## SUPPORTING INFORMATION

CCSD(T)/CBS interaction energies for the selected chelate-chelate stacking geometries

Due to its excellent performance in calculating the stacking of nickel chelate with benzene, the M06HF functional with Grimme D3 dispersion correction and with def2-TZVP basis set was used in order to find the optimal normal distances for the geometries chosen for $\operatorname{CCSD}(\mathrm{T}) / \mathrm{CBS}$ calculations of interaction energies (Figure S1). The CCSD(T)/CBS interaction energies were then obtained for these geometries using the method of Mackie and DiLabio and by taking into account the same basis set dependence of MP2 and $\operatorname{CCSD}(\mathrm{T})$.

$\Omega \mathbf{M a p}_{\text {ap }}$


$\Omega_{\mathrm{ap}}$


$\Omega \mathbf{M}_{\mathrm{p}}$


Figure S1. Selected geometries for which $\operatorname{CCSD}(T) / C B S$ stacking energies were calculated. In $\Omega M_{a p}$ the chelates in antiparallel orientation, with center of one chelate above the metal of the other chelate, and vice versa. In $\Omega \Omega_{\mathrm{ap}}$ the chelates are in antiparallel orientation, with center of one chelate above the center of the other chelate. In $\Omega \mathrm{M}_{\mathrm{p}}$ the chelates are in parallel orientation, with center of one chelate above the metal of the other chelate, and vice versa.

Table S1. Interaction energies of CCSD(T)/CBS geometries for chelate-chelate stacking (Figure S1), calculated at $\operatorname{CCSD}(T) / C B S$ level and at various DFT levels

| GEOMETRY |  | $\Delta \mathrm{E}[\mathrm{kcal} / \mathrm{mol}]$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CCSD(T)/CBS | $\begin{gathered} \text { M06HF-D3/ } \\ \text { def2-TZVP } \end{gathered}$ | $\begin{aligned} & \omega B 97 X D / \\ & \text { def2-TZVP } \end{aligned}$ | $\begin{gathered} \text { B3LYP-D3/ } \\ \text { aug-cc-pVDZ } \end{gathered}$ | LC- $\omega$ PBE-D3BJ/ aug-cc-pVDZ |
| Ni | $\Omega \mathrm{Map}_{\text {ap }}$ | -7.35 | -7.59 | -6.88 | -7.15 | -7.62 |
|  | $\Omega \Omega_{\text {ap }}$ | -8.32 | -10.69 | -7.37 | -7.61 | -8.49 |
|  | $\Omega M_{p}$ | -4.56 | -3.86 | -4.28 | -4.40 | -4.58 |
| Pd | $\Omega \mathrm{M}_{\mathrm{ap}}$ | -8.63 | -7.86 | -8.36 | -9.41 | -8.95 |
|  | $\Omega \Omega_{\text {ap }}$ | -8.17 | -8.84 | -7.88 | -7.79 | -8.52 |
|  | $\Omega \mathrm{M}_{\mathrm{p}}$ | -5.77 | -4.21 | -6.00 | -7.08 | -5.95 |
| Pt | $\Omega \mathrm{M}_{\text {ap }}$ | -8.79 | -7.39 | -9.50 | -11.97 | -8.79 |
|  | $\Omega \Omega_{\text {ap }}$ | -7.57 | -6.91 | -9.40 | -9.87 | -7.90 |
|  | $\Omega \mathrm{M}_{\mathrm{p}}$ | -6.28 | -4.09 | -7.96 | -9.26 | -6.17 |



Figure S2. Additional model systems for the study chelate-chelate stacking, the chelates were displaced along the line forming $45^{\circ}$ angle with the $\mathrm{C}_{2}$ axis of the acac type chelate. For antiparallel orientation ( $\mathrm{AB}_{\mathrm{ap}}$ ) negative (metals depart from one another) and positive direction (metals approach one another) is possible.


Figure S3. Potential energy curves for AB model systems calculated at LC- $\omega$ PBE-D3BJ/aug-cc-pVDZ level of theory.


Figure S4. Geometries of minima on potential energy curves for $A B$ model systems

Table S2. LC- $\omega$ PBE-D3BJ/aug-cc-pVDZ interaction energies for minima on AB potential energy curves

| ANTIPARALLEL | offset [Å] |  |  | LC- $\omega$ PBE-D3BJ/aug-cc-pVDZ <br> INTERACTION ENERGY [kcal/mol] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ni | Pd | Pt | Ni | Pd | Pt |
|  | 0.3 | 0.6 | 0.9 | -9.18 | -8.87 | -8.22 |
| $\mathrm{AB}_{\mathrm{p}} \min$ | 1.8 | 1.5 | 1.2 | -5.27 | -5.89 | -5.85 |

## Normal distances for chelate-chelate stacking



Figure S5. Optimal normal distances for chelate-chelate stacking in antiparallel orientation calculated at LC- $\omega$ PBE-D3BJ/aug-cc-pVDZ level of theory


Figure S6. Optimal normal distances for chelate-chelate stacking in parallel orientation calculated at LC- $\omega$ PBE-D3BJ/aug-cc-pVDZ level of theory

## Overlapping of electrostatic potentials



Figure S7. Overlapping of electrostatic potentials of acac type chelate rings in antiparallel orientation in two different geometries. The given energies were calculated at CCSD(T)/CBS level of theory.


Figure S8. Overlapping of electrostatic potentials of acac type chelate rings in parallel orientation in minimum geometries. The given energies were calculated at LC- $\omega$ PBE-D3BJ/aug-cc-pVDZ level of theory.

