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S1 Theoretical Methods

S1.1 The Electronic Hamiltonian

Let us begin by motivating the choice of the electronic Hamiltonian HM [Eq. (2)] described

in the main body of the manuscript. Our system consists of two aromatic sites (coupled to

the source or the drain electrode) connected by a saturated link. Let us consider two localised
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molecular orbitals, |L〉 and |R〉 (one at each of the sites), which are coupled to each other with

the strength J . As mentioned in the manuscript, they themselves are not eigenstates of the

molecular Hamiltonian which are instead given by:

|Ψ+〉 = cos θ |L〉+ sin θ |R〉 ; (S1)

|Ψ−〉 = sin θ |L〉 − cos θ |R〉 . (S2)

Here, the mixing angle θ is given by tan 2θ = −2J/∆ε, where ∆ε = εR− εL. Let us also remark

that for J < 0 (as used in this work) the bonding orbital |Ψ+〉 is lower in energy.

Alternatively, one may start these considerations from a pair of closely spaced molecular

orbitals, |Ψ+〉 and |Ψ−〉, of a bonding and antibonding character (in the case of molecular

system studied by Perrin et al. in Ref. [1] both the HOMO/HOMO-1 and LUMO/LUMO+1

pairs satisfy this condition [2]). Then, the |L〉 and |R〉 states can be obtained directly from

equations (S1) and (S2).

As further justification of our approach, we note that the transport characteristics (calculated

in the absence of environmental interactions) of our adopted two-site model yield very similar

results to those obtained from DFT+NEGF methods, for a number of molecular systems [1, 3].

We will now proceed under the assumption that our system is governed by the Hamiltonian

described in the main body of the manuscript, and outline the various theoretical methods used

in our study.

S1.2 Pure dephasing & Redfield approaches

We begin by considering the well-known second order quantum master equation [4]:

dρ(t)

dt
= −i[HS, ρ(t)]−

∫ t

0

dτ TrE

[
HI ,

[
H̃I(−τ), ρ(t)ρE

]]
, (S3)

where HS and HI are referred to as the system and the interaction Hamiltonians respectively, ρE

denotes the density matrix of the thermalised environment (comprising two fermionic reservoirs
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and two phonon baths), and ˜ denotes the interaction picture of HS. In the case of our system

HS ≡ HM , and HI ≡ HC + HV . Since (within the Born approximation) terms linear in HV

vanish, the quantum master equation is given by:

dρ(t)

dt
= −i[HM , ρ(t)] + Lleadsρ(t) + Lphρ(t) . (S4)

The superoperators in Eq. (S4) are:

Lleadsρ(t) = −
∫ ∞

0

dτ TrE

[
HV , [H̃V (−τ), ρ(t)ρE]

]
; (S5)

Lphρ(t) = −
∫ ∞

0

dτ TrE

[
HC , [H̃C(−τ), ρ(t)ρE]

]
. (S6)

In the above, anticipating that our interest will lie in the steady-state dynamics we have extended

the integration limit to infinity. Let us note here that in charge transport through nanoscopic

systems, non-Markovian effects generally have a small effect on the values of steady-state (av-

erage) electric current (our primary observable) but can have a more significant influence on

higher current cumulants such as the zero-frequency noise or skewness [5, 6].

The superoperator Lleadsρ(t) is evaluated by expanding the commutators in Eq. (S5) yielding:

Lleadsρ(t) = −
∑
j,kj

∫ ∞
0

dτ
[
hkj(τ)

(
aj ã
†
j(−τ)ρ(t)− ã†j(−τ)ρ(t)aj

)
+h̄kj(−τ)

(
a†j ãj(−τ)ρ(t)− ãj(−τ)ρ(t)a†j

)
+hkj(−τ)

(
ρ(t)ãj(−τ)a†j − a

†
jρ(t)ãj(−τ)

)
+ h̄kj(τ)

(
ρ(t)ã†j(−τ)aj − ajρ(t)ã†j(−τ)

)]
.

(S7)

Here, hkj(τ) ≡ |Vkj |2 fj(εkj) e
iεkj τ , h̄kj(τ) ≡ |Vkj |2 [1− fj(εkj)] e

iεkj τ with the Fermi distribution

given by: fj(εkj) = Trres(R0c
†
kj
ckj) = 1/(e(εkj−µj)/kT + 1), and µj is the chemical potential of the

lead j = L,R.

Fourier decomposition
[
Ã(τ) =

∑
ξ e
−iξτA(ξ)

]
of the creation and annihilation operators in

Eq. (S7), reveals that they oscillate only at the frequencies corresponding to molecular orbital
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energies,

ãL(τ) =

(
∆ε+ η

2η
aL −

J

η
aR

)
e−iε+τ +

(
−∆ε+ η

2η
aL +

J

η
aR

)
e−iε−τ , (S8)

ãR(τ) =

(
−J
η
aL −

∆ε− η
2η

aR

)
e−iε+τ +

(
J

η
aL +

∆ε+ η

2η
aR

)
e−iε−τ , (S9)

where ∆ε = εR−εL, η =
√

∆ε2 + 4J2. Analogous expressions can be found for ã†L(τ) and ã†R(τ),

and we can also confirm that for each of these operators
∑

ξ A(ξ) = A.

The integral over τ in Eq. (S7) can be evaluated using

∫ ∞
0

dτe±iΩτ = πδ(Ω)± i
P
Ω
,

where P denotes Cauchy principal value. Finally, the sum over the energy levels ki in the leads

can be replaced by an integral and evaluated within the wide band approximation (WBA),

Vki = Vi for all ki. We will henceforth ignore the imaginary parts of (S7); their effect is a slight

renormalisation of terms that already present in the system Hamiltonian and whilst small, they

do not, in general, converge within WBA mathematically.

S1.2.1 Pure Dephasing

The pure dephasing approach involves replacing the superoperator Lph in Eq. (S4) with

Ldephρ(t) =
1

2
ΓD

∑
j=L,R

(2njρ(t)nj − njρ(t)− ρ(t)nj) , (S10)

where nj = a†jaj. This Lindbladian superoperator describes an exponential decay of coherences

[off-diagonal elements of ρ(t)] in the site basis, at the rate ΓD. The phenomenological super-

operator given in Eq. (S10) can be motivated by the form of the electron-phonon coupling

Hamiltonian HC which acts as the number operator on the electronic subspace. It is important

to bear in mind here that pure dephasing displays infinite-temperature characteristics. The

limitations of pure dephasing will be discussed in Section S4.
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S1.2.2 Redfield approach

By contrast, the Redfield approach involves evaluating the phononic dissipator [Eq. (S6)] which

takes the form:

Lphρ(t) = −
∑
j=L,R

∫ ∞
0

dτ
[
CR
j (τ) (njñj(−τ)ρ(t)− ñj(−τ)ρ(t)nj)

+CR
j (−τ) (ρ(t)ñj(−τ)nj − njρ(t)ñj(−τ))] ,

(S11)

where we have once again utilised the Markovian approximation. Let us stress that the Eq.

(S11) takes this form due to our assumption that each of the sites is coupled to an independent

phonon bath. The correlation functions in Eq. (S11) are given by [7]:

CR
j (τ) =

∫ ∞
0

dω Jj(ω) [cos(ωτ) coth(βω/2)− i sin(ωτ)] , (S12)

where Jj(ω) is a spectral density defined in the main body of the manuscript. Let us note here

that we shall not ignore the phonon-induced renormalisations of the Hamiltonian (which will be

given by the imaginary parts of the response functions in Eq. (S11)).

S1.3 The Polaron Method

S1.3.1 Polaron transformation

The first step in the derivation of the Quantum Master Equation (QME) in the polaron frame

is the polaron (Lang-Firsov) transformation [8] which eliminates the electron-phonon coupling

Hamiltonian (HC),

H̄ = eGHe−G (S13)

where

G =
∑
j=L,R

∑
qj

gqja
†
jaj(b

†
qj
− bqj) . (S14)

This leads to the transformed Hamiltonian:

H̄ = H̄M +HB + H̄V +HR , (S15)
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where

H̄M =
∑
j=L,R

ε̄ja
†
jaj + J (B†LBR a

†
LaR + H.c.) , (S16)

and

H̄V =
∑
kL,kR

VkLBLc
†
kL
aL + VkRBRc

†
kR
aR + H.c. . (S17)

Here, ε̄j denotes the renormalised site energy ε̄j = εj −
∑

q g
2
q/ωq (for consistency with the

other approaches this renormalisation will be ignored – it changes the position of the levels with

respect to the Fermi energy and has only a trivial effect on the system’s dynamics), and Bj are

the displacement operators:

Bj = exp

−∑
qj

gqj
ωqj

(b†qj − bqj)

 . (S18)

S1.3.2 Quantum Master Equation

In this section we derive a QME describing the dynamics of the considered model system in

the polaron frame. We start by redefining the Hamiltonian in terms of the system (H̄S), the

environment (HE = HR +HB) and the interaction Hamiltonian (H̄I). The system Hamiltonian

is given by:

H̄S =
∑
j=L,R

εja
†
jaj + J〈BLR〉

(
a†LaR + H.c.

)
. (S19)

It accounts for the site energies, as well as the coupling between the sites. The latter is renor-

malised by 〈BLR〉 = 〈BL〉〈BR〉, where 〈...〉 denotes an average with respect to the thermal

equilibrium and

〈Bj〉 = 〈B†j 〉 = exp

(
−1

2

∫ ∞
0

dω
Jj(ω)

ω2
coth(βω/2)

)
, (S20)

where β = 1/kBT , with Boltzmann constant kB.

The interaction Hamiltonian is now defined as H̄I = H̄V + H̄P , where:

H̄P = J
[(
B†LBR − 〈BLR〉

)
a†LaR + H.c.

]
. (S21)
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Analogously to Eq. (S4), the QME can be written in the form:

dρ̄(t)

dt
= −i[H̄S, ρ̄(t)]−

∫ ∞
0

dτ TrE

[
H̄V , [H̃V (−τ), ρ̄(t)ρ̄E]

]
−
∫ ∞

0

dτ TrE

[
H̄P , [H̃P (−τ), ρ̄(t)ρ̄E]

]
, (S22)

or simply,
dρ̄(t)

dt
= −i[H̄S, ρ̄(t)] + Lleadsρ̄(t) + Lpolρ̄(t).

S1.3.3 Molecule-lead terms

Let us first evaluate the Lleadsρ̄ term given by:

Lleadsρ̄(t) = −
∫ ∞

0

dτ TrE

[
H̄V , [H̃V (−τ), ρ̄(t)ρ̄E]

]
. (S23)

Expanding the commutator and tracing out the environmental degrees of freedom leads to:

Lleadsρ̄(t) = −
∑
j,kj

∫ ∞
0

dτ
[
hkj(τ)〈BjB

†
j (−τ)〉

(
aj ã
†
j(−τ)ρ̄(t)− ã†j(−τ)ρ̄(t)aj

)
+h̄kj(−τ)〈B†jBj(−τ)〉

(
a†j ãj(−τ)ρ̄(t)− ãj(−τ)ρ̄(t)a†j

)
+hkj(−τ)〈Bj(−τ)B†j 〉

(
ρ̄(t)ãj(−τ)a†j − a

†
j ρ̄(t)ãj(−τ)

)
+ h̄kj(τ)〈B†j (−τ)Bj〉

(
ρ̄(t)ã†j(−τ)aj − aj ρ̄(t)ã†j(−τ)

)]
.

(S24)

The phononic correlation functions CP
j (τ) ≡ 〈Bj(τ)B†j 〉 = 〈B†j (τ)Bj〉 can be evaluated as follows:

CP
j (τ) = 〈Bj〉2 exp

[∫ ∞
0

dω
Jj
ω2

(
cosωτ coth

(
βω

2

)
− i sinωτ

)]
. (S25)

Once again, we will ignore the imaginary parts of Eq. (S25).
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S1.3.4 Intra-molecular terms

Similar approximations will be made in evaluating the next term in Eq. (S22):

Lpolρ̄(t) =− |J |2
∫ ∞

0

dτ{
CP
−(τ) (ss̃(−τ)ρ(t)− s̃(−τ)ρ(t)s) + CP

+(τ)
(
ss̃†(−τ)ρ(t)− s̃†(−τ)ρ(t)s

)
+CP

+(τ)
(
s†s̃(−τ)ρ(t)− s̃(−τ)ρ(t)s†

)
+ CP

−(τ)
(
s†s̃†(−τ)ρ(t)− s̃†(−τ)ρ(t)s†

)
+CP

−(−τ) (ρ(t)s̃(−τ)s− sρ(t)s̃(−τ)) + CP
+(−τ)

(
ρ(t)s̃†(−τ)s− sρ(t)s̃†(−τ)

)
+CP

+(−τ)
(
ρ(t)s̃(−τ)s† − s†ρ(t)s̃(−τ)

)
+ CP

−(−τ)
(
ρ(t)s̃†(−τ)s† − s†ρ(t)s̃†(−τ)

)}
.

(S26)

Here, s ≡ a†LaR, and the correlation functions are given by:

CP
+(t) =

∏
j=L,R

〈Bj〉2 exp

[∫ ∞
0

dω
Jj
ω2

(
cosωτ coth

(
βω

2

)
− i sinωτ

)]
− 〈BL〉2〈BR〉2 , (S27)

CP
−(t) =

∏
j=L,R

〈Bj〉2 exp

[
−
∫ ∞

0

dω
Jj
ω2

(
cosωτ coth

(
βω

2

)
− i sinωτ

)]
− 〈BL〉2〈BR〉2 . (S28)

Finally, let us notice that in the limit of high temperature and for a slowly fluctuating

environment, the treatment used here can be reduced to the well-known Marcus theory. This is

demonstrated on an example of a two-site (Donor–Acceptor) system in Section S5.

S1.4 The choice of basis

In this work we focus on the sequential tunnelling regime of transport. It is assumed that due

to the strong Coulomb interactions only one additional (transport) electron can be found on

the molecular wire at any given time. This assumption is typically well justified for molecular

systems at moderate bias voltage, as verified by a number of experimental studies. Hence,

the tight-binding basis comprises three electronic states corresponding to the additional charge

density occupying each of the sites and the vacuum state (molecule in the neutral charge state).

Transport beyond the sequential tunnelling case will be a focus of our future work.
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S1.5 Observables

Here, we are interested in the steady-state solution of the relevant quantum master equation:

dρ

dt
= 0 , (S29)

(and equivalently in the polaron transformed frame) which yields the stationary density matrix

ρstat (ρ̄stat). The primary observable of interest, the steady-state value of current through the

wire, is most easily found by considering the rates of electron hopping between either of the

terminal sites and the leads. As demonstrated in Section S1.5.1, the value of the current at

j = L,R interface is given by the expectation value of the appropriate current operator:

Ij = Tr(Ij ρ̄stat) , (S30)

where

Ijρ =
γj
2

∑
k

fj(ξk)
[
a†j(ξk)ρaj + a†jρaj(ξk)

]
− (1− fj(ξk))

[
aj(ξk)ρa

†
j + ajρa

†
j(ξk)

]
, (S31)

and equivalently in the polaron frame. Here, γj = 2π|Vj|2%j and ξk are the eigenvalues of the

molecular Hamiltonian HM . Let us note that, due to the current conservation, the steady-state

currents at the two leads must be equal and opposite IL = −IR.

The average populations of the sites are given simply by the diagonal elements of ρstat or ρ̄stat

(which are invariant under the polaron transformation).

Lastly, we may want to consider the zero-frequency current noise S(0). As shown by Flindt et

al. [9]:

S(0)/2e2 = Tr
[(
I+
j + I−j

)
ρstat

]
− 2 Tr

[(
I+
j − I−j

)
R
(
I+
j − I−j

)
ρstat

]
, (S32)

where I±j are the superoperators describing electron hopping on/off the interface with j-lead.

R = (1 − P)L−1(1 − P) is the Moore-Penrose pseudoinverse of L where P is the projection

operator formed as an outer product of identity and ρstat vectors. The derivation of Eq. (S32)

can be found in Refs. [9–11]
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S1.5.1 Full counting statistics

The result shown in Eq. (S30) can be justified using the methods of full counting statistics

(FCS) [9]. Consider a quantum master equation of the general form:

dρ(t)

dt
= Lρ(t) , (S33)

and let us introduce the n-resolved density matrix (where n is the number of electrons transferred

between the molecule and one of the leads at time t). The n-resolved quantum master equation

is then given by:

dρ(n)(t)

dt
=
(
L − I+

R − I
−
R

)
ρ(n)(t) + I+

Rρ
(n−1)(t) + I−Rρ

(n+1)(t) . (S34)

Here, I+
R (I−R ) is a superoperator that describes tunnelling out of (into) the molecular system at

the interface with the right electrode. At any time t,
∑

n ρ
(n)(t) = ρ(t).

Next, let us define the cumulant generating function:

eS(χ,t) =
∑
n

Pn(t)eχn = Tr

[∑
n

ρ(n)(t) eχn

]
, (S35)

where Pn(t) is the probability of n electrons being collected (in the right lead) during time

t. Cumulants of the charge distribution can be obtained by considering derivatives of S with

respect to the counting field χ,

〈〈n(m)〉〉(t) =
∂mS(χ, t)

∂χm

∣∣∣∣
χ=0

. (S36)

The average (steady-state) electric current is then given by:

I =
d〈〈n〉〉(t)

dt
=

d

dt

∂S(χ, t)

∂χ

∣∣∣∣
χ=0

at t→∞ . (S37)

In order to evaluate this expression, let us consider the time dependence of ρχ(t) =
∑

n ρ
(n)(t) eχn.
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From Eq. (S34), it is given by:

ρ̇χ(t) =
(
L − (1− eχ)I+

R − (1− e−χ)I−R
)
ρχ(t) = Lχρχ(t) , (S38)

with a solution ρχ(t) = exp(Lχt) ρχ(0), and eS(χ,t) = Tr [ρχ] . This yields:

I = Tr

[
∂Lχ
∂χ

∣∣∣∣
χ=0

ρstat

]
= Tr [IRρstat] , (S39)

where IR = I+
R − I

−
R is the current superoperator. Naturally, IL can be obtained analogously.

S2 Single-site molecular junction

Apart from studying the two-site systems, which are the main focus of this work, let us also

consider a single-site molecule. It is described by a Hamiltonian analogous to (1) with

HM = ε0 a
†a , (S40)

which describes a single orbital that is coupled to both the source and drain electrodes and a

phonon bath (via a Hamiltonian analogous to the one in the main body of this work).

In this simple system, it is possible to arrive at an analytical expression for the electric current

(within the Born-Markov approximation with respect to the leads and the phonon bath). Due to

the absence of intramolecular dynamics in this model system (and second order treatment of the

molecule-lead interactions), the pure dephasing has no effect on the overall dynamics. Similarly,

the Redfield approach now reduces to the pure dephasing approximation with the dephasing

rate:

γRD =

∫ ∞
0

dτ

∫ ∞
0

dωJ(ω) (cos(ωτ) coth(βω/2)± i sin(ωτ)) . (S41)

Thus, within these two techniques the current through the system can be shown to be:

I =
ΓL Γ̄R − ΓR Γ̄L

ΓL + ΓR + Γ̄L + Γ̄R
, (S42)
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where Γj = 2π%j|Vj|2fj(ε0), and Γ̄j = 2π%j|Vj|2[1− fj(ε0)].

As mentioned before, unlike the Redfield and the pure dephasing approaches, the Polaron

method also captures the vibrational effects at the molecule-lead interfaces. Within this tech-

nique the can still be expressed in the form Eq. (S42) but now with the hopping rates defined

as:

Γj = Re 2|Vj%j|2
∫ ∞
−∞

dΩ fj(Ω + ε0)

∫ ∞
0

dτeiΩτCP (τ) , (S43)

Γ̄j = Re 2|Vj%j|2
∫ ∞
−∞

dΩ (1− fj(Ω + ε0))

∫ ∞
0

dτeiΩτCP (τ) , (S44)

where CP (τ) is a correlation function as defined in Eq. (S25). Let us note here that in the limit

of high bias (in both the Redfield and Polaron methods) it can be shown that ΓL = 2π|VL|2,

and Γ̄R = 2π%j|VR|2 (or vice-versa) so that all the approaches used here yield the same value of

current I = 2π%j|VL|2|VR|2/(|VL|2 + |VR|2).

The calculated IV characteristics (using the Polaron method) for the single-site system are

shown in Fig. S1 assuming that the electronic degrees of freedom are coupled to a phonon bath

with a superohmic SD:

J (ω) =
λ

2

ω3

ω3
c

e−ω/ωc . (S45)

Coupling of the electronic degrees of freedom to the phonon bath has several effects on the

transport characteristics of the studied system. Firstly, it leads to a significant broadening of

the IV curves (an effect we refer to as phonon broadening). As the bias increases, tunnelling

into higher vibrational-electronic levels becomes possible. In the case of coupling to a single

vibrational mode this results in equidistant steps in the current-voltage characteristics. Here, due

to coupling to a phonon bath with a continuous SD, it results in broadened IV curves. Secondly,

at high temperatures the system-bath coupling can lift the Coulomb blockade, as shown in Fig.

S1. This can be explained as follows: electron-phonon interactions lead to fluctuations of the site

energy. If the thermal energy is large enough, the magnitude of these fluctuations can be greater

than the charging energy. The blockade can naturally also be lifted by broadening of the Fermi

distributions in the leads. It is nonetheless interesting that the same effect can result purely
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Figure S1: IV characteristics of a single-site system coupled to a phonon bath obtained using
the polaron treatment; ε0 = 50 meV. (a) Calculated for different values of λ with ωc = 5 meV,
and Te = Tph = 50 K. (b) Calculated for various temperatures with λ = 20 meV and ωc = 5
meV.

form phononic coupling. Finally, strong electron-phonon coupling can result in a suppression of

current at low voltages: the effect known as the Franck-Condon blockade [12] (not shown).

S3 Two-site molecular junction

Let us now return to the two-site molecular system which is the main focus of this work. We

begin by considering the values of the current in the absence of environmental interactions. The

QME we have derived in Eq. (S7) gives for the current flowing through the system at low bias

(i.e when only the LUMO level is found within the bias window):

I = e
4J2γLγR

8J2(γL + γR) + 2η(εR − εL)(γL − γR) + γLγ2
R + 2(γL + γR)(εL − εR)2

, (S46)

for electrons flowing from left to right. Besides being limited to small bias, the above expression

relies on the assumption of low temperature and weak molecule-lead couplings (for which treating

HV as a perturbation is justified). By contrast, for the case of high bias voltages, we recover the

well-known result for the current flowing through a double quantum dot structure [13,14]:

I = e
4J2γLγR

4J2γ2
R + 4γL ((εR − εL)2 + 2J2) (γL − γR) + γLγ2

R

. (S47)
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Figure S2: (a) IV characteristics and (b) Fano factor in the case of asymmetric coupling: γR = 1
meV, γL = 2 meV. Other parameters as in Fig. 2(a).

Here, we can also consider the case of asymmetric coupling of the molecule to the source

and drain electrodes (we set γL = 2γR but for simplicity assume that the capacitive coupling

is still symmetric), see Fig. S2. Introducing asymmetric coupling results in asymmetric IV

characteristics and bias dependence of Fano factor. Furthermore, one can now observe a super-

Poissonian dynamics (F greater than 1) at intermediate bias voltage (c.f Kiesslich et al. [15]).

Nonetheless, the main conclusions drawn from the symmetric case (in the main body of this

work) remain unaffected by introducing the coupling asymmetry into the model.
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Figure S3: Populations of LUMO and LUMO+1 levels in the (a) absence and (b) presence of
pure dephasing. All parameters as in Fig. 2(a).

Let us now come back to a statement made in the main body of this work regarding the

suppression of the transport through the LUMO level [Fig. 2(a)]. As we have stated this effect
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stems from the dephasing-driven population transfer between LUMO and LUMO+1. Fig. S3

demonstrates that this is indeed the case: the LUMO+1 level is significantly populated at low

bias in the presence of pure dephasing whilst remaining unoccupied for ΓD = 0.

Finally let us also discuss the IV characteristics in the presence of dephasing but in the

absence of capacitive coupling (α = 0). Firstly, we can assume that the two sites are degenerate
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Figure S4: IV characteristics in the absence of capactive coupling (α = 0) but with pure
dephasing present at the rate ΓD. All parameters other in Fig. 2(a).

(εL = εR), Fig. S4(a). Then, pure dephasing leads to a suppression of current at first plateau

(which can once again be explained by the dephasing-induced population transfer), and a much

less pronounced decrease in current at high bias voltage. There is no energy barrier for the

left-to-right transition, and as a result dephasing only retards the otherwise efficient unitary

evolution.

Alternatively, we can set a constant energy difference between the two site orbitals (note

that this introduces asymmetry in the IV characteristics). Then, dephasing is going to increase

the current flowing through the molecule at high bias, Fig. S4(b). At low bias (when only the

LUMO orbital is found within the bias window), the effect will depend on the size of the energy

gap: if this energy gap is small, the current will be reduced by dephasing due to the population

transfer discussed in the manuscript, as shown in Fig. S4(a). If the energy gap is very large,

dephasing can lead to an increase in the current by assisting the charge transfer transition across

the energy gap.
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S4 Limitations of the pure dephasing model

The central idea of the pure dephasing approach is to assume that the phononic dissipator in the

QME is given by Eq. (S10). It corresponds to an exponential decay of inter-site coherences. As

we have discussed, the pure dephasing approach effectively yields infinite-temperature behaviour

(i.e. upward and downward transitions between the hybridised eigenstates occur with equal

rates). This means that, for instance, in a simple Donor-Acceptor system in the steady-state

limit the additional charge density will be equally likely found on the Donor and the Acceptor,

irrespective of the energy difference between them.

This has several implications for our model: The upper bound on the current (in the presence

of dephasing) is given by the value of current in the absence of environmental interactions, and

for α = 0 [grey line in Fig. 2(a)]. Such a bound does not hold – and can be violated (see Fig.

4) – when using more rigorous microscopically derived approaches.

Figure S5: Schematic energy diagram for the system studied in Fig. S6(a).

It is also interesting to consider a case of a different energetic alignment of the molecular

orbitals as compared to the one studied in the main body of this work. Let us set ε0 = 10 meV.

That means the one of the considered MOs is above and one is below the Fermi energy (and so

in this Section we will refer to them as HOMO and LUMO levels, respectively), as schematically

shown in Fig. S5.

The IV characteristics for this case are calculated in the absence and presence of pure

dephasing, see Fig. S6(a). At low bias (and in the absence of dephasing), the HOMO level is

fully occupied, the LUMO level is empty and since neither of them lies within the bias window

there is no current flowing through the system. As we increase the bias we see the usual NDC

behaviour (grey curve). Introducing dephasing phenomenologically [using Eq. (S10)] leads to a
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Figure S6: (a) IV characteristics of a two-site system in the presence of dephasing at the rate
ΓD. (b) Conductance map with ΓD = 1 meV. In both figures ε0 = 10 meV, α = 0.6, and Te = 10
K.

surprising behaviour: electric current at low bias flows in the opposite direction to the applied

bias! Pure dephasing results in population transfer from HOMO to LUMO, and since the LUMO

level lies outside of the bias window, this charge density can tunnel out into both of the leads.

Because of the energetic detuning present within our model, the LUMO level is predominantly

centred on the left site, and so the charge density predominantly tunnels out into the source

electrode – leading to negative current at positive bias and vice versa. This is clearly an example

of a qualitative failure of the pure dephasing model1.

We can, similarly to what has been done in the main body of this work, calculate a con-

ductance map for our system, this time in the presence of pure dephasing – see Fig. S6(b). It

clearly shows the effect described above. Interestingly, pure dephasing is also capable of lifting

the Coulomb blockade for positive gate potentials [c.f. Fig. 2(b)].

1Such seemingly paradoxical behaviour can, in fact, also be obtained within the Redfield approach (for an
ohmic SD) at high temperature. This requires, however, to artificially separate the phononic and electronic
temperatures, and keep the latter close to zero.
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S5 Marcus theory as the high-temperature limit of the

Polaron method

In this Section, we demonstrate that the well-known Marcus theory [16] can be derived as a high

temperature limit of our theoretical treatment. For simplicity, we consider a Donor–Acceptor

(D–A) pair in which each of the sites is coupled to its own phonon bath. Within our formalism

such a system is governed by the Hamiltonian:

HDA =
∑
j=D,A

ε̄ja
†
jaj +

∑
qj

ωqjb
†
qj
bqj + gqja

†
jaj(b

†
qj

+ bqj) + J(a†DaA + H.c.) . (S48)

Following the polaron transformation, we can redefine H̄DA as a sum of the system (H
(DA)
S ),

environment (H
(DA)
B ), and interaction (H

(DA)
I ) Hamiltonian analogously to what has been done

above:

H̄
(DA)
S =

∑
j=D,A

ε̄ja
†
jaj + J〈BDA〉(a†DaA + H.c.) ; (S49)

H
(DA)
E =

∑
j=D,A

∑
qj

ωqjb
†
qj
bqj ; (S50)

H̄
(DA)
I = J

(
B a†DaA + H.c.

)
. (S51)

All the definitions follow from Section S1. In particular, B = B†DBA − 〈BDA〉, and

〈BDA〉 =
∏
j=D,A

exp

(
−1

2

∫ ∞
0

dω
Jj(ω)

ω2
coth

( ω

2kT

))
. (S52)

Here, in order to derive the Marcus theory we will work in the interaction picture of H
(DA)
S2 =∑

j=D,A ε̄ja
†
jaj. The time-evolution of the total density matrix ρtot is given by:

dρ̃tot(t)

dt
= −i[H̃

(DA)
J (t), ρ̃tot(t)]−

∫ t

0

dτ TrE

[
H̃I(t), [H̃J(τ) + H̃I(τ), ρ̃tot(τ)]

]
, (S53)
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where Ã(t) denotes operator A in an interaction picture of H
(DA)
S2 (as well as the polaron frame),

and H
(DA)
J = J〈BDA〉(a†DaA + H.c.).

Within the Born-Markov and the secular approximations, the overall QME (in the polaron

frame, and back in the Schrödinger picture) can be reduced to:

dρ̄(t)

dt
= −i[H̄

(DA)
S , ρ̄(t)] + γ1

(
s†ρ̄(t)s− ss†ρ̄(t)

)
+ γ2

(
sρ̄(t)s† − ρ̄(t)s†s

)
+ γ3

(
sρ̄(t)s† − s†sρ̄(t)

)
+ γ4

(
s†ρ̄(t)s− ρ̄(t)ss†

)
, (S54)

where, for simplicity, s = a†DaA. Let us note here that in going from Eq. (S53) to Eq. (S54) the

term linear in HI vanished since TrE[HI ] = 0. The rates in Eq. (S54) can be shown to be:

γ1 = |J |2
∫ ∞

0

dτ TrE

[
B B†(−τ)ρE

]
e−i∆ετ , (S55)

γ2 = |J |2
∫ ∞

0

dτ TrE

[
B†(−τ) BρE

]
e−i∆ετ , (S56)

γ3 = |J |2
∫ ∞

0

dτ TrE

[
B† B(−τ)ρE

]
ei∆ετ , (S57)

γ4 = |J |2
∫ ∞

0

dτ TrE

[
B(−τ) B†ρE

]
ei∆ετ , (S58)

where we have defined ∆ε = ε̄D − ε̄A.

We will now proceed to ignore the imaginary parts of γi (which result only in the renormal-

isation of the Hamiltonian) and notice that:

Re(γ1) =Re(γ4) ≡ kDA/2 , (S59)

Re(γ2) =Re(γ3) ≡ kAD/2 , (S60)

so that the QME (S54) can be written in the Lindblad form:

dρ̄(t)

dt
= −i[H̄

(DA)
S , ρ̄(t)] + kDA

(
s†ρ̄(t)s− 1

2
ss†ρ̄(t)− 1

2
ρ̄(t)ss†

)
+ kAD

(
sρ̄(t)s† − 1

2
ρ̄(t)s†s− 1

2
s†sρ̄(t)

)
. (S61)
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In the above kDA (kAD) corresponds to the rate of hopping from D to A (and vice-versa).

Moving into the high temperature limit, we take coth (ω/2kT ) ≈ 2kT/ω, and we will also

assume a slowly fluctuating environment so that sin(ωτ) ≈ ωτ and cos(ωτ) ≈ 1−ω2τ 2/2. Then,

kDA

2|J |2
= Re

∫ ∞
0

dτ exp
[
−kTλ τ 2

]
exp [−i(λ−∆ε)τ ] , (S62)

and equivalently for kAD. Here, λ is the overall reorganisation energy, which is the sum of

reorganisation energies of the donor and acceptor sites λ = λD + λA, where

λj =

∫ ∞
0

dω
Jj(ω)

ω
. (S63)

Finally, we obtain:

kDA = |J |2
√

π

λkT
exp

(
−(λ−∆ε)2

4λkT

)
, (S64)

kAD = |J |2
√

π

λkT
exp

(
−(λ+ ∆ε)2

4λkT

)
. (S65)

Furthermore, for ohmic spectral densities Jj the polaron renormalisations in Eq. (S49) are equal

to zero, so that

H
(DA)
S =

∑
j=D,A

ε̄ja
†
jaj . (S66)

Let us note here that the above equality does not hold in the case of superohmic SDs. However,

in that case the polaron renormalisation terms [Eq. (S52)] vanish in the limit of high temperature

so that the unitary component of the D–A transition can again be ignored.

In summary, we have shown that in the limit of high temperature (and for a slowly fluctuating

environment) the polaron treatment reduces to Marcus theory with electron hopping rates given

by Eq. (S64, S65).
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