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1 Molecular and Crystal-fragment Parameters

Tables S1 and S2 summarize the geometries, inertial parameters, and BF quadrupole com-
ponents that we have assumed for the Hy and HyO moieties in computing the TR states of
Hy@QCgp and HoOQCg, respectively.

Table S3 gives the C nuclear coordinates for the Cgy “master-cage” geometry assumed for
all the Cgy moieties relevant to this work. The geometry has shared-hexagon (6:6) CC bond
lengths equal to 2.60820 bohrs (1.38020 A) and hexagon-pentagon (6:5) CC bond lengths

equal to 2.73047 bohrs (1.44490 A). The cage-fixed cartesian axis system is centered at the



Cgo center of mass, has its z axis along one of the C5 symmetry axes of the cage, and its x
axis along one of the C5 symmetry axes of the cage.

Tables S4 and S5 give the cage-center translation vectors (T'(k)) and the direction-cosine
matrices (]:E(k)) that define the positions and orientations of the thirteen cages in the P and
H crystal fragments, respectively, w.r.t. the “space-fixed” (SF) cartesian axis system. These
parameters conform to the Cgy crystal geometries described in Sachidanandam and Harris!
and Harris and Sachidanandam? for the angle ¢ (defined in those papers) equal to 24° (P
orientation) and 84° (H orientation). The SF frame has its origin at the center of the central
cage (cage #13) and is oriented such that the C3 symmetry axis of the fragment is along the

(1,1,1) direction. To obtain the position vector, R;, of the ith C nucleus of cage k relative

to the SF frame one uses

R, = T(k) + R(k)D;, (1)

where D, is the position vector, as given in Table S3, of the ¢th C nucleus in the cage-fixed
axis system. In Tables S4 and S5, cages 1 to 6 are the “axial” and cages 7 to 12 are the

“equatorial” cages in the fragment.

2 Basis sets, Grid Parameters, and Lennard-Jones Potential-

Energy Parameters

2.1 HQ@C()'O
2.1.1 Basis Functions

The basis functions employed in the variational calculations of the TR states of Ho@QCgq are
of the form |n, [, my)|7, m;).

The |n,1,m;) are 3D isotropic harmonic-oscillator eigenfunctions:?

In,1,m;) = NyRle PR 2LV (3RYYY,, (6, ), (2)



where = 2.9888989 au, n = 0,1,2,... ,npax, L =n,n—2,... >0, k = (n—1)/2, m =
=L, (=l+1),...,(l-1),1,

B(Ql+3/2)2k+lk! 1/2

Nt =2 VaR(k+ D+ 11| 3)

the L,(clﬂ/ 2 are associated Laguerre polynomials, and the Y}, are spherical harmonics. We
used Npax = 8.

The |j,m;) are spherical harmonics

where j =0,1,2,..., jmax and m; = —5,(—j +1),..., (5 — 1),5. We used jmax = 8.

2.1.2 Grid Parameters

The 5D grid described in Section 2.5 of the main body of the paper consists of (i) N, = 12
Gauss-associated-Laguerre quadrature points R,, generated as per Felker and Baci¢* for
B = 2.9888989 au, (ii) N, = 10 Gauss-Legendre quadrature points (cos 3)p, (iii) N, = 18
Fourier grid points a., (iv) Ny = 10 Gauss-Legendre quadrature points (cosf)y, and (v)

N, = 18 Fourier grid points ¢,.

~

2.1.3 Kinetic-Energy Operator, T

For Hy@Cgq in the rigid-monomer approximation
T=——+=— (5)

where V2 is the Laplacian associated with R, J? is the operator corresponding to the square
of the rotational angular momentum of the Hy, M is the mass of the Hy, and [ is the moment

of inertia of the Hy. The inertial parameters that we have employed are given in Table S1.



2.1.4 Lennard-Jones Potential-Energy Parameters

The Vi, PES function appearing in H for Hy@Cgy is taken from Xu, et al.? and is given by

g gud(@) ()]

r:
i=1 k=1 ik

where ¢ runs over the three Hs sites listed in Table S1, £ runs over the 60 nuclear positions
of the C atoms in the central cage, r;; is the distance between site ¢ and site k, w; = 6.7,
wy = ws = 1, 0 = 5.574692 bohrs (2.95 A), and € = 3.07 cm™". Of course, the 7, depend

on the position of the Hy moiety w.r.t. the SF axes, so V; is a function of R and w.

2.2 H,0@Cyg,
2.2.1 Basis Functions

The basis functions employed in the variational calculations of the TR states of HoOQCgq
are of the form |n,l,m;)|j,m;, k). The |n,l,m;) are the same as for Hy@Cg, except that

B = 24.38 au. The |j,m;, k) are normalized Wigner rotation matrix elements

. 21+ 1, .
o k) =\ =g D 46,00 (7)

where j =0,1,2,..., jmax, m; = —J, (—j+1),....,(j —1),j,and k = —j, (=5 +1),...,(j —
1),7. We used jmax = 8.

2.2.2 Grid Parameters

The 6D grid described in Section 2.5 of the main body of the paper consisted of (i) N, = 12
Gauss-associated-Laguerre quadrature points R,, generated as per Felker and Bagci¢* for
p =24.38 au, (ii) N, = 10 Gauss-Legendre quadrature points (cos ), (iii) N. = 18 Fourier
grid points «., (iv) Ny = 10 Gauss-Legendre quadrature points (cosf)y, and (v) N, = 18

Fourier grid points ¢., and (vi) Ny = 18 Fourier grid points x.



~

2.2.3 Kinetic-Energy Operator, T

For H,O@QCjg in the rigid-monomer approximation

\ & J?
T—=—__"_ k.
2 g (8)

k=x,y,z

where V2 is the Laplacian associated with R, j,? is the operator corresponding to the square
of the rotational angular momentum of the HyO about its kth principal axis, M is the mass
of the HyO, and [ is the moment of inertia of HoO about its kth principal axis. The inertial

parameters that we have employed are given in Table S2.

2.2.4 Lennard-Jones Potential-Energy Parameters

The V,; PES function appearing in H for H,O@QCy is taken from Felker and Baci¢® and is

given by

g E(2) ()]

i=1 k=1 Tk "ik
where ¢ runs over the three H5O sites listed in Table S2, k£ runs over the 60 nuclear positions
of the C atoms in the central cage, r; is the distance between site ¢ and site k, o1 = 6.37216
bohrs (3.372 A), 0y = 03 = 4.988877 bohrs (2.640 A), ¢; = 36.34 cm ™', and €, = €5 = 8.95384
1

cm ™. The ry depend on the position of the HyO moiety w.r.t. the SF axes, so Vs is a

function of R and w.



3 'Transformation properties of the electric-field-grad-
(2)

iant tensor, [,

For arbitrary charge density p(r) the internal moments of rank 2 (the components of the

electric-field-gradient tensor) are given by®

4
I E/p£3 C@ (7 =\ 5 / — Yo (7 (10)

We examine below how these moments transform subject to (a) inversion through the origin

and (b) rotation about an axis going through the origin.

3.1 Transformation by inversion

Inversion (operation E*) changes the charge density p(r) to p/(r) such that

J(r) = p(-1). (11)

The internal moments corresponding to this new charge density are given by

4 4
@) = T [ v =T [y
A [ p(r)) .
— N/E/ 7 Yo (—7")dr’,

(12)
where we have substituted r' = —r to obtain the final equality. Since Ya,,(—#") = Ya,,(#),
one sees from Egs. (10) and (12) that

L(E*) = 1. (13)

Inversion leaves internal moments of rank 2 unchanged.



3.2 Transformation by rotation about an axis through the origin

We start by expressing p(r) as an expansion over spherical harmonics

p(r) = Z A (1) Yim (7), (14)

Il,m

where

() = / p(0) Y7 (F)dF. (15)

Next we substitute this expansion for p(r) into Eq. (10) to obtain

[4m Ay (1)
(2) _ . Im ~ ~
Im - 5 %:, / r3 Yim’ (T)}/Zm(r)dr

— \/g(_)m/@’_r—?(ﬂdr, (16)

where the last equality in Eq. (16) follows from the orthonormality of the spherical harmonics

and the fact that

Yl;, - (_)mYl,—m- (17>

Now we rotate the charge density p(r) through an angle v about an axis n going through

the origin. The density is transformed as follows

e p(r) =3 (1) e Y (7)), (18)

I,m

where J, is the operator corresponding to angular momentum about 7.

Consider the new Lg) — call them L(,?) (n,v) — corresponding to this rotated density

S = [y Gy

al,m’(r) —idn A
= Z/ 3 dr/[e I VY | Yo dr. (19)
I,m’




Now

I (2) = 3 A () Vi ), (20)
where
A, (27) = [ Vi) Vi () @

Substituting Eq. (20) into Eq. (19) one obtains

2o = S| [ <> A 19) [ Yiaw 6 Yo 7107

I,m’
N ao m/ \T
= YA, ) / 2}3( Lar. @)

By using Eq. (16) one then obtains

I2(,7) =3 (=) A ()1, = 3 (AR I (23)

m/

What remains is to evaluate the A,(i)m, (n,7v). If one specifies the direction of the axis 7

by its polar angle § and azimuthal angle «, it is straightforward to show that
(0 3,7) = A (0 7) = €10 (B (), (24

where the dgim, (B) are little-d Wigner rotation matrix elements. From Eq. (24), one can

also easily show that

(=) A () = [AD ()] (25)
and that
(—)m+m’ A(_lm (R, —7):,45,?,7,”(7@,7). (26)



Finally, with Egs. (23), (25), and (26)

ID(h) =Y [A? ()] T (27)
and
12 (R, =) =3 AL (A, (28)

Relevant to the M@Cg, crystal-fragment geometries in this work are the rotations by
+27/3 about © when n lies along the (1,1,1) direction, so that 8 = cos™'(1/1/3) and
a = w/4. Evaluation of Eq. (24) for v = 427 /3 about this axis and for [ = 2 yields the

matrix of values

il L

L _ /3
2 8

=
N |#—=
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B=A®(1/4, cos_l(\/1/_3), 2m/3) =
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|
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where the rows run from m = —2 to 2 and the columns from m’' = —2 to 2.

3.3 Invariant LS%) for the M@C;, Crystal Fragment

For this work we take the P and H crystal fragments to be invariant under the operations
of the Ss point group. In addition, we have chosen SF cartesian axes such that the Cj
symmetry axis of Sg points along the (1,1, 1) direction. Since the internal moments due to

the NN cages must be invariant to a 27/3 rotation about the Cj axis, then given Egs. (27)



and (29), the following must be obeyed

B*/® = 1@ (30)

where I is the column vector composed of internal moments produced by the charge density

of the twelve NN cages

Equation (30) is satisfied if 1?) is an eigenvector of B* having eigenvalue equal to +1. These

eigenvectors can be straightforwardly determined. They are given by

(—1+1)

(1+14)

10



where, in general, A is a complex constant.

4 Perturbation theory applied to j =1 level splittings

4.1 HQ@CGO and HF@C@()

We take the lowest-energy zeroth-order TR states of Hy@QCgy and HFQCgj to be of the form
To)|7,m;)," where |Tp) depends only on R and |j,m;) is a rigid-rotor rotational eigenfunc-
tion. The matrix elements of V.4 connecting the states of a given j level are then given
by

<T0,j, m;"vquad’ija mj> = Z(_)mI(—%Zz(TO?j: m;’@g)‘TO,], mj)' (33)

m

By using Eq. (15) of the main text

(To, 4, m}| QP Ty, j,my) = QB (j, m!|[DZy ()] |7, my)
1 1 2
+ (=)"VAO0mp Y
m \m' m-—-m'" —m

X (To|RY15 (0, ®)|Ty) (j, m)|[DS) . o (w)]*17,my).

(34)

Now the |Tp, j,m;) have inversion symmetry (due to the [, environment imposed by the
central Cg cage), as do the |7, m;). In consequence, |Tj) also has inversion symmetry. The
upshot is that the factors (To|RY: . (©, ®)|Ty) appearing in Eq. (34) are zero by symmetry,
since RY},» (O, ®) changes sign upon inversion. Thus we need only consider the first term
on the rhs of Eq. (34). One finds

JJ 2 Jg g 2

(To, §, | QP | Ty, 5, my) = (=)™ (25 + Q§T - (35)
000 —m; m; m

11



Substituting Eq. (35) into Eq. (33) one obtains

joJ 2
mj—m.

J / /

<T0aj7m;|unad|T0,j,mj> — (_)ij(Q) )

JJj 2
x (27 + 1)QFF . (36)
000

These matrix elements are readily evaluated for a given value of j. For j = 1 the full matrix

(rows labeled by m} = —1,0, 1 and columns by m; = —1,0, 1) is given by

e
2
V6 , .
<T07 1a {m9}|vquad|T07 17 {mj}> = ?QOBFA - (1\;5) 0 (1\};) ) (37)
: (1)
—1 7 0

where we have used Eq. (32) for the 12 This matrix has eigenvalues ‘/TEQOBFA, \/TEQOBFA,
and —Q%EQEFA. These are the first-order corrections to the energies of the j = 1 states and

give

Apr = E(9=2)—-E(g=1) = 314?@0%, (38)

consistent with Egs. (17) and (18) of the main text.

4.2 HQO@CGQ

For H,O@QCg the lowest-energy zeroth-order states® are very well-approximated by |To)|jk, k., 7)

where |T) depends only on R,

kaker ™) = > alikake k)|j,my, k) (39)
k

12



is an eigenfunction of the rigid-H,O rotational Hamiltonian, and the |j, m;, k) are symmetric-

top rotational eigenfunctions

2j + 1
82

|j7 mj7 k> =
Matrix elements of Vg4 connecting states of a given |7y, jk,.x.) level are given by

(o, Groer 7 Vauad | To, Gk M) = D (=)™ T AT, G M| Q2 T, jhuke i) (41)

m

To evaluate the matrix elements on the rhs of Eq. (41) we use Eq. (15) of the main text

and note that, as for Hy and HF, |T) has definite parity. Thus,

and
2
(To, Jrake: MG|QD| Ty, ke, M) = Z QFF (e M [D T bk M) (43)
q=—2

By using Eqgs. (39) and (40)

(kakes MG IDE T bk M) = Za(jkakcak’/)a(jkakc,k’)(J}m}’leDfi,)q]*Uamj»@
ke k!
o j o2
= (5)™(25+1)
—m; m; m

X

Z(_)kIG'(jkakc? k/)a<jkakc7 k)
k. k! -k k q

(44)

13



Substituting Eq. (44) into Eq. (43) and then the latter into Eq. (41) one obtains

(b, Grater M5 Vawad | Tos Gk ) = (=)™ L)

/

m] m] / /
. BF k' . / . j j 2
X(2j + 1)ZQ(] Z(_) a(jkakc7k )a(jkakc7k)
q k' K -k k q

(45)

For j =1 the Eq.-(45) matrix (rows labeled by m’ = —1,0,1 and columns by m; = —1,0,1)

is given by
0 -
2
<T0’ 1kakc’ {m;}|vzluad|T07 1kak‘c7 {mj}> = Af(QBF) — (1\};) 0 (1\};) ) (46)
, (1—i)
—1 7 0
where we have used Eq. (32) for the 12 and
BFy _ 9 BF K N 1 12
Q) = 7 Z Q@ Z(—) A(Jrakes K)a(Jrakes k) : (47)
5 q k' K -k k q

Diagonalization of Eq. (46) yields the eigenvalues Af(QBY), Af(QBY), and —2Af(Q") and

the level splitting

Apr = E(g=2) — E(g = 1) = 3Af(Q""). (48)
For the 1¢; level, the ortho ground state,

a(l(n, ].) = —a(l(n, —1) = L a(101,0) =0 (49)

&

14



and
BF _ § o 1
f(Q 9 101) - 5 \/6

For the first excited rotational state of the ortho species, 14,

QR+ S(QE" + Q)|

1
a(lpr,1) = a(lp, —1) = — a(lp1,0) =0
(1o1,1) (1 ) NG (101,0)
and
BF 1 _§ L BF 1 BF BF
f(Q7, 1) = - | + o T+ (2 +Q72)-

50 V6 2

Finally, for the first excited rotational state of the para species, 141,

a(ln, ].) == a(lu, —]_> =0 (1(111,0) =1

and

V6

FQP 1) = ?QE’F-

15

(53)

(54)
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Table 1: Hy BF site coordinates (in bohrs), site masses (in amu), rotational constant (in
cm™1), and BF quadrupole (in au).

Site # x Y z mass
1 0.000000 0.000000  0.000000  0.0000
2 0.000000 0.000000 40.699199 1.0078
3 0.000000 0.000000 —0.699199 1.0078

(21)~! = 58.378

BF — ().499
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Table 2: HoO BF site coordinates (in bohrs), site masses (in amu), rotational constants (in
cm™'), and BF quadrupole and dipole components (in au).

Site # x Y z mass
1 0.000000  0.000000  0.125534  15.9949
2 1.453650  0.000000 —0.996156 1.0078
3 —1.453650  0.000000 —0.996156 1.0078

(2L)~1 (2L)7 (21,)~

27.877 9.285 14.512
BF BF — A
Q" Py fi = pz

—0.09973  1.53843  —0.737196
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Table 3: Carbon nuclear coordinates (in bohrs) for the “master cage” Cgg geometry. Coor-
dinates are referenced to a cage-fixed cartesian axis system having its origin at the center of
the cage, its z axis along one of the C5 symmetry axes of the cage, and its x axis along one
of the C5 symmetry axes of the cage.

C nucleus T Y z
1 0.000000  2.322672  6.238707
2 —2.208993  0.717744  6.238707
3 —1.365233 —1.879081  6.238707
4 1.365233  —1.879081  6.238707
5 2.208993  0.717744  6.238707
6 4.319071 1.403350  4.867496
7 5.684303  —0.475731  3.432005
4.878326 —2.956276  3.432005
9 2.669332 —3.674020  4.867496
10 1.304100  —5.553102  3.432005
11 —1.304100 —5.553102  3.432005
12 —2.669332 —3.674020 4.867496
13 —4.878326 —2.956276  3.432005
14 —5.684303 —0.475731  3.432005
15 —4.319071  1.403350  4.867496
16 —4.319071  3.726024  3.432005
17 —5.684303  3.282433  1.109333
18 —6.528064  0.685606  1.109333
19 —6.528064 —0.685606 —1.109333
20 —5.684303 —3.282433 —1.109333
21 —4.878326 —4.391767  1.109333
22 —2.669332 —5.996694  1.109333
23 —1.365233 —6.420422 —1.109333
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24 1.365233  —6.420422 —1.109333

25 2.669332  —5.996694 1.109333

26 4.878326  —4.391767  1.109333

27 5.684303  —3.282433 —1.109333
28 6.528064  —0.685606 —1.109333
29 6.528064  0.685606 1.109333

30 5.684303 3.282433 1.109333

31 4.878326  4.391767  —1.109333
32 4.878326 2.956276  —3.432005
33 5.684303 0.475731  —3.432005
34 4.319071  —1.403350 —4.867496
35 4.319071  —3.726024 —3.432005
36 2.208993  —5.259085 —3.432005
37 0.000000  —4.541340 —4.867496
38 —2.208993 —5.259085 —3.432005
39 —4.319071 —3.726024 —3.432005
40 —4.319071 —1.403350 —4.867496
41 —5.684303  0.475731  —3.432005
42 —4.878326  2.956276  —3.432005
43 —4.878326  4.391767 —1.109333
44 —2.669332  5.996694 —1.109333
45 —1.304100  5.553102  —3.432005
46 —2.669332  3.674020 —4.867496
47 —1.365233  1.879081 —6.238707
48 —2.208993 —0.717744 —6.238707
49 0.000000  —2.322672 —6.238707
50 2208993  —0.717744 —6.238707

20



ol
52
23
o4
25
o6
57
o8
29
60

1.365233
2.669332
1.304100
2.669332
1.365233
—1.365233
—2.208993
0.000000
2.208993
4.319071

1.879081
3.674020
2.553102
5.996694
6.420422
6.420422
2.259085
4.541340
5.259085
3.726024

—6.238707
—4.867496
—3.432005
—1.109333
1.109333
1.109333
3.432005
4.867496
3.432005
3.432005
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Table 4: Cage center translation vector, T (in bohrs) and rotation matrix, R, defining the
position of each of the cages in the 13-cage fragment corresponding to the P orientation of

M@Cgo(S).

Cage # (k) T(k) R(k)
0.556377 —0.457993 —0.693316
1 (13.265878, 0.000000, 13.265878) —0.566903 0.400811 —0.719702
0.607508  0.793469 —0.036636
0.556377 —0.457993 —0.693316
2 (0.000000, 13.265878, 13.265878) 0.566903 —0.400811 0.719702
—0.607508 —0.793469  0.036636
—0.556377  0.457993  0.693316
3 (13.265878, 13.265878, 0.000000) —0.566903  0.400811 —0.719702
—0.607508 —0.793469 0.036636
0.556377 —0.457993 —0.693316
4 (—13.265878,0.000000, —13.265878) | —0.566903 0.400811 —0.719702
0.607508  0.793469 —0.036636
0.556377 —0.457993 —0.693316
5 (0.000000, —13.265878, —13.265878) 0.566903 —0.400811 0.719702
—0.607508 —0.793469  0.036636

22



10

11

12

(—13.265878, —13.265878, 0.000000

(0.000000, 13.265878, —13.265878)

(13.265878,0.000000, —13.265878)

(0.000000, —13.265878, 13.265878)

(13.265878, —13.265878,0.000000)

(—13.265878,0.000000, 13.265878)

(—13.265878, 13.265878, 0.000000)

23

|
|
|
|
|
|
|

—0.556377
—0.566903
—0.607508

0.556377
0.566903
—0.607508

0.556377
—0.566903
0.607508

0.556377
0.566903
—0.607508

—0.556377
—0.566903
—0.607508

0.556377
—0.566903
0.607508

—0.556377
—0.566903
—0.607508

0.457993  0.693316
0.400811 —0.719702
—0.793469  0.036636

—0.457993 —0.693316
—0.400811  0.719702
—0.793469  0.036636

—0.457993 —0.693316
0.400811 —0.719702
0.793469 —0.036636

—0.457993 —0.693316
—0.400811  0.719702
—0.793469  0.036636

0.457993  0.693316
0.400811 —0.719702
—0.793469  0.036636

—0.457993 —0.693316
0.400811 —0.719702
0.793469 —0.036636

0.457993  0.693316
0.400811 —0.719702
—0.793469  0.036636



—0.556377  0.457993  0.693316
13 (0.000000, 0.000000, 0.000000) 0.566903 —0.400811  0.719702

0.607508  0.793469 —0.036636
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Table 5: Cage center translation vector, T (in bohrs) and rotation matrix, R, defining the

position of each of the cages in the 13-cage fragment corresponding to the H orientation of
M@Cgo(S).

Cage # (k) T (k) R(k)

0.154881 —0.967912 —0.197886
1 (13.265878, 0.000000, 13.265878) 0.195485 0.226368 —0.954224

0.968400 0.109107  0.224272

0.154881 —0.967912 —0.197886
2 (0.000000, 13.265878, 13.265878) —0.195485 —0.226368  0.954224

—0.968400 —0.109107 —0.224272

—0.154881  0.967912  0.197886
3 (13.265878, 13.265878, 0.000000) 0.195485  0.226368 —0.954224

—0.968400 —0.109107 —0.224272

0.154881 —0.967912 —0.197886
4 (—13.265878, 0.000000, —13.265878) 0.195485  0.226368 —0.954224

0.968400 0.109107  0.224272
0.154881 —0.967912 —0.197886

) (0.000000, —13.265878, —13.265878) | —0.195485 —0.226368 0.954224

—0.968400 —0.109107 —0.224272

25



10

11

12

(—13.265878, —13.265878, 0.000000)

(0.000000, 13.265878, —13.265878)

(13.265878,0.000000, —13.265878)

(0.000000, —13.265878, 13.265878)

(13.265878, —13.265878, 0.000000)

(—13.265878,0.000000, 13.265878)

(—13.265878, 13.265878, 0.000000)

26

—0.154881
0.195485
—0.968400

0.154881
—0.195485
—0.968400

0.154881
0.195485
0.968400

0.154881
—0.195485
—0.968400

—0.154881
0.195485
—0.968400

0.154881
0.195485
0.968400

—0.154881
0.195485
—0.968400

0.967912
0.226368
—0.109107

—0.967912
—0.226368
—0.109107

—0.967912
0.226368
0.109107

—0.967912
—0.226368
—0.109107

0.967912
0.226368
—0.109107

—0.967912
0.226368
0.109107

0.967912
0.226368
—0.109107

0.197886
—0.954224
—0.224272

—0.197886
0.954224
—0.224272

—0.197886
—0.954224
0.224272

—0.197886
0.954224
—0.224272

0.197886
—0.954224
—0.224272

—0.197886
—0.954224
0.224272

0.197886
—0.954224
—0.224272



—0.154881 0.967912 0.197886
13 (0.000000, 0.000000, 0.000000) —0.195485 —0.226368 0.954224

0.968400  0.109107  0.224272
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