Bonding and Optical Properties of Spirocyclicphosphazene Derivatives. A DFT Approach

Raúl Guajardo Maturana $^{*a,c},$ María Luisa Valenzuela *b , Eduardo Schotta and Macarena Rojas-Poblete c,d

^aDepartamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile

^bUniversidad Autónoma de Chile, Instituto de Ciencias Químicas Aplicadas, Centro de Inorganica y Materiales Moleculares. Av. El Llano Subercaseaux 2801, Santiago, Chile.

^cRelativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular, Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago, Chile

^dUniversidad Tecnológica de Chile INACAP, Chile.

Supplementary Information

Figure S1. In the figure are shown the NBO Natural charges of the corresponding systems.

Figure S2. In the figure are shown the NBO Natural charges of the corresponding systems.

Figure S3. The TD-DFT UV-vis spectra for molecules in study.

Figure S4. Plotted molecular orbital functions involved at the electronic transitions of spiro-cyclic phosphazene derivatives.

Figure S4. Plotted molecular orbital functions involved at the electronic transitions of spiro-cyclic phosphazene derivatives.

	1a	2a	2b	2c	6(3b)	4a	^a Exp.
P ₁ -N ₁	1.581	1.581	1.583	1.580	1.586	1.580	
P ₁ -N ₂	1.582	1.585	1.583	1.580	1.587	1.581	1.585,1.568
P ₂ -N ₂	1.582	1.578	1.578	1.580	1.572	1.584	1.585,1.582
P ₂ -N ₃	1.582	1.579	1.581	1.581	1.581	1.581	1.585,1.586
P ₃ -N ₁	1.581	1.581	1.578	1.580	1.573	1.584	1.585
P ₃ -N ₃	1.580	1.584	1.581	1.580	1.582	1.589	
P ₁ -O ₁	1.605	1.606	1.610	1.608	1.611	1.608	1.586
P ₁ -O ₂	1.604	1.604	1.600	1.604	1.592	1.608	1.581
P ₂ -O ₃	1.605	1.609	1.603	1.608	1.610	1.601	1.584
P ₂ -O ₄	1.604	1.609	1.601	1.602	1.611	1.605	
C-C _{ar}	1.391	1.392	1.391	1.388	1.391	1.392	1.393
C-C	1.480	1.480	1.480	1.479	1.480	1.480	
C-C _{ar2}	1.392	1.388	1.388	1.388	1.388	1.401	
C-C ₂	1.480	1.480	1.478	1.478	1.479	1478	
Br-C	-	1.913	1.913	1.912	-	-	
O ₂ N-C	-	-	-	-	1.479	-	
H ₂ N-C	-	-	-	-	-	1.398	
O-C _{ar}	1.393	1.387	1.390	1.390	1.384	1.391	1.395
P ₁ -N ₂ -P ₂	122.2	121.9	122.3	122.6	122.7	121.9	122.9,120.8
P ₁ -N ₁ -P ₃	122.3	122.5	122.5	122.3	122.6	122.1	122.9,121.2
N ₁ -P ₁ -N ₂	117.6	117.4	117.2	117.6	116.4	118.2	118.5,118.6
N ₁ -P ₃ -N ₃	117.5	117.9	117.7	117.5	118.3	117.3	118.5,118.3
O ₁ -P ₁ -O ₂	102.0	102.3	102.4	102.0	103.2	101.7	102.4
O ₃ -P ₂ -O ₄	102.1	101.6	101.8	102.0	101.0	102.5	103.0
P ₁ -O ₁ -C ₉	123.7	122.0	122.7	122.6	121.1	122.9	121.8
P ₂ -O ₃ -C ₅	123.7	123.9	122.2	121.99	120.3	124.8	

 Table S1. Selected structural parameters of phosphazene derivatives

aRef. 24

CSF	Donor	Acceptor	ΔΕ2	εj-εi
Electron W-D			(Kcal/mol)	a.u.
1				
	BD ⁽²⁾ C1-C2	BD* ⁽²⁾ C3-C6	19.74	0.28
	BD ⁽²⁾ C1-C2	BD* ⁽²⁾ C5-C7	20.92	0.29
Overall	BD ⁽²⁾ C-C	BD* ⁽²⁾ C-C	729.63	
2c	BD ⁽²⁾ C1-C2	BD* ⁽²⁾ C3-C6	19.43	0.28
	BD ⁽²⁾ C1-C2	BD* ⁽²⁾ C5-C7	21.41	0.27
Overall	BD ⁽²⁾ C-C	BD*(2)C-C	725.36	
	BD ⁽¹⁾ C1-C2	BD*(1)C5-Br71	5.03	0.79
	BD ⁽¹⁾ C6-C7	BD* ⁽¹⁾ C5-Br71	4.68	0.81
	LP ⁽³⁾ Br71	BD* ⁽²⁾ C5-C 7	9.78	0.31
	LP ⁽²⁾ Br71	BD* ⁽¹⁾ C2-C 5	2.88	0.86
	LP ⁽²⁾ Br71	BD* ⁽¹⁾ C5-C7	2.98	0.87
3c				
	BD ⁽²⁾ C1-C2	BD* ⁽²⁾ C3-C6	21.64	0.27
	BD ⁽²⁾ C1-C2	BD* ⁽²⁾ C5-C7	20.98	0.28
Overall	BD ⁽²⁾ C-C	BD* ⁽²⁾ C-C	735.78	
	BD ⁽²⁾ C18-C19	BD* ⁽²⁾ N76-O77	26.93	0.15
	BD (2) C-C7	BD*(2) N73-O74	26.27	0.15
	BD* ⁽²⁾ N73-O74	BD* ⁽²⁾ C5-C7	15.03	0.14
	BD* ⁽²⁾ N76-O77	BD* ⁽²⁾ C18-C19	14.5	0.14
4c	BD ⁽²⁾ C1-C2	BD* ⁽²⁾ C3-C6	15.73	0.29
	BD ⁽²⁾ C1-C2	BD* ⁽²⁾ C5-C7	22.1	0.26
Overall	BD ⁽²⁾ C-C	BD* ⁽²⁾ C-C	717.03	
	LP ⁽¹⁾ N67	BD* ⁽²⁾ C5-C7	29.32	0.32
	LP ⁽¹⁾ N68	BD* ⁽²⁾ C18-C19	27.19	0.32
	BD (1)C1-C2	BD* ⁽¹⁾ C5-N67	3.83	1.15
	BD ⁽¹⁾ C6 - C 7	BD* ⁽¹⁾ C5-N67	3.64	1.16
	BD ⁽¹⁾ C19-C23	BD* (1)C18-N68	3.51	1.13
	BD ⁽¹⁾ C20-C24	BD* (1)C18-N68	3.82	1.14

Table S2. Second order stabilization energies, ΔE^2 , ϵj - ϵi from NBO analysis for the selected systems.