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More Details of the Model Settings and Numerical Calculation

In the simulation, we used the overdamped Langevin equation of the rotary angle θ with stochastically

switching harmonic potentials;

Γ
dθ

dt
= −dGpre/post(θ)

dθ
+

√
2ΓkBTξ(t), (S.1)

where Γ is the effective friction constant against the probe and ξ(t) the Gaussian white noise. The free

energy potential is as follows;

G(pre/post)(θ) =


κ
2 (θ − θ

pre/post
0 )2 |θ − θ

pre/post
0 | < θc

Tθ(θ − θc − θ
pre/post
0 ) + κ

2 (θc − θ
pre/post
0 )2 θ − θ

pre/post
0 > θc

−Tθ(θ + θc − θ
pre/post
0 ) + κ

2 (θc − θ
pre/post
0 )2 θ − θ

pre/post
0 < −θc.

(S.2)

θ
pre/post
0 is the center of the potential with -10◦ for pre-hydrolysis dwell and 10◦ for post-hydrolysis dwell.

It is basically a harmonic potential and the value of its curvature κ = 1.62 × 10−2 pN nm deg.−2 was

determined in the previous result1 so that the dwell angle distribution width during a whole catalytic

dwell coincides with that of the experiment. In the outer region (|θ−θ
pre/post
0 | > θc) the potential form is

smoothly connected to linear ones so that its maximum torque |dG/dθ| equals to the experimental value

Tθ = 0.70 pN nm deg.−1 (=40 pN nm rad.−1).2,3 The cut-off point θc = 43.1◦ is where the harmonic

potential slope coincides with this value; κ(θc − θ0) = Tθ.

While we numerically solved the Langevin equation (S.1) by Heun method4 with 1st order preci-

sion, for each simulation time step t → t + ∆t we calculated the transition probability P
(i)
tr (t) =

1 − exp
{
−
∫ t+∆t

t
ki(θ(t

′))dt′
}
(≈ ki(θ(t))∆t) to determine whether or not to switch the potential with

the Monte-Carlo method.
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Non-equilibrium Angle Distribution
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Fig.S1: Steady state angle distributions in pre- and post-hydrolysis dwells obtained from model simu-

lations (solid lines, blue : 4◦C, green : 33◦C, red : 70◦C). As the temperature gets higher, the angle

distributions deviate from the local-equilibrium distributions (broken curves), shifting toward the small

angle region.

The steady state angle distributions during pre- and post-hydrolysis dwells are shown in Fig. S1

with the corresponding local-equilibrium distribution P eq
pre/post(θ;T ) (broken curve) at 4, 33, 70◦C. Here

we calculated the local-equilibrium distribution from the Boltzmann distribution using the free energy

potential Gpre/post(θ); P eq.
pre/post(θ;T ) ∝ exp{−Gpre/post(θ)/kBT} while the steady state distribution was

constructed from the rotary angle during the whole catalytic dwells in a single simulation time series.
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Parameter Determination of the Angle-Dependent Rate Constants
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Fig.S2: Relationship between temperature T and the tuned parameter Ai for the angle-dependent rate

constants of hydrolysis (blue circles) and Pi release (red circles). By fitting them with exponential

functions, we determined pre-factors νi and average activation free energies εi so thatAi(T ) = νie
−εi/kBT .

Table.S1: Simulation parameters for angle-dependent rate constants

αi [pN·nm·deg.−1] νi [1/s] εi [pN·nm] ([kJ/mol])

Hydrolysis 0.078 1.90× 1012 88.28 (53.16)

Pi release 0.47 1.18× 1015 121.8 (73.33)

From the experimentally-obtained values of rate coefficients, we determined the angle-dependent rate

constants for simulation;

ki(θ;T ) = νi exp

{
− 1

kBT
(εi − αiθ)

}
. (S.3)

First, we set them as
ki(θ;T ) = Aie

αiθ/kBT , (S.4)

where angle-dependent coefficients αi were taken from stall-and-release experiments ki(θ) ∝ ebiθ, where

bi(= αi/kBT ) at 23
◦C were 0.019, 0.12 deg.−1 for hydrolysis and Pi release, respectively.

5 Next, we ran

the simulation and searched for the appropriate values of Ai to reproduce the rate coefficients (averaged

among samples) at each temperature (16, 20, 25, 33◦C). From the temperature dependence of tuned values

Ai, we separated out the prefactors and the averaged activation free energy, assuming Ai(T ) = νie
−εi/kBT

(Fig. S2). The obtained values are shown in Table. S1.
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Determination of Effective Friction Constant
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Fig.S3: (a) The autocorrelation function of the rotary angle during a catalytic dwell of the experimental

rotation time series at 25◦C. In the calculation, we subtracted the linear trend to take into account the

small angle shift after hydrolysis. It can be fitted with a double exponential function c1e
τ/τ1 − c2e

τ/τ2 ,

where we regard the faster timescale τ1 as the relaxation time τrel = Γ/κ. (b) The proportionality of

the viscosity of the media against that of water for each time series. The values Cη are estimated from

the relaxation time and eq.(S.5), using the revolution radii xr measured from the rotary traces. (c) The

relationship between temperature T and experimentally observed relaxation time τrel (red points) with

theoretical curves using the average value of the proportionality constant Cav
η = 3.0. While the black

curve shows the theoretical values with the average revolution radius xr = 24 nm, the region within dash

curves shows those of xr = 0 ∼ 40 nm (= bead radius a).

Theoretically, the effective friction constant against a probe bead revolving around a fixed axis can be

calculated by fluid mechanics6 as
Γ = (8πa3 + 6πax2

r )η(T ), (S.5)
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where a, xr, and η(T ) denote the bead radius, the revolution radius, and the temperature (T )-dependent

viscosity of the media, respectively. While a = 40 nm and xr can be obtained from rotary traces (24

nm on average), we do not know the viscosity of the media η(T ). Here, we assumed that η(T ) is

linearly proportional to the water viscosity ηw(T ) and estimated its temperature-independent constant

of proportionality Cη , i.e., η(T ) = Cηηw(T ), from the auto-correlation relaxation time.

We calculated the auto-correlation function of the rotary angle during a catalytic dwell, where we

subtracted the linear trend due to the small rotation at hydrolysis.1 In the over-damped Langevin

system in a single harmonic potential 1
2κθ

2, the auto-correlation function of the coordinate decays with

⟨θ(t)θ(t+ τ)⟩ ∝ e−τ/τrel , (S.6)

where ⟨·⟩ is an ensemble average and τrel = Γ/κ. On the other hand, the real time series had two time

constants (Fig. S3(a)). While we regarded the faster one as the relaxation time τrel, we ascribed the

origin of the slower one to the small rotation after ATP hydrolysis during the catalytic dwell.1 In fact,

in simulation the second exponent appeared only when we incorporated the 20◦ angle shift between the

pre- and post-hydrolysis potential wells.

Assuming that τrel obtained above is also equal to Γ/κ and using the relation (S.5) with η(T ) =

Cηηw(T ), we obtained Cη for each time series (Fig.S3(b)). Although they have a small variation and still

seem to show slight temperature dependence, we adopted their average value Cav
η = 3.0 in the simulation

because the resulting theoretical curve well reproduces the experimental values within a certain range

(Fig.S3(c)) and the possible source of the variation can be due to the revolution radius fluctuation during

rotary dwells. The cause of the three-times difference in viscosity between pure water and the media can

be hydrodynamical effect near the glass surface.7
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The Second Peak of the Steady State Angle Distribution in Pre-Hydrolysis Dwells
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Fig.S4: The comparison of steady state angle distributions during the pre-hydrolysis dwell between with

two types of potential forms; one introducing straight cut-offs at the outer edges (red curve) and a

simple quadratic one (blue curve). Because the (mean) potential force dGpre(θ)/dθ is weaker than that

of the pure-quadratic one when θ < −53.1◦, the steady state angle distribution of the cut-off potential

simulation has an artificial second bump at the smaller angle region ∼ −100◦. As a reference to show

that the bump is a reminiscent of the initial distribution, the landing angle distribution, the angle at

which the system lands into a pre-hydrolysis dwell, is also plotted (red broken curve), which relaxes

toward the local-equilibrium distribution (grey broken curve).

At higher temperature around 50 ∼ 70◦C, the steady state angle distribution in the pre-hydrolysis

dwell has two peaks (Fig.S1). We have to remark here that the second peak around the small angle

region ∼ −100◦ is an artifact due to the modified slope of the potential. As we wrote in the first section

of this SI, the potential form is modified from a simple quadratic one and has constant slopes at the

outer region so that the maximum torque does not exceed the experimental value.3 This means that

the mean potential force exerted just after landing on a pre-hydrolysis potential is weaker than that of

a simple harmonic potential. Comparing the steady state angle distribution in the pre-hydrolysis dwell

with that of a pure harmonic potential, the second peak around ∼ −100◦ is much smaller and almost

indiscernible in the latter case (Fig.S4). This shows that the second peak for the modified potential is

due to the slower rolling down of the potential after landing caused by the weaker power stroke force.
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The Relationship between the Pearson Correlation Coefficient and 2D Correlation Plot

The two-body correlation C(x, y) between two variables x and y is defined as below;

C(x, y) = P (x, y)− P (x)P (y), (S.7)

where P (x) is the probability density distribution of x and P (x, y) is the joint probability of x and y.When

x and y are independent, P (x, y) = P (x)P (y) and C(x, y) = 0. Remark here that
∫ ∫

C(x, y)dxdy = 0.

On the other hand, the Pearson correlation coefficient Cxy between (x, y) is defined as below;

Cxy =
σxy

σxσy
, (S.8)

where σx is the standard deviation of x and σxy is the covariance between x and y. σxy can be written

as below;

σxy =

∫ ∫
(x− x̄)(y − ȳ)P (x, y)dxdy −

∫
(x− x̄)P (x)dx

∫
(y − ȳ)P (y)dy

=

∫ ∫
(x− x̄)(y − ȳ)P (x, y)dxdy −

∫ ∫
(x− x̄)(y − ȳ)P (x)P (y)dxdy

=

∫ ∫
(x− x̄)(y − ȳ)C(x, y)dxdy,

(S.9)

where x̄ is the average of x,
∫
xP (x)dx.

When (x, y) are a data set ({xi, yi}) i = 1, 2, ..., N , Cxy is calculated as follows;

Cxy =
1

N−1

∑N
i (xi − x̄)(yi − ȳ)√

1
N−1

∑N
i (xi − x̄)2

√
1

N−1

∑N
i (yi − ȳ)2

. (S.10)

Meanwhile, in order to calculate C(x, y) from the data set ({xi, yi}), we need P (x), P (y), and P (x, y),

which we could obtain by determining the bin size and counting the number of the data in each bin.

However, we have to be careful about the sampling error difference between P (x, y) and P (x)P (y)

because the error can be larger in the former case even with the same sampling number because we need

two-dimensional bins to calculate it, decreasing the number of the data in each bin. In order to make

the data number in each bin the same and balance this sampling error difference, we also calculated

P (x)P (y) with two-dimensional bins, randomly shuffling the pairing of the data set ({xi}, {yi}) to cancel

out the correlation.
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2D Correlations of Post-Hydrolysis Dwell Time and the Next Pre-Hydrolysis Dwell Time
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Fig.S5: The 2D correlation of the post-hydrolysis dwell time and the next pre-hydrolysis dwell time

accompanied by 100◦ rotation (corresponding to Fig. 3(a) red line). The same as Fig. 3(b) ∼ (d),

the two-body correlations C(τpost, τpre) were plotted on 2D planes for 4(a), 33(b), 70(c)◦C with a blue

(smaller correlation) and red (larger) color scale. They show no consistent pattern, which suggests that

τpost and its successive τpre are almost independent.

While the negative sub-dwell time correlation between hydrolysis and Pi release during a catalytic

dwell is pronounced as temperature increases (blue curve in Fig. 3(a)), Pi release waiting time and the

next hydrolysis waiting time were not distinctly correlated with each other (red line in Fig. 3(a)). To see
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more detail of this result, we also plotted in Fig.S5 the 2D correlation graph in the same way as Fig.3(b)

∼ (d). In these graphs, there are almost no consistent patterns over the τpost-τpre planes. This assures

our claim that the dwell time correlation is lost during a 100◦ power stroke rotation.
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Deviation from a Double Exponential Fitting Function
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Fig.S6: The dwell time survival distributions at 4, 33, 70◦C obtained by simulation (red). The grey

broken lines shows double exponential functions assuming fast diffusion limit k̄FDL
hyd/Pi

, i.e., the steady-

state angle distributions equal to the Boltzmann distributions.

The existence of correlation between pre- and post-hydrolysis dwell time in a catalytic dwell can in

general introduce multiple (> 2) exponentials for the dwell time distribution. It may therefore invalidate

the fitting we performed at temperature T = 20, 25, 33◦C.

Fig. S6 shows the dwell time survival distributions at three different temperature (red dots, T =

4, 33, 70◦C). In addition to the simulation data points, we also drew hypothetical distributions assuming

the fast diffusion limit at both hydrolysis and Pi release (grey broken lines) in order to show how the

functional form deforms as the temperature rises. The dwell time distributions show larger deviation

from the fast diffusion limit at the higher T around 60 ∼ 70◦C. The remarkable point is how they

deviate; the shorter dwell time regions around the hydrolysis timescale ⟨τhyd⟩FDL (≃ 6.4 ms (4◦C), 0.71
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ms (33◦C), 7.4×10−2 ms (70◦C)) show larger deviation from the fast diffusion limit lines while the longer

dwell time regions are almost parallel to them at three temperature. This suggests that the dominant

cause of the deviation is the flattening of the survival distribution around the shorter dwell time region.

We interpret that this suppression of shorter dwell time population to deform the dwell time distribution

from a double exponential form is partly due to the negative correlation between the pre-hydrolysis dwell

time (τpre) and the next post-hydrolysis dwell time (τpost) observed as the temperature increases.
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