Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.

Theoretical prediction of MXene-like structure Ti₃C₄ as a high

capacity electrode material for Na ion batteries

Qiangqiang Meng,^{a,b} Alice Hu,^c Chunyi Zhi,^a and Jun Fan*^{a,d}

^a Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China Email: junfan@cityu.edu.hk.

^b Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.

^c Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China

^d City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China

Figure S1.Difference charge transfer of plane averaged charge for (a-b) $Ti_3C_4Li_2$ monolayer, and with an extra Li layer; (c-d) $Ti_3C_4Na_2$ monolayer, and with an extra Na layer, respectively.

Figure S2.The electron localization functions of the (110) section of (a) the Li bilayer; and (b) the Na bilayer, respectively.

TableS1.The relative energies with respect to the lowest energy electrically neutral system of Li and Na monolayer and bilayer by adding and subtracting one electron, respectively.

	Electrically neutral (eV/atom)	Negative (eV/atom)	Positive (eV/atom)
Li monolayer	0	-0.194	0.537
Li bilayer	0	-0.093	0.219
Na monolayer	0	-0.149	0.463
Na bilayer	0	-0.065	0.179