\right)=0 \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(Q^{\mathrm{BF}}, 1_{10}\right)=\frac{3}{5}\left[+\frac{1}{\sqrt{6}} Q_{0}^{\mathrm{BF}}+\frac{1}{2}\left(Q_{2}^{\mathrm{BF}}+Q_{-2}^{\mathrm{BF}}\right)\right] . \tag{52}
\end{equation*}
$$

Finally, for the first excited rotational state of the para species, 1_{11},

$$
\begin{equation*}
a\left(1_{11}, 1\right)=a\left(1_{11},-1\right)=0 \quad a\left(1_{11}, 0\right)=1 \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(Q^{\mathrm{BF}}, 1_{11}\right)=\frac{\sqrt{6}}{5} Q_{0}^{\mathrm{BF}} \tag{54}
\end{equation*}
$$

References

(1) R. Sachidanandam and A. B. Harris, Phys. Rev. Lett. 67, 1467 (1991).
(2) A. B. Harris and R. Sachidanandam, Phys. Rev. B 46, 4944 (1992).
(3) For example, see https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
(4) See P. M. Felker and Z. Bačić, J. Chem. Phys. 145, 084310 (2016), Supplementary Material, Section II.
(5) M. Xu, S. Ye, A. Powers, R. Lawler, N. J. Turro, and Z. Bačić , J. Chem. Phys. 139, 064309 (2013).
(6) For example, For example, R. N. Zare, Angular Momentum (Wiley, New York, 1988), Eq. (7), p. 246.
(7) For example, M. Xu, F. Sebastianelli, Z. Bačić, R. Lawler, and N. J. Turro, J. Chem. Phys. 128, 011101 (2008).
(8) P. M. Felker and Z. Bačić, J. Chem. Phys. 145, 084310 (2016).

Table 1: $\mathrm{H}_{2} \mathrm{BF}$ site coordinates (in bohrs), site masses (in amu), rotational constant (in cm^{-1}), and BF quadrupole (in au).

Site \#	x	y	z	mass
1	0.000000	0.000000	0.000000	0.0000
2	0.000000	0.000000	+0.699199	1.0078
3	0.000000	0.000000	-0.699199	1.0078
	$(2 I)^{-1}=58.378$			
	$Q_{0}^{\mathrm{BF}}=0.499$			

Table 2: $\mathrm{H}_{2} \mathrm{O}$ BF site coordinates (in bohrs), site masses (in amu), rotational constants (in cm^{-1}), and BF quadrupole and dipole components (in au).

Site $\#$	x	y	z	mass
1	0.000000	0.000000	0.125534	15.9949
2	1.453650	0.000000	-0.996156	1.0078
3	-1.453650	0.000000	-0.996156	1.0078
$\left(2 I_{x}\right)^{-1}$	$\left(2 I_{y}\right)^{-1}$	$\left(2 I_{z}\right)^{-1}$		
27.877	9.285	14.512		
$Q_{0}^{(\mathrm{BF})}$	$Q_{ \pm 2}^{(\mathrm{BF})}$	$\vec{\mu}=\mu \hat{z}$		
-0.09973	1.53843	-0.737196		

Table 3: Carbon nuclear coordinates (in bohrs) for the "master cage" C_{60} geometry. Coordinates are referenced to a cage-fixed cartesian axis system having its origin at the center of the cage, its z axis along one of the C_{5} symmetry axes of the cage, and its x axis along one of the C_{2} symmetry axes of the cage.

C nucleus	x	y	z
1	0.000000	2.322672	6.238707
2	-2.208993	0.717744	6.238707
3	-1.365233	-1.879081	6.238707
4	1.365233	-1.879081	6.238707
5	2.208993	0.717744	6.238707
6	4.319071	1.403350	4.867496
7	5.684303	-0.475731	3.432005
8	4.878326	-2.956276	3.432005
9	2.669332	-3.674020	4.867496
10	1.304100	-5.553102	3.432005
11	-1.304100	-5.553102	3.432005
12	-2.669332	-3.674020	4.867496
13	-4.878326	-2.956276	3.432005
14	-5.684303	-0.475731	3.432005
15	-4.319071	1.403350	4.867496
16	-4.319071	3.726024	3.432005
17	-5.684303	3.282433	1.109333
18	-6.528064	0.685606	1.109333
19	-6.528064	-0.685606	-1.109333
20	-5.684303	-3.282433	-1.109333
21	-4.878326	-4.391767	1.109333
22	-2.669332	-5.996694	1.109333
23	-1.365233	-6.420422	-1.109333
10			

24	1.365233	-6.420422	-1.109333
25	2.669332	-5.996694	1.109333
26	4.878326	-4.391767	1.109333
27	5.684303	-3.282433	-1.109333
28	6.528064	-0.685606	-1.109333
29	6.528064	0.685606	1.109333
30	5.684303	3.282433	1.109333
31	4.878326	4.391767	-1.109333
32	4.878326	2.956276	-3.432005
33	5.684303	0.475731	-3.432005
34	4.319071	-1.403350	-4.867496
35	4.319071	-3.726024	-3.432005
36	2.208993	-5.259085	-3.432005
37	0.000000	-4.541340	-4.867496
38	-2.208993	-5.259085	-3.432005
39	-4.319071	-3.726024	-3.432005
40	-4.319071	-1.403350	-4.867496
41	-5.684303	0.475731	-3.432005
42	-4.878326	2.956276	-3.432005
43	-4.878326	4.391767	-1.109333
44	-2.669332	5.996694	-1.109333
45	-1.304100	5.553102	-3.432005
46	-2.669332	3.674020	-4.867496
47	-1.365233	1.879081	-6.238707
48	-2.208993	-0.717744	-6.238707
49	0.000000	-2.322672	-6.238707
50	2.208993	-0.717744	-6.238707

51	1.365233	1.879081	-6.238707
52	2.669332	3.674020	-4.867496
53	1.304100	5.553102	-3.432005
54	2.669332	5.996694	-1.109333
55	1.365233	6.420422	1.109333
56	-1.365233	6.420422	1.109333
57	-2.208993	5.259085	3.432005
58	0.000000	4.541340	4.867496
59	2.208993	5.259085	3.432005
60	4.319071	3.726024	3.432005

Table 4: Cage center translation vector, \mathbf{T} (in bohrs) and rotation matrix, \hat{R}, defining the position of each of the cages in the 13-cage fragment corresponding to the P orientation of $M @ \mathrm{C}_{60}(s)$.

Cage \# (k)	$\mathbf{T}(k)$	$\hat{R}(k)$

$$
\begin{aligned}
& 1 \quad(13.265878,0.000000,13.265878)\left(\begin{array}{ccc}
0.556377 & -0.457993 & -0.693316 \\
-0.566903 & 0.400811 & -0.719702 \\
0.607508 & 0.793469 & -0.036636
\end{array}\right) \\
& 2 \quad(0.000000,13.265878,13.265878)\left(\begin{array}{ccc}
0.556377 & -0.457993 & -0.693316 \\
0.566903 & -0.400811 & 0.719702 \\
-0.607508 & -0.793469 & 0.036636
\end{array}\right) \\
& 3 \quad(13.265878,13.265878,0.000000)\left(\begin{array}{ccc}
-0.556377 & 0.457993 & 0.693316 \\
-0.566903 & 0.400811 & -0.719702 \\
-0.607508 & -0.793469 & 0.036636
\end{array}\right) \\
& 4 \quad(-13.265878,0.000000,-13.265878)\left(\begin{array}{ccc}
0.556377 & -0.457993 & -0.693316 \\
-0.566903 & 0.400811 & -0.719702 \\
0.607508 & 0.793469 & -0.036636
\end{array}\right) \\
& 5 \quad(0.000000,-13.265878,-13.265878)\left(\begin{array}{ccc}
0.556377 & -0.457993 & -0.693316 \\
0.566903 & -0.400811 & 0.719702 \\
-0.607508 & -0.793469 & 0.036636
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 6 \quad(-13.265878,-13.265878,0.000000) \\
& \left(\begin{array}{ccc}
-0.556377 & 0.457993 & 0.693316 \\
-0.566903 & 0.400811 & -0.719702 \\
-0.607508 & -0.793469 & 0.036636
\end{array}\right) \\
& 7 \quad(0.000000,13.265878,-13.265878)\left(\begin{array}{ccc}
0.556377 & -0.457993 & -0.693316 \\
0.566903 & -0.400811 & 0.719702 \\
-0.607508 & -0.793469 & 0.036636
\end{array}\right) \\
& 8 \quad(13.265878,0.000000,-13.265878)\left(\begin{array}{ccc}
0.556377 & -0.457993 & -0.693316 \\
-0.566903 & 0.400811 & -0.719702 \\
0.607508 & 0.793469 & -0.036636
\end{array}\right) \\
& 9 \quad(0.000000,-13.265878,13.265878)\left(\begin{array}{ccc}
0.556377 & -0.457993 & -0.693316 \\
0.566903 & -0.400811 & 0.719702 \\
-0.607508 & -0.793469 & 0.036636
\end{array}\right) \\
& 10 \quad(13.265878,-13.265878,0.000000)\left(\begin{array}{ccc}
-0.556377 & 0.457993 & 0.693316 \\
-0.566903 & 0.400811 & -0.719702 \\
-0.607508 & -0.793469 & 0.036636
\end{array}\right) \\
& 11 \quad(-13.265878,0.000000,13.265878)\left(\begin{array}{ccc}
0.556377 & -0.457993 & -0.693316 \\
-0.566903 & 0.400811 & -0.719702 \\
0.607508 & 0.793469 & -0.036636
\end{array}\right) \\
& 12 \quad(-13.265878,13.265878,0.000000)\left(\begin{array}{ccc}
-0.556377 & 0.457993 & 0.693316 \\
-0.566903 & 0.400811 & -0.719702 \\
-0.607508 & -0.793469 & 0.036636
\end{array}\right)
\end{aligned}
$$

$(0.000000,0.000000,0.000000) \quad\left(\begin{array}{ccc}-0.556377 & 0.457993 & 0.693316 \\ 0.566903 & -0.400811 & 0.719702 \\ 0.607508 & 0.793469 & -0.036636\end{array}\right)$
\qquad

Table 5: Cage center translation vector, \mathbf{T} (in bohrs) and rotation matrix, \hat{R}, defining the position of each of the cages in the 13-cage fragment corresponding to the H orientation of $\mathrm{M} @ \mathrm{C}_{60}(s)$.

Cage $\#(k)$	$\mathbf{T}(k)$	$\hat{R}(k)$

$$
\begin{aligned}
& 1 \quad(13.265878,0.000000,13.265878) \quad\left(\begin{array}{ccc}
0.154881 & -0.967912 & -0.197886 \\
0.195485 & 0.226368 & -0.954224 \\
0.968400 & 0.109107 & 0.224272
\end{array}\right) \\
& 2 \quad(0.000000,13.265878,13.265878)\left(\begin{array}{ccc}
0.154881 & -0.967912 & -0.197886 \\
-0.195485 & -0.226368 & 0.954224 \\
-0.968400 & -0.109107 & -0.224272
\end{array}\right) \\
& 3 \quad(13.265878,13.265878,0.000000)\left(\begin{array}{ccc}
-0.154881 & 0.967912 & 0.197886 \\
0.195485 & 0.226368 & -0.954224 \\
-0.968400 & -0.109107 & -0.224272
\end{array}\right) \\
& 4 \quad(-13.265878,0.000000,-13.265878)\left(\begin{array}{ccc}
0.154881 & -0.967912 & -0.197886 \\
0.195485 & 0.226368 & -0.954224 \\
0.968400 & 0.109107 & 0.224272
\end{array}\right) \\
& 5 \quad(0.000000,-13.265878,-13.265878)\left(\begin{array}{ccc}
0.154881 & -0.967912 & -0.197886 \\
-0.195485 & -0.226368 & 0.954224 \\
-0.968400 & -0.109107 & -0.224272
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 6 \quad(-13.265878,-13.265878,0.000000) \\
& \left(\begin{array}{ccc}
-0.154881 & 0.967912 & 0.197886 \\
0.195485 & 0.226368 & -0.954224 \\
-0.968400 & -0.109107 & -0.224272
\end{array}\right) \\
& 7 \quad(0.000000,13.265878,-13.265878)\left(\begin{array}{ccc}
0.154881 & -0.967912 & -0.197886 \\
-0.195485 & -0.226368 & 0.954224 \\
-0.968400 & -0.109107 & -0.224272
\end{array}\right) \\
& 8 \quad(13.265878,0.000000,-13.265878)\left(\begin{array}{ccc}
0.154881 & -0.967912 & -0.197886 \\
0.195485 & 0.226368 & -0.954224 \\
0.968400 & 0.109107 & 0.224272
\end{array}\right) \\
& 9 \quad(0.000000,-13.265878,13.265878)\left(\begin{array}{ccc}
0.154881 & -0.967912 & -0.197886 \\
-0.195485 & -0.226368 & 0.954224 \\
-0.968400 & -0.109107 & -0.224272
\end{array}\right) \\
& 10 \quad(13.265878,-13.265878,0.000000)\left(\begin{array}{ccc}
-0.154881 & 0.967912 & 0.197886 \\
0.195485 & 0.226368 & -0.954224 \\
-0.968400 & -0.109107 & -0.224272
\end{array}\right) \\
& 11 \quad(-13.265878,0.000000,13.265878)\left(\begin{array}{ccc}
0.154881 & -0.967912 & -0.197886 \\
0.195485 & 0.226368 & -0.954224 \\
0.968400 & 0.109107 & 0.224272
\end{array}\right) \\
& 12 \quad(-13.265878,13.265878,0.000000)\left(\begin{array}{ccc}
-0.154881 & 0.967912 & 0.197886 \\
0.195485 & 0.226368 & -0.954224 \\
-0.968400 & -0.109107 & -0.224272
\end{array}\right)
\end{aligned}
$$

$13 \quad(0.000000,0.000000,0.000000) \quad\left(\begin{array}{ccc}-0.154881 & 0.967912 & 0.197886 \\ -0.195485 & -0.226368 & 0.954224 \\ 0.968400 & 0.109107 & 0.224272\end{array}\right)$
\qquad

