Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

## **Electronic Supporting Information**

for

# The Bader Energy Density: A new topological tool into the framework of Bader's Theory used to explain the instability of PH<sub>5</sub>

Christian Tantardinia<sup>+</sup> and Enrico Benassi<sup>a,b</sup>

<sup>a.</sup>Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation

<sup>b.</sup> School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Republic of Kazakhstan.

<sup>t.</sup> Corresponding author Email: christiantantardini@ymail.com

E.S.I.1 Table of Electronic Energy in a.u. for fluorine systems computed at different levels of theory. Basis set: Aug-cc-pVTZ.

|                 | HF           | MP2          | QCISD        | CCSD         |
|-----------------|--------------|--------------|--------------|--------------|
| PF <sub>5</sub> | -838.3174734 | -839.7646813 | -839.7639915 | -839.7597792 |
| PF₅ (elongated) | -838.2603209 | -839.7656592 | -839.7650232 | -839.7608302 |
| PF <sub>3</sub> | -639.3055895 | -640.2226753 | -640.2293579 | -640.2262218 |
| F <sub>2</sub>  | -198.7609356 | -199.2909071 | -199.2950716 | -199.2938511 |

E.S.I.2 Table of Electronic Energy in a.u. for hydrogen systems computed at different levels of theory. Basis set: Aug-cc-pVTZ.

|                 | HF           | MP2          | QCISD        | CCSD         |
|-----------------|--------------|--------------|--------------|--------------|
| PHs             | -343.5500600 | -343.7592943 | -343.7941119 | -343.7938719 |
| PH₅ (elongated) | -343.5514162 | -343.7603523 | -343.7951027 | -343.7948647 |
| PH <sub>3</sub> | -342.4881819 | -342.6612882 | -342.6893993 | -342.6891697 |
| H <sub>2</sub>  | -1.1330558   | -1.1650230   | -1.1726355   | -1.1726355   |

E.S.I.3 Table of PF<sub>5</sub> (elongated) source function (SF) atomic percentage contribution calculated into BCPs at different levels of theory. Basis set: Aug-cc-pVTZ.

|                    |             |         |                      |                      | HF                   |                      |                      |                      |         |
|--------------------|-------------|---------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------|
| ВСР                | ρ (e/bohr³) |         | SF%(P <sub>1</sub> ) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | SF%(F <sub>3</sub> ) | SF%(F <sub>4</sub> ) | SF%(F <sub>5</sub> ) | TOT SF% |
| P-F <sub>eq1</sub> | C           | ).22984 | 28.42                | 53.57                | 3.71                 | 3.71                 | 5.75                 | 5.75                 | 100.90  |
| P-F <sub>ax1</sub> | C           | ).11291 | 9.33                 | 14.20                | 44.33                | 4.18                 | 14.20                | 14.20                | 100.44  |
| P-F <sub>ax2</sub> | C           | ).11291 | 9.25                 | 14.19                | 4.18                 | 44.34                | 14.20                | 14.20                | 100.35  |
| P-F <sub>eq2</sub> | C           | ).22984 | 28.59                | 5.75                 | 3.71                 | 3.71                 | 53.57                | 5.75                 | 101.06  |
| P-F <sub>eq3</sub> | C           | ).22984 | 28.59                | 5.74                 | 3.71                 | 3.71                 | 5.75                 | 53.57                | 101.06  |
|                    | •           |         |                      |                      | MP2                  |                      |                      |                      |         |
| ВСР                | ρ (e/bohr³) |         | SF%(P <sub>1</sub> ) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | SF%(F <sub>3</sub> ) | SF%(F <sub>4</sub> ) | SF%(F <sub>5</sub> ) | TOT SF% |
| P-F <sub>eq1</sub> | C           | 0.18422 | 22.83                | 50.62                | 7.26                 | 7.26                 | 5.83                 | 5.83                 | 99.62   |
| P-F <sub>ax1</sub> | C           | ).17244 | 21.36                | 8.59                 | 48.39                | 4.65                 | 8.59                 | 8.59                 | 100.17  |
| P-F <sub>ax2</sub> | C           | ).17244 | 21.36                | 8.59                 | 4.65                 | 48.39                | 8.59                 | 8.59                 | 100.17  |
| P-F <sub>eq2</sub> | C           | ).18422 | 22.94                | 5.82                 | 7.26                 | 7.26                 | 50.81                | 5.83                 | 99.92   |
| P-F <sub>eq3</sub> | C           | 0.18422 | 22.94                | 5.82                 | 7.26                 | 7.26                 | 5.83                 | 50.81                | 99.92   |
|                    |             |         |                      | C                    | QCISD                |                      |                      |                      |         |
| BCP                | ρ (e/bohr³) |         | SF%(P <sub>1</sub> ) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | SF%(F <sub>3</sub> ) | SF%(F <sub>4</sub> ) | SF%(F₅)              | TOT SF% |
| P-F <sub>eq1</sub> | C           | 0.18763 | 23.72                | 51.02                | 7.18                 | 7.18                 | 5.78                 | 5.78                 | 100.65  |
| P-F <sub>ax1</sub> | C           | 0.17516 | 21.53                | 8.55                 | 48.35                | 4.61                 | 8.55                 | 8.55                 | 100.14  |
| P-F <sub>ax2</sub> | C           | 0.17516 | 21.53                | 8.55                 | 4.61                 | 48.34                | 8.55                 | 8.55                 | 100.14  |
| P-F <sub>eq2</sub> | C           | 0.18763 | 23.80                | 5.78                 | 7.18                 | 7.18                 | 51.03                | 5.78                 | 100.74  |
| P-F <sub>eq3</sub> | C           | 0.18763 | 23.80                | 5.78                 | 7.18                 | 7.18                 | 5.78                 | 51.02                | 100.74  |
|                    |             |         |                      | (                    | CCSD                 |                      |                      |                      |         |
| BCP                | ρ (e/bohr³) |         | SF%(P <sub>1</sub> ) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | SF%(F <sub>3</sub> ) | SF%(F <sub>4</sub> ) | SF%(F₅)              | TOT SF% |
| P-F <sub>eq1</sub> | C           | 0.18826 | 23.75                | 51.05                | 7.17                 | 7.17                 | 5.77                 | 5.77                 | 100.68  |
| P-F <sub>ax1</sub> | C           | 0.17565 | 21.51                | 8.55                 | 48.38                | 4.60                 | 8.55                 | 8.55                 | 100.13  |
| P-F <sub>ax2</sub> | C           | 0.17565 | 21.51                | 8.54                 | 4.60                 | 48.38                | 8.55                 | 8.55                 | 100.13  |
| P-F <sub>eq2</sub> | C           | 0.18826 | 23.83                | 5.77                 | 7.17                 | 7.17                 | 51.06                | 5.77                 | 100.77  |
| P-F <sub>eq3</sub> | C           | 0.18826 | 23.83                | 5.77                 | 7.17                 | 7.17                 | 5.77                 | 51.06                | 100.76  |

E.S.I.4 Table of PH<sub>5</sub> elongated source function (SF) atomic percentage contribution calculated into BCPs at different levels of theory. Basis set: Aug-cc-pVTZ.

|                    |             |                      |                      | HF                   |                      |                      |         |         |  |  |
|--------------------|-------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------|---------|--|--|
| ВСР                | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | SF%(H <sub>3</sub> ) | SF%(H <sub>4</sub> ) | SF%(H₅) | TOT SF% |  |  |
| P-H <sub>eq1</sub> | 0.17284     | 29.20                | 48.39                | 6.14                 | 6.14                 | 5.20                 | 5.20    | 100.26  |  |  |
| P-H <sub>ax1</sub> | 0.15567     | 27.03                | 7.75                 | 45.90                | 4.05                 | 7.75                 | 7.75    | 100.24  |  |  |
| P-H <sub>ax2</sub> | 0.15567     | 27.03                | 7.75                 | 4.05                 | 45.90                | 7.75                 | 7.75    | 100.24  |  |  |
| P-H <sub>eq2</sub> | 0.17284     | 29.19                | 5.20                 | 6.14                 | 6.14                 | 48.40                | 5.20    | 100.26  |  |  |
| P-H <sub>eq3</sub> | 0.17284     | 29.19                | 5.20                 | 6.14                 | 6.14                 | 5.20                 | 48.40   | 100.26  |  |  |
| MP2                |             |                      |                      |                      |                      |                      |         |         |  |  |
| ВСР                | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | SF%(H <sub>3</sub> ) | SF%(H <sub>4</sub> ) | SF%(H₅) | TOT SF% |  |  |
| P-H <sub>eq1</sub> | 0.1694      | 30.46                | 47.24                | 6.09                 | 6.09                 | 5.05                 | 5.05    | 99.98   |  |  |
| P-H <sub>ax1</sub> | 0.15677     | 28.98                | 7.30                 | 45.14                | 3.93                 | 7.30                 | 7.30    | 99.95   |  |  |
| P-H <sub>ax2</sub> | 0.15677     | 28.98                | 7.30                 | 3.93                 | 45.15                | 7.30                 | 7.30    | 99.95   |  |  |
| P-H <sub>eq2</sub> | 0.1694      | 30.45                | 5.05                 | 6.09                 | 6.09                 | 47.25                | 5.05    | 99.98   |  |  |
| P-H <sub>eq3</sub> | 0.1694      | 30.45                | 5.05                 | 6.09                 | 6.09                 | 5.05                 | 47.25   | 99.98   |  |  |
|                    |             |                      | Q                    | CISD                 |                      |                      |         |         |  |  |
| ВСР                | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | SF%(H <sub>3</sub> ) | SF%(H <sub>4</sub> ) | SF%(H₅) | TOT SF% |  |  |
| P-H <sub>eq1</sub> | 0.16805     | 31.93                | 47.06                | 6.06                 | 6.06                 | 5.01                 | 5.01    | 101.15  |  |  |
| P-H <sub>ax1</sub> | 0.1561      | 30.54                | 7.22                 | 45.02                | 3.89                 | 7.22                 | 7.22    | 101.11  |  |  |
| P-H <sub>ax2</sub> | 0.1561      | 30.53                | 7.22                 | 3.89                 | 45.02                | 7.22                 | 7.22    | 101.11  |  |  |
| P-H <sub>eq2</sub> | 0.16805     | 31.90                | 5.01                 | 6.06                 | 6.06                 | 47.07                | 5.01    | 101.12  |  |  |
| P-H <sub>eq3</sub> | 0.16805     | 31.90                | 5.01                 | 6.06                 | 6.06                 | 5.01                 | 47.07   | 101.12  |  |  |
|                    |             |                      |                      | CSD                  |                      |                      |         |         |  |  |
| ВСР                | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | SF%(H <sub>3</sub> ) | SF%(H <sub>4</sub> ) | SF%(H₅) | TOT SF% |  |  |
| P-H <sub>eq1</sub> | 0.16812     | 30.65                | 47.08                | 6.07                 | 6.07                 | 5.02                 | 5.02    | 99.90   |  |  |
| P-H <sub>ax1</sub> | 0.15615     | 29.27                | 7.22                 | 45.03                | 3.90                 | 7.22                 | 7.22    | 99.87   |  |  |
| P-H <sub>ax2</sub> | 0.15615     | 29.27                | 7.22                 | 3.90                 | 45.03                | 7.22                 | 7.22    | 99.87   |  |  |
| P-H <sub>eq2</sub> | 0.16812     | 30.64                | 5.02                 | 6.07                 | 6.07                 | 47.08                | 5.02    | 99.89   |  |  |
| P-H <sub>eq3</sub> | 0.16812     | 30.64                | 5.02                 | 6.07                 | 6.07                 | 5.02                 | 47.08   | 99.89   |  |  |

E.S.I.5 Table of PF<sub>5</sub> source function (SF) atomic percentage contribution calculated into BCPs at different levels of theory. Basis set: Aug-cc-pVTZ.

|                    |             |         |                      |                      | HF                   |                      |                      |                      |         |
|--------------------|-------------|---------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------|
| ВСР                | ρ (e/bohr³) |         | SF%(P <sub>1</sub> ) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | SF%(F <sub>3</sub> ) | SF%(F <sub>4</sub> ) | SF%(F <sub>5</sub> ) | TOT SF% |
| P-F <sub>eq1</sub> |             | 0.19019 | 22.65                | 51.17                | 7.52                 | 7.52                 | 5.54                 | 5.54                 | 99.94   |
| P-F <sub>ax1</sub> |             | 0.19171 | 22.21                | 7.76                 | 49.37                | 4.51                 | 7.76                 | 7.76                 | 99.38   |
| P-F <sub>ax2</sub> |             | 0.19171 | 22.21                | 7.76                 | 4.51                 | 49.38                | 7.76                 | 7.76                 | 99.37   |
| P-F <sub>eq2</sub> |             | 0.19019 | 22.75                | 5.54                 | 7.52                 | 7.52                 | 51.18                | 5.54                 | 100.05  |
| P-F <sub>eq3</sub> |             | 0.19019 | 22.74                | 5.54                 | 7.52                 | 7.52                 | 5.54                 | 51.18                | 100.04  |
|                    |             |         |                      |                      | MP2                  |                      |                      |                      |         |
| ВСР                | ρ (e/bohr³) |         | SF%(P <sub>1</sub> ) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | SF%(F <sub>3</sub> ) | SF%(F <sub>4</sub> ) | SF%(F₅)              | TOT SF% |
| P-F <sub>eq1</sub> |             | 0.17850 | 22.00                | 50.44                | 7.81                 | 7.81                 | 5.80                 | 5.80                 | 99.66   |
| P-F <sub>ax1</sub> |             | 0.18052 | 21.71                | 8.01                 | 48.73                | 4.68                 | 8.01                 | 8.01                 | 99.16   |
| P-F <sub>ax2</sub> |             | 0.18052 | 21.72                | 8.01                 | 4.68                 | 48.73                | 8.01                 | 8.01                 | 99.16   |
| P-F <sub>eq2</sub> |             | 0.17850 | 22.07                | 5.79                 | 7.81                 | 7.81                 | 50.46                | 5.80                 | 99.74   |
| P-F <sub>eq3</sub> |             | 0.17850 | 22.07                | 5.79                 | 7.81                 | 7.81                 | 5.80                 | 50.46                | 99.74   |
|                    |             |         |                      |                      | QCISD                |                      |                      | ,                    |         |
| BCP                | ρ (e/bohr³) |         | SF%(P <sub>1</sub> ) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | SF%(F <sub>3</sub> ) | SF%(F <sub>4</sub> ) | SF%(F₅)              | TOT SF% |
| P-F <sub>eq1</sub> |             | 0.18171 | 22.11                | 50.67                | 7.74                 | 7.74                 | 5.75                 | 5.75                 | 99.76   |
| P-F <sub>ax1</sub> |             | 0.18355 | 21.75                | 7.96                 | 48.90                | 4.64                 | 7.96                 | 7.96                 | 99.18   |
| P-F <sub>ax2</sub> |             | 0.18355 | 21.76                | 7.96                 | 4.65                 | 48.89                | 7.96                 | 7.96                 | 99.18   |
| P-F <sub>eq2</sub> |             | 0.18171 | 22.18                | 5.75                 | 7.74                 | 7.74                 | 50.67                | 5.75                 | 99.83   |
| P-F <sub>eq3</sub> |             | 0.18171 | 22.19                | 5.75                 | 7.74                 | 7.74                 | 5.75                 | 50.67                | 99.84   |
|                    |             |         |                      |                      | CCSD                 |                      |                      |                      |         |
| BCP                | ρ (e/bohr³) |         | SF%(P <sub>1</sub> ) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | SF%(F <sub>3</sub> ) | SF%(F <sub>4</sub> ) | SF%(F <sub>5</sub> ) | TOT SF% |
| P-F <sub>eq1</sub> |             | 0.18230 | 22.13                | 50.66                | 7.73                 | 7.73                 | 5.74                 | 5.74                 | 99.73   |
| P-F <sub>ax1</sub> |             | 0.18413 | 21.81                | 7.95                 | 48.90                | 4.64                 | 7.95                 | 7.96                 | 99.21   |
| P-F <sub>ax2</sub> |             | 0.18413 | 21.80                | 7.95                 | 4.64                 | 48.90                | 7.95                 | 7.96                 | 99.20   |
| P-F <sub>eq2</sub> |             | 0.18230 | 22.21                | 5.73                 | 7.73                 | 7.73                 | 50.67                | 5.74                 | 99.81   |
| P-F <sub>eq3</sub> |             | 0.18230 | 22.20                | 5.73                 | 7.73                 | 7.73                 | 5.74                 | 50.67                | 99.80   |

E.S.I.6 Table of PH₅ source function (SF) atomic percentage contribution calculated into BCPs at different levels of theory. Basis set: Aug-cc-pVTZ.

|                    |             |                      |                      | HF                   |                      |                      |         |         |  |  |
|--------------------|-------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------|---------|--|--|
| ВСР                | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | SF%(H <sub>3</sub> ) | SF%(H <sub>4</sub> ) | SF%(H₅) | TOT SF% |  |  |
| P-H <sub>eq1</sub> | 0.16645     | 28.12                | 47.84                | 6.79                 | 6.79                 | 5.12                 | 5.12    | 99.78   |  |  |
| P-H <sub>ax1</sub> | 0.16571     | 27.66                | 7.07                 | 46.76                | 4.15                 | 7.07                 | 7.07    | 99.79   |  |  |
| P-H <sub>ax2</sub> | 0.16571     | 27.66                | 7.07                 | 4.15                 | 46.76                | 7.07                 | 7.07    | 99.79   |  |  |
| P-H <sub>eq2</sub> | 0.16645     | 28.11                | 5.12                 | 6.79                 | 6.79                 | 47.88                | 5.12    | 99.81   |  |  |
| P-H <sub>eq3</sub> | 0.16645     | 28.11                | 5.12                 | 6.79                 | 6.79                 | 5.12                 | 47.87   | 99.81   |  |  |
| MP2                |             |                      |                      |                      |                      |                      |         |         |  |  |
| BCP                | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | SF%(H <sub>3</sub> ) | SF%(H <sub>4</sub> ) | SF%(H₅) | TOT SF% |  |  |
| P-H <sub>eq1</sub> | 0.16399     | 30.03                | 46.70                | 6.67                 | 6.67                 | 4.95                 | 4.95    | 99.97   |  |  |
| P-H <sub>ax1</sub> | 0.16512     | 29.74                | 6.74                 | 45.97                | 4.04                 | 6.74                 | 6.74    | 99.97   |  |  |
| P-H <sub>ax2</sub> | 0.16512     | 29.74                | 6.74                 | 4.04                 | 45.97                | 6.74                 | 6.74    | 99.97   |  |  |
| P-H <sub>eq2</sub> | 0.16399     | 30.03                | 4.95                 | 6.67                 | 6.67                 | 46.70                | 4.95    | 99.97   |  |  |
| P-H <sub>eq3</sub> | 0.16399     | 30.03                | 4.95                 | 6.67                 | 6.67                 | 4.95                 | 46.70   | 99.97   |  |  |
|                    |             |                      | Q                    | CISD                 |                      |                      |         |         |  |  |
| BCP                | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | SF%(H <sub>3</sub> ) | SF%(H <sub>4</sub> ) | SF%(H₅) | TOT SF% |  |  |
| P-H <sub>eq1</sub> | 0.16275     | 31.64                | 46.47                | 6.63                 | 6.63                 | 4.91                 | 4.91    | 101.20  |  |  |
| P-H <sub>ax1</sub> | 0.16416     | 31.31                | 6.67                 | 45.84                | 4.02                 | 6.67                 | 6.67    | 101.18  |  |  |
| P-H <sub>ax2</sub> | 0.16416     | 31.31                | 6.67                 | 4.02                 | 45.84                | 6.67                 | 6.67    | 101.18  |  |  |
| P-H <sub>eq2</sub> | 0.16275     | 31.62                | 4.91                 | 6.63                 | 6.63                 | 46.51                | 4.91    | 101.21  |  |  |
| P-H <sub>eq3</sub> | 0.16275     | 31.62                | 4.91                 | 6.63                 | 6.63                 | 4.91                 | 46.51   | 101.21  |  |  |
|                    |             |                      |                      | CSD                  |                      |                      |         |         |  |  |
| BCP                | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | SF%(H <sub>3</sub> ) | SF%(H <sub>4</sub> ) | SF%(H₅) | TOT SF% |  |  |
| P-H <sub>eq1</sub> | 0.16282     | 31.62                | 46.49                | 6.64                 | 6.63                 | 4.91                 | 4.91    | 101.21  |  |  |
| P-H <sub>ax1</sub> | 0.1642      | 31.29                | 6.68                 | 45.85                | 4.02                 | 6.68                 | 6.68    | 101.20  |  |  |
| P-H <sub>ax2</sub> | 0.1642      | 31.29                | 6.68                 | 4.02                 | 45.85                | 6.68                 | 6.68    | 101.20  |  |  |
| P-H <sub>eq2</sub> | 0.16282     | 31.60                | 4.91                 | 6.64                 | 6.63                 | 46.53                | 4.91    | 101.23  |  |  |
| P-H <sub>eq3</sub> | 0.16282     | 31.60                | 4.91                 | 6.64                 | 6.63                 | 4.91                 | 46.53   | 101.23  |  |  |

E.S.I.8 Table of PF<sub>3</sub> source function (SF) atomic percentage contribution calculated into BCPs at different levels of theory. Basis set: Aug-cc-pVTZ.

| HF               |             |                      |                      |                      |                      |         |  |  |  |
|------------------|-------------|----------------------|----------------------|----------------------|----------------------|---------|--|--|--|
| ВСР              | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | SF%(F <sub>3</sub> ) | TOT SF% |  |  |  |
| P-F <sub>1</sub> | 0.17893     | 34.53                | 51.10                | 7.09                 | 7.10                 | 99.82   |  |  |  |
| P-F <sub>2</sub> | 0.17893     | 34.85                | 7.10                 | 51.32                | 7.10                 | 100.36  |  |  |  |
| P-F <sub>3</sub> | 0.17893     | 34.53                | 7.10                 | 7.09                 | 51.11                | 99.82   |  |  |  |
| MP2              |             |                      |                      |                      |                      |         |  |  |  |
| ВСР              | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | SF%(F <sub>3</sub> ) | TOT SF% |  |  |  |
| P-F <sub>1</sub> | 0.16732     | 35.89                | 50.20                | 7.32                 | 7.32                 | 100.73  |  |  |  |
| P-F <sub>2</sub> | 0.16732     | 36.04                | 7.32                 | 50.42                | 7.32                 | 101.09  |  |  |  |
| P-F <sub>3</sub> | 0.16732     | 35.87                | 7.32                 | 7.32                 | 50.22                | 100.73  |  |  |  |
|                  |             |                      | QCISI                | )                    |                      |         |  |  |  |
| ВСР              | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | SF%(F <sub>3</sub> ) | TOT SF% |  |  |  |
| P-F <sub>1</sub> | 0.17002     | 34.58                | 50.49                | 7.28                 | 7.28                 | 99.63   |  |  |  |
| P-F <sub>2</sub> | 0.17002     | 34.83                | 7.28                 | 50.49                | 7.28                 | 99.88   |  |  |  |
| P-F <sub>3</sub> | 0.17002     | 34.80                | 7.28                 | 7.28                 | 50.50                | 99.86   |  |  |  |
|                  |             |                      | CCSD                 | )                    |                      |         |  |  |  |
| ВСР              | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | SF%(F <sub>3</sub> ) | TOT SF% |  |  |  |
| P-F <sub>1</sub> | 0.17077     | 34.86                | 50.41                | 7.27                 | 7.28                 | 99.82   |  |  |  |
| P-F <sub>2</sub> | 0.17077     | 35.07                | 7.28                 | 50.61                | 7.28                 | 100.23  |  |  |  |
| P-F <sub>3</sub> | 0.17077     | 34.86                | 7.28                 | 7.27                 | 50.40                | 99.81   |  |  |  |

E.S.I.9Table of PH<sub>3</sub> source function (SF) atomic percentage contribution calculated into BCPs at different levels of theory. Basis set: Aug-cc-pVTZ.

| HF               |             |                      |                      |                      |                      |         |  |  |  |  |  |
|------------------|-------------|----------------------|----------------------|----------------------|----------------------|---------|--|--|--|--|--|
| ВСР              | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | SF%(H <sub>3</sub> ) | TOT SF% |  |  |  |  |  |
| P-H <sub>1</sub> | 0.16627     | 40.37                | 47.14                | 6.57                 | 6.57                 | 100.66  |  |  |  |  |  |
| P-H <sub>2</sub> | 0.16627     | 40.39                | 6.57                 | 47.14                | 6.57                 | 100.67  |  |  |  |  |  |
| P-H <sub>3</sub> | 0.16627     | 40.37                | 6.57                 | 6.57                 | 47.14                | 100.66  |  |  |  |  |  |
|                  | MP2         |                      |                      |                      |                      |         |  |  |  |  |  |
| ВСР              | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | SF%(H <sub>3</sub> ) | TOT SF% |  |  |  |  |  |
| P-H <sub>1</sub> | 0.16325     | 42.13                | 45.61                | 6.43                 | 6.43                 | 100.59  |  |  |  |  |  |
| P-H <sub>2</sub> | 0.16325     | 42.15                | 6.43                 | 45.59                | 6.43                 | 100.59  |  |  |  |  |  |
| P-H <sub>3</sub> | 0.16325     | 42.13                | 6.43                 | 6.43                 | 45.61                | 100.60  |  |  |  |  |  |
|                  |             |                      | QCISD                |                      |                      |         |  |  |  |  |  |
| ВСР              | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | SF%(H <sub>3</sub> ) | TOT SF% |  |  |  |  |  |
| P-H <sub>1</sub> | 0.1621      | 42.41                | 45.55                | 6.38                 | 6.38                 | 100.72  |  |  |  |  |  |
| P-H <sub>2</sub> | 0.1621      | 42.40                | 6.38                 | 45.54                | 6.38                 | 100.70  |  |  |  |  |  |
| P-H <sub>3</sub> | 0.1621      | 42.42                | 6.38                 | 6.38                 | 45.54                | 100.72  |  |  |  |  |  |
|                  |             |                      | CCSD                 |                      |                      |         |  |  |  |  |  |
| ВСР              | ρ (e/bohr³) | SF%(P <sub>1</sub> ) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | SF%(H <sub>3</sub> ) | TOT SF% |  |  |  |  |  |
| P-H <sub>1</sub> | 0.16218     | 43.49                | 45.55                | 6.38                 | 6.38                 | 101.80  |  |  |  |  |  |
| P-H <sub>2</sub> | 0.16218     | 43.56                | 6.38                 | 45.53                | 6.38                 | 101.86  |  |  |  |  |  |
| P-H <sub>3</sub> | 0.16218     | 43.49                | 6.38                 | 6.38                 | 45.55                | 101.80  |  |  |  |  |  |

E.S.I.10Table of delocalization indexes  $\delta(I,J)$  for the systems involved in the dissociation reactions, investigated at Hartree-Fock HF /Aug-cc-pVTZ.

|                                    | PH <sub>s</sub> (elongated)        |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |
|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| δ(P <sub>1</sub> ,H <sub>1</sub> ) | δ(P <sub>1</sub> ,H <sub>2</sub> ) | δ(P <sub>1</sub> ,H <sub>3</sub> ) | δ(P <sub>1</sub> ,H <sub>4</sub> ) | δ(P <sub>1</sub> ,H <sub>5</sub> ) | δ(H <sub>1</sub> ,H <sub>2</sub> ) | δ(H <sub>1</sub> ,H <sub>3</sub> ) | δ(H <sub>1</sub> ,H <sub>4</sub> ) | δ(H <sub>1</sub> ,H <sub>5</sub> ) | δ(H <sub>2</sub> ,H <sub>3</sub> ) | δ(H <sub>2</sub> ,H <sub>4</sub> ) | δ(H <sub>2</sub> ,H <sub>5</sub> ) | δ(H <sub>3</sub> ,H <sub>4</sub> ) | δ(H <sub>3</sub> ,H <sub>5</sub> ) | δ(H <sub>4</sub> ,H <sub>5</sub> ) |
| 0.57                               | 0.47                               | 0.47                               | 0.57                               | 0.57                               | 0.15                               | 0.15                               | 0.06                               | 0.06                               | 0.03                               | 0.15                               | 0.15                               | 0.15                               | 0.15                               | 0.06                               |
|                                    |                                    |                                    |                                    |                                    |                                    |                                    | PF <sub>5</sub>                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |
| δ(P <sub>1</sub> ,F <sub>1</sub> ) | δ(P <sub>1</sub> ,F <sub>2</sub> ) | δ(P <sub>1</sub> ,F <sub>3</sub> ) | δ(P <sub>1</sub> ,F <sub>4</sub> ) | δ(P <sub>1</sub> ,F <sub>5</sub> ) | δ(F <sub>1</sub> ,F <sub>2</sub> ) | δ(F <sub>1</sub> ,F <sub>3</sub> ) | δ(F <sub>1</sub> ,F <sub>4</sub> ) | δ(F <sub>1</sub> ,F <sub>5</sub> ) | δ(F <sub>2</sub> ,F <sub>3</sub> ) | δ(F <sub>2</sub> ,F <sub>4</sub> ) | δ(F <sub>2</sub> ,F <sub>5</sub> ) | δ(F <sub>3</sub> ,F <sub>4</sub> ) | δ(F <sub>3</sub> ,F <sub>5</sub> ) | δ(F <sub>4</sub> ,F <sub>5</sub> ) |
| 0.36                               | 0.21                               | 0.21                               | 0.36                               | 0.36                               | 0.16                               | 0.16                               | 0.07                               | 0.07                               | 0.00                               | 0.16                               | 0.16                               | 0.16                               | 0.16                               | 0.07                               |
|                                    |                                    |                                    |                                    |                                    |                                    | PH                                 | l₃ (elongat                        | ed)                                |                                    |                                    |                                    |                                    |                                    |                                    |
| δ(P <sub>1</sub> ,H <sub>1</sub> ) | δ(P <sub>1</sub> ,H <sub>2</sub> ) | δ(P <sub>1</sub> ,H <sub>3</sub> ) | δ(H <sub>1</sub> ,H <sub>2</sub> ) | δ(H <sub>1</sub> ,H <sub>3</sub> ) | δ(H <sub>2</sub> ,H <sub>3</sub> ) | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  |
| 0.79                               | 0.80                               | 0.79                               | 0.14                               | 0.14                               | 0.14                               | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  |
|                                    |                                    |                                    |                                    |                                    |                                    |                                    | PF <sub>3</sub>                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |
| δ(P <sub>1</sub> ,F <sub>1</sub> ) | δ(P <sub>1</sub> ,F <sub>2</sub> ) | δ(P <sub>1</sub> ,F <sub>3</sub> ) | δ(F <sub>1</sub> ,F <sub>2</sub> ) | δ(F <sub>1</sub> ,F <sub>3</sub> ) | δ(F <sub>2</sub> ,F <sub>3</sub> ) | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  |
| 0.50                               | 0.50                               | 0.50                               | 0.15                               | 0.15                               | 0.15                               | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  |
|                                    |                                    |                                    |                                    |                                    |                                    |                                    | H₂                                 |                                    |                                    |                                    |                                    |                                    |                                    |                                    |
| δ(H <sub>1</sub> ,H <sub>2</sub> ) | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  |
| 1.00                               | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  |
|                                    | F <sub>2</sub>                     |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |
| δ(F1,F2)                           | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  |
| 1.29                               | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  | -                                  |

E.S.I.11 Table of F<sub>2</sub>source function (SF) atomic percentage contribution calculated into BCPs for each theoretical approach. Basis set: Aug-cc-pVTZ.

| HF    |             |                      |                      |         |  |  |  |  |  |
|-------|-------------|----------------------|----------------------|---------|--|--|--|--|--|
| ВСР   | ρ (e/bohr³) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | TOT SF% |  |  |  |  |  |
| F1-F2 | 0.37755     | 49.99                | 50.00                | 99.99   |  |  |  |  |  |
| MP2   |             |                      |                      |         |  |  |  |  |  |
| ВСР   | ρ (e/bohr³) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | TOT SF% |  |  |  |  |  |
| F1-F2 | 0.28983     | 50.00                | 50.00                | 100.00  |  |  |  |  |  |
|       |             | QCISD                |                      |         |  |  |  |  |  |
| BCP   | ρ (e/bohr³) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | TOT SF% |  |  |  |  |  |
| F1-F2 | 0.29652     | 49.99                | 49.99                | 99.98   |  |  |  |  |  |
| CCSD  |             |                      |                      |         |  |  |  |  |  |
| ВСР   | ρ (e/bohr³) | SF%(F <sub>1</sub> ) | SF%(F <sub>2</sub> ) | TOT SF% |  |  |  |  |  |
| F1-F2 | 0.29782     | 50.02                | 50.01                | 100.03  |  |  |  |  |  |

E.S.I.12 Table of H<sub>2</sub> source function (SF) atomic percentage contribution calculated into BCPs for each theoretical approach. Basis set: Aug-cc-pVTZ.

|       | HF          |                      |                      |         |  |  |  |  |  |  |
|-------|-------------|----------------------|----------------------|---------|--|--|--|--|--|--|
| BOND  | ρ (e/bohr³) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | TOT SF% |  |  |  |  |  |  |
| H1-H2 | 0.27451     | 49.99                | 49.99                | 99.97   |  |  |  |  |  |  |
| MP2   |             |                      |                      |         |  |  |  |  |  |  |
| ВСР   | ρ (e/bohr³) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | TOT SF% |  |  |  |  |  |  |
| H1-H2 | 0.27242     | 50.00                | 50.00                | 100.01  |  |  |  |  |  |  |
|       |             | QCISD                |                      |         |  |  |  |  |  |  |
| ВСР   | ρ (e/bohr³) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | TOT SF% |  |  |  |  |  |  |
| H1-H2 | 0.26783     | 50.01                | 50.01                | 100.02  |  |  |  |  |  |  |
| CCSD  |             |                      |                      |         |  |  |  |  |  |  |
| ВСР   | ρ (e/bohr³) | SF%(H <sub>1</sub> ) | SF%(H <sub>2</sub> ) | TOT SF% |  |  |  |  |  |  |
| H1-H2 | 0.26783     | 50.01                | 50.01                | 100.02  |  |  |  |  |  |  |

### E.S.I.13 Table of elongated PF<sub>5</sub> integrated atomic charge for each theoretical approach. Basis set: Aug-cc-pVTZ.

| ΑΤΟΜ             | HF    | MP2   | QCISD | CCSD  |
|------------------|-------|-------|-------|-------|
| Р                | 4.25  | 4.12  | 4.16  | 4.17  |
| F <sub>eq1</sub> | -0.86 | -0.82 | -0.83 | -0.83 |
| F <sub>ax1</sub> | -0.84 | -0.83 | -0.83 | -0.84 |
| F <sub>ax2</sub> | -0.84 | -0.83 | -0.83 | -0.84 |
| F <sub>eq2</sub> | -0.86 | -0.82 | -0.83 | -0.83 |
| F <sub>eq3</sub> | -0.86 | -0.82 | -0.83 | -0.83 |

### E.S.I.14 Table of elongated PH<sub>5</sub> integrated atomic charge for each theoretical approach. Basis set: Aug-cc-pVTZ.

| ΑΤΟΜ             | HF    | MP2   | QCISD | CCSD  |
|------------------|-------|-------|-------|-------|
| Р                | 3.35  | 3.11  | 3.07  | 3.07  |
| H <sub>eq1</sub> | -0.64 | -0.59 | -0.58 | -0.58 |
| H <sub>ax1</sub> | -0.71 | -0.67 | -0.66 | -0.67 |
| H <sub>ax2</sub> | -0.71 | -0.67 | -0.66 | -0.67 |
| H <sub>eq2</sub> | -0.64 | -0.59 | -0.58 | -0.58 |
| H <sub>eq3</sub> | -0.64 | -0.59 | -0.58 | -0.58 |

### E.S.I.15 Table of $PF_3$ integrated atomic charge for each theoretical approach. Basis set: Aug-cc-pVTZ.

| ΑΤΟΜ           | HF    | MP2   | QCISD | CCSD  |
|----------------|-------|-------|-------|-------|
| Р              | 2.64  | 2.52  | 2.54  | 2.55  |
| F <sub>1</sub> | -0.88 | -0.84 | -0.85 | -0.85 |
| F <sub>2</sub> | -0.88 | -0.84 | -0.85 | -0.85 |
| F <sub>3</sub> | -0.88 | -0.84 | -0.85 | -0.85 |

### E.S.I.16 Table of PH<sub>3</sub> integrated atomic charge for each theoretical approach. Basis set: Aug-cc-pVTZ.

| ΑΤΟΜ           | HF    | MP2   | QCISD | CCSD  |
|----------------|-------|-------|-------|-------|
| Р              | 1.90  | 1.70  | 1.69  | 1.69  |
| H <sub>1</sub> | -0.63 | -0.56 | -0.56 | -0.56 |
| H <sub>2</sub> | -0.63 | -0.56 | -0.56 | -0.56 |
| H <sub>3</sub> | -0.63 | -0.56 | -0.56 | -0.56 |

### E.S.I.17 Table of $F_2$ integrated atomic charge for each theoretical approach. Basis set: Aug-cc-pVTZ.\*

| ΑΤΟΜ           | HF   | MP2  | QCISD | CCSD |
|----------------|------|------|-------|------|
| F <sub>1</sub> | 0.00 | 0.00 | 0.00  | 0.00 |
| F <sub>2</sub> | 0.00 | 0.00 | 0.00  | 0.00 |

\*The results are null for symmetry but were reported for the sake of honesty

### E.S.I.18 Table of $H_2$ integrated atomic charge for each theoretical approach. Basis set: Aug-cc-pVTZ.\*

| ΑΤΟΜ           | HF   | MP2  | QCISD | CCSD |
|----------------|------|------|-------|------|
| H <sub>1</sub> | 0.00 | 0.00 | 0.00  | 0.00 |
| H <sub>2</sub> | 0.00 | 0.00 | 0.00  | 0.00 |

\*The results are null for symmetry but were reported for the sake of honesty

| PFs              | HF      | MP2     | QCISD   | CCSD    |
|------------------|---------|---------|---------|---------|
| Р                | -338.24 | -338.42 | -338.37 | -338.36 |
| F <sub>eq1</sub> | -100.18 | -100.27 | -100.28 | -100.28 |
| F <sub>ax1</sub> | -99.73  | -100.27 | -100.28 | -100.28 |
| F <sub>ax2</sub> | -99.73  | -100.27 | -100.28 | -100.28 |
| F <sub>eq2</sub> | -100.18 | -100.27 | -100.28 | -100.28 |
| F <sub>eq3</sub> | -100.18 | -100.27 | -100.28 | -100.28 |
| PF <sub>3</sub>  | HF      | MP2     | QCISD   | CCSD    |
| Р                | -339.35 | -339.62 | -339.59 | -339.58 |
| F <sub>1</sub>   | -99.98  | -100.20 | -100.21 | -100.21 |
| F <sub>2</sub>   | -99.98  | -100.20 | -100.21 | -100.21 |
| F <sub>3</sub>   | -99.98  | -100.20 | -100.21 | -100.21 |
| F <sub>2</sub>   | HF      | MP2     | QCISD   | CCSD    |
| F <sub>1</sub>   | -99.38  | -99.65  | -99.65  | -99.65  |
| F <sub>2</sub>   | -99.38  | -99.65  | -99.65  | -99.65  |

### E.S.I.19 Table of Atomic basin energies (a.u.) for different theoretical approach used for the reaction PF<sub>5</sub>-> PF<sub>3</sub> + F<sub>2</sub>

### E.S.I.20 Table of Atomic basin energies (a.u) for different theoretical approach used for the reaction PH<sub>5</sub>-> PH<sub>3</sub> + H<sub>2</sub>

| PH <sub>5</sub>  | HF      | MP2     | QCISD   | CCSD    |
|------------------|---------|---------|---------|---------|
| Р                | -339.18 | -339.45 | -339.47 | -339.46 |
| H <sub>eq1</sub> | -0.87   | -0.85   | -0.86   | -0.86   |
| H <sub>ax1</sub> | -0.88   | -0.88   | -0.88   | -0.88   |
| H <sub>ax2</sub> | -0.88   | -0.88   | -0.88   | -0.88   |
| H <sub>eq2</sub> | -0.87   | -0.85   | -0.86   | -0.86   |
| H <sub>eq3</sub> | -0.87   | -0.85   | -0.86   | -0.86   |
| PH <sub>3</sub>  | HF      | MP2     | QCISD   | CCSD    |
| Р                | -340.00 | -340.22 | -340.23 | -340.23 |
| H <sub>1</sub>   | -0.83   | -0.81   | -0.82   | -0.82   |
| H <sub>2</sub>   | -0.83   | -0.81   | -0.82   | -0.82   |
| H <sub>3</sub>   | -0.83   | -0.81   | -0.82   | -0.82   |
| H <sub>2</sub>   | HF      | MP2     | QCISD   | CCSD    |
| H <sub>1</sub>   | -0.57   | -0.58   | -0.59   | -0.59   |
| H <sub>2</sub>   | -0.57   | -0.58   | -0.59   | -0.59   |

| PH₅ (elongated)    | HF      | MP2     | QCISD   | CCSD    |
|--------------------|---------|---------|---------|---------|
| P-H <sub>eq</sub>  | 1.40997 | 1.41751 | 1.42252 | 1.41237 |
| P-H <sub>ax</sub>  | 1.47448 | 1.47504 | 1.47931 | 1.47915 |
| PH <sub>5</sub>    | HF      | MP2     | QCISD   | CCSD    |
| P-H                | 1.43438 | 1.43959 | 1.44446 | 1.44431 |
| $PF_5$ (elongated) | HF      | MP2     | QCISD   | CCSD    |
| P-F <sub>eq</sub>  | 1.45384 | 1.55100 | 1.54428 | 1.54282 |
| P-F <sub>ax</sub>  | 1.80000 | 1.58958 | 1.58310 | 1.58180 |
| PF <sub>5</sub>    | HF      | MP2     | QCISD   | CCSD    |
| P-F                | 1.53567 | 1.56656 | 1.55993 | 1.55852 |
| PH <sub>3</sub>    | HF      | MP2     | QCISD   | CCSD    |
| P-H                | 1.40781 | 1.41247 | 1.41742 | 1.41724 |
| PF <sub>3</sub>    | HF      | MP2     | QCISD   | CCSD    |
| P-F                | 1.54731 | 1.58209 | 1.57537 | 1.57339 |
| H <sub>2</sub>     | HF      | MP2     | QCISD   | CCSD    |
| H-H                | 0.73444 | 0.73744 | 0.74298 | 0.74298 |
| F <sub>2</sub>     | HF      | MP2     | QCISD   | CCSD    |
| F-F                | 1.32819 | 1.40137 | 1.39708 | 1.39567 |

### E.S.I.21 Table of bond distances (Å) for the elongated and not of PH<sub>5</sub> and PF<sub>5</sub> and for PH<sub>3</sub> PF<sub>3</sub> F<sub>2</sub> H<sub>2</sub>at each different level of theory

E.S.I.22 Table of Eigenvectors of Dipole moment tensor,  $\mu_j$ , of atomic basin for the elongated PH<sub>5</sub> and PF<sub>5</sub>at QCISD/Aug-cc-pVTZ level.



|                | F <sub>eq1</sub> |                | F <sub>ax1</sub> F <sub>ax2</sub> |         | F <sub>ax1</sub> |                |         | $F_{eq2}$      |                |         | $F_{eq3}$      |                |         |                |
|----------------|------------------|----------------|-----------------------------------|---------|------------------|----------------|---------|----------------|----------------|---------|----------------|----------------|---------|----------------|
| μ <sub>x</sub> | μ                | μ <sub>z</sub> | μ <sub>x</sub>                    | μ       | μ <sub>z</sub>   | μ <sub>x</sub> | μ       | μ <sub>z</sub> | μ <sub>x</sub> | μ       | μ <sub>z</sub> | μ <sub>x</sub> | μ       | μ <sub>z</sub> |
| 0.00           | 0.60             | 0.00           | 0.00                              | 0.00    | 0.51             | 0.00           | 0.00    | -0.51          | 0.52           | -0.30   | 0.00           | -0.52          | -0.30   | 0.00           |
|                | µ /a.u.          |                |                                   | µ /a.u. |                  |                | μ /a.u. |                |                | μ /a.u. |                |                | µ /a.u. |                |
|                | 0.60             |                | 0.51                              |         |                  | 0.51           |         | 0.51           |                | 0.60    |                |                | 0.60    |                |

|                | H <sub>eq1</sub> |                | H <sub>ax1</sub> |                | H <sub>ax2</sub> |                | _              | H <sub>eq2</sub> |                |         | $H_{eq3}$      |                |                |                |
|----------------|------------------|----------------|------------------|----------------|------------------|----------------|----------------|------------------|----------------|---------|----------------|----------------|----------------|----------------|
| μ <sub>x</sub> | μ                | μ <sub>z</sub> | μ <sub>x</sub>   | μ <sub>v</sub> | μ <sub>z</sub>   | μ <sub>x</sub> | μ <sub>v</sub> | μ <sub>z</sub>   | μ <sub>x</sub> | μ       | μ <sub>z</sub> | μ <sub>x</sub> | μ <sub>v</sub> | μ <sub>z</sub> |
| 0.00           | 0.36             | 0.00           | 0.00             | 0.00           | -0.26            | 0.00           | 0.00           | 0.26             | -0.31          | -0.18   | 0.00           | 0.31           | -0.18          | 0.00           |
|                | μ /a.u.          |                |                  | µ /a.u.        |                  | μ /a.u.        |                | μ /a.u.          |                | μ /a.u. |                |                | μ /a.u.        |                |
|                | 0.36             |                |                  | 0.26           |                  |                | 0.26           |                  |                | 0.36    |                |                | 0.36           |                |

E.S.I.23 "Bader like" calculated values of 3-centre bond indexes for  $X_{ax}$ -P- $X_{ax}^*$  and 2-centre bond indexes for P- $X_{ax}^*$  and P- $X_{eq}^*$  within PX<sub>5</sub>.

| Bond Indexes                         |         |          |         |
|--------------------------------------|---------|----------|---------|
|                                      | 6-31G** | 6-311G** | cc-pVTZ |
| H <sub>ax1</sub> -P-H <sub>ax2</sub> | -0.013  | -0.013   | -0.011  |
| F <sub>ax1</sub> -P-F <sub>ax2</sub> | 0.010   | -        | -       |
| P-H <sub>ax1</sub>                   | 0.654   | 0.643    | 0.636   |
| P-F <sub>ax1</sub>                   | 0.341   | 0.434    | 0.323   |
| P-H <sub>eq1</sub>                   | 0.804   | 0.793    | 0.779   |
| P-H <sub>eq1</sub>                   | 0.556   | 0.674    | 0.549   |

\* Values obtained for P-X<sub>eq</sub> bonds are all equal to each other by symmetry. Likewise in case of P-X<sub>ax</sub>.



E.S.I.24 Plot of Laplacian of charge density at the null isosurface for all compounds involved into PX<sub>5</sub> dissociation reactions.

PH₅

•

PH₃

H<sub>2</sub>