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I. THEORETICAL PROTOCOLS

We used a linearly displaced two-state harmonic nuclear Hamiltonian for the spectroscopic

calculations (see Fig. 1), where the Hamiltonian is given by,

H = |g〉Hg〈g|+
∑
e

|e〉He〈e| (S1)

with

Hg =
∑
j

1

2
ωj
(
p2j + q2j

)
, (S2a)

He = εe +
∑
j

1

2
ωj

[
p2j +

(
qj + ∆e

j

)2]
. (S2b)

Here qj and pj are the dimensionless coordinate and momentum of the j-th normal mode

with the frequency ωj. εe is the 0-0 excitation energy corresponds to electronic transition

|g〉 → |e〉, and ∆e
j is the dimensionless displacement between the potential energy minima of

the states |e〉 and |g〉. These displacements were calculated using the excited state gradient

method, where the difference in energy derivative with respect to the dimensionless normal

mode was evaluated.1,2 The UV-vis absorption spectra were calculated using the cumulant

expression,3

σe(ω) =
1

π
<
∫ ∞
0

dt exp [i(ω − ωeg)t− g(t)− Γt] (S3)

with the line broadening function given by

g(t) =
∑
e,j

(∆j
e)

2

2

{
coth

(
βωj

2

)
[1− cos(ωjt)] + i [sin(ωjt)− ωjt]

}
(S4)

here, β = 1/kBT is the inverse temperature and kB is the Boltzmann constant. We used

T = 300K and electronic linewidth Γ = 100 cm−1 in the calculations. The electronic

excitation energy is evaluated by

εeg = εe +
1

2
ωj
(
∆j
e

)2
. (S5)

The Raman intensity is described by the differential Raman scattering cross section,4

dσ

dΩ
=
Ifi
I0

=
π2

ε20
ν̃0ν̃

3
fi|αfi|2fi(T ) (S6)

where I0 and Ifi are the incident and outgoing wave intensities, respectively. ε0 is the

vacuum permittivity, ν̃0 is the incident frequency (in wavenumber) and ν̃fi is the scattered
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wavenumber corresponds to a scattering process with the initial state |i〉 and final state |f〉.

fi(T ) is the occupation probability of state |i〉 at the temperature T , and αfi is the transition

polarizability. At resonance, the transition polarizability is given by,

αfi =
1

h̄

∑
r

〈f |µ|r〉〈r|µ|i〉
ωri − ω1 − iΓr

. (S7)

Here µ is the dipole moment operator; h̄ω1 and h̄ωri are the energies of incident photon

and the energy difference between the intermediate state |r〉 and the initial state |i〉. In this

work, we only consider the first order Franck-Condon(FC) contribution to the RR signals.

This treatment is also referred as the Albrech’s “A term” approximation.5 The transition

polarizability can be written as,

αfi =
1

h̄
(µeg)

2
∑
νr∈|r〉

〈νf |νr〉, 〈νr|νi〉
ωe + ωνrνi − ω1 − iΓr

. (S8)

where the electronic part of the transition dipole µeg is factored out by using the Born-

Oppenheimer approximation. |νi〉, |νf〉 and |νr〉 are the initial, final and intermediate vi-

brational states, respectively. h̄ωe is the 0-0 transition energy of the corresponding electronic

transition, and h̄ωνrµi is the vibrational part of the excitation energy.

Generally speaking, for electronically allowed transitions as considered here, the higher

order Herzberg-Teller terms would only contribute maginally to the spectra. Usually only

minor changes in the overall line shapes could be found by incuding these terms. 6–8 The

higher order terms have the most significant effect on the electronically (near) forbidden

transitions, where the ‘A term’ vanishes due to (near) zero electronic transition dipoles.

This would pronounce only when the electronically forbidden transitions are energetically

far away from any allow transition. Otherwise the higher oder contributions would be

overwhelmed by the nearby ‘A term’ contributions, which is the case in the current work.

The Franck-Condon integrals can be obtained by evaluating the overlap between wave-

functions of displaced harmonic oscillators,

〈n|m〉 =
√

(n− 1)! (m− 1)! exp

(
−∆2

2

)m−1∑
k=0

n−1∑
l=0

(−∆)k∆l

k! l! Γ(−k +m)
δ(n− l,m− k). (S9)

where |m〉 and |n〉 denote the vibrational states of the displaced osicllators with quantum

numbers m and n, Γ(z) is the Euler gamma function, and δ(i, j) is the Kronecker delta func-

tion. The number of Franck-Condon integrals required in the evaluation of Eq. S8 increases
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exponentially with the number of vibrational modes. We used a multimode expression

based on the cumulant expression for linearly displaced harmonic vibrations to avoid the

summation.2 The vibrational linewidth Γr = 10 cm−1 is used for the intermediate vibronic

states.

The one-dimensional stimuilated resonance Raman (1D stRR) signals are conducted by

a two-pulse pump-probe experiment, where the electric field is represented as,

E(r, t) = e1E1 exp(ik1 · r− iω1t) + e2E2(t− τ) exp(ik2 · r− iω2(t− τ)) + c.c. (S10)

Here kj, ωj, ej, and Ej are the wavevector, carrier frequency, polarization vector, and com-

plex envelope of the j-th pulse, respectively. The system is excited by a pump pulse and the

the arrival of the probe pulse is recorded after a time delay τ (see Fig. S1). The time-domain

1D stRR signals can be evaluated according to the diagram rules in Ref 9,

S(τ) =−
∑
b,b′,c

Va,b′Vb′cVcbVba

∫ ∞
−∞

dt

∫ ∞
−∞

dτ3

∫ ∞
−∞

dτ2

∫ ∞
−∞

dτ1 E∗2 (t− τ)E2(τ3 − τ)e−iω2(τ3−t)

× [E∗1 (τ2)E1(τ1) exp(−iωb′at+ iωb′cτ3 − iωbcτ2 + iωbaτ1 − iω1(τ1 − τ2))

+ E1(τ2)E∗1 (τ1) exp(−iωbct+ iωbaτ3 − iωb′cτ2 + iωb′aτ1 − iω1(τ1 − τ2))] + c.c.

(S11)

Here |a〉 and |c〉 are vibrational states in the ground electronic state, and |b〉 is a vibronic

excited state. Eq. S11 can be recast as,2,10

S(τ) = <
[〈
α(1)(0)α(2)(τ)

〉
−
〈(
α(1)(0)

)†
α(2)(τ)

〉]
(S12)

where α
(i)
ac is the effective transition polarizability between the vibrational states |a〉 and |c〉

due to the i-th pulse,

α(i)
ac =

1

π

∑
b

〈a|b〉〈b|c〉|µeg|2
∫ +∞

−∞
dω
E∗i (ω)Ei(ω + ωac)

ω + ωi − ωbc + iΓb
. (S13)

α(n) is a non-Hermitian operator in the vibrational subspace, but becomes real Hermitian

far off-resonance, where Eq. S12 reduces to a commutator. The signal is recorded versus the

pump-probe delay and is Fourier transformed to the frequency domain giving the 1D stRR

signal,

S(Ω1) =
∑
ac

P (a)
iα

(1)
ca

[
α
(2)
ac −

(
α
(2)
ac

)∗]
Ω1 − ωca + iΓ

. (S14)

4



kSkS
k3k3

k1

k1
-k1

-k1

a

b

c

b’

a

a a a

c

b

c

b’

t1 t1

t t

FIG. S1. Loop diagrams for the 1D stRR signal.

A detailed derivation of Eqs. S14 and S13 can be found in the appendix of Ref. 2. In

the time domain calculations, we used Gaussian pulse envelopes with a full width at half

maximum (FWHM) of 1768 cm−1 (8.33 fs). The center frequencies of the pump pulses are

chosen to be δ = 1500 cm−1 below those of the corresponding probe pulses.11 Since the elec-

tronic dynamics is much faster than the nuclear relaxation, we use the linewidth parameters

of 10 cm−1 and 100 cm−1 for the vibrational and electronic spectra to capture the broad-

ening effects originates from intermediate state lifetimes, respectively. These values have

been widely used in previous theoretical calculations.6–8 We adopted parallel polarization

configuration for the pump and probe pulses in the time domain simulation.

II. CHARGE STATES AND SPIN MULTIPLICITIES

TABLE S1. Charge and spin multiplicities of the four complexes. The energy differences between

the doublet and quadruplet are listed in the last column (∆E)

.

Complex Charge Ground state multiplicity ∆E (eV)

I +2 2 3.495

II +1 2 4.056

III 0 2 3.642

IV -1 2 3.718
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FIG. S2. Natural transition orbitals (NTOs) for the complex I. Only strongly allowed electronic

transitions are depicted here. Left column: hole states; right column: electron states. The labels

εSi denotes the i-th electronic transition in the system S. The NTOs are generated by a script

that extends the standard protocol12 to the open-shell case.13 All the distributions are rendered

by using VMD 14 with the isosurface value of 0.02 a.u.

III. NATURAL TRANSITION ORBITALS
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FIG. S3. Same as Fig. S1 except for the complex II.
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FIG. S4. Same as Fig. S1 except for the complex III.
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FIG. S5. Same as Fig. S1 except for the complex IV.
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