Supplementary Information

Synthesis and Properties of [7]Helicene and [7]Helicene-like Compounds with a Cyclopenta[1,2-*b*:4,3-*b*']dithiophene or Dithieno[2,3-*b*:3',2'-*d*]heterole skeleton

Keisuke Uematsu,[†] Keiichi Noguchi,[‡] Koji Nakano^{*,†}

[†]Department of Organic and Polymer Materials Chemistry, and [‡]Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan

e-mail: k_nakano@cc.tuat.ac.jp

Table of Contents

Synthetic Procedures and Characterization Data for 7 and 8	S2-S3
NMR Spectra of Compounds 1–5, 7, 8, 10, and 12–21	S4-S22
X-ray Analysis	S23-S25
Fluorescence Lifetimes of 1, 3–5, 7, and 8 and DFT and TD-DFT Calculation Results	S26-S36

Synthetic Procedures for 7 and 8

Synthesis of *tert*-butyl 9H-dinaphtho[2,1-c:1',2'-g]carbazole-9-carboxylate (20)

A mixture of *rac*-[4,4'-biphenanthrene]-3,3'-diyl bis(trifluoromethanesulfonate) (0.14 g, 0.20 mmol), *tert*-butyl carbamate (31 mg, 0.26 mmol), Pd₂(dba)₃(16 mg, 0.015 mmol), xantphos (15 mg, 0.026 mmol), anhydrous K₃PO₄ (0.15 g, 0.71 mmol), and xylene (15 mL) in a Schlenk tube was stirred at 100 °C for 49 h. The resulting mixture was washed with 1 M aqueous HCl, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting crude residue was purified by silica-gel column chromatography with CH₂Cl₂/hexane (3/2) as an eluent to give **20** as a colorless solid (65 mg, 67%): ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, *J* = 8.7 Hz, 2H), 8.11 (d, *J* = 8.7 Hz, 2H), 7.97 (d, *J* = 8.7 Hz, 2H), 7.85 (d, *J* = 8.7 Hz, 2H), 7.78 (d, *J* = 7.3 Hz, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.20-7.16 (m, 2H), 6.32-6.28 (m, 2H), 1.93 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 151.1, 138.3, 131.4, 130.4, 128.7, 127.8, 127.6, 126.51, 126.45, 126.3, 125.9, 123.2, 120.5, 115.3, 85.0, 28.6; HRMS-APCI (*m*/*z*) calcd for C₂₉H₁₈NO₂ ([M-C₄H₉+2H]⁺), 412.1332; found, 412.1346.

Synthesis of 9*H*-dinaphtho[2,1-*c*:1',2'-*g*]carbazole (21)

To the solution of **20** (0.13 g, 0.28 mmol) in CH₂Cl₂ (2 mL) was added trifluoroacetic acid (0.64 mL, 8.3 mmol) at 0 °C. The resulting mixture was stirred at room temperature for 13 h. The reaction was quenched with saturated aqueous NaHCO₃, and the resulting mixture was extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting crude residue was purified by silica-gel column chromatography with EtOAc/hexane (1/2) as an eluent to give **21** as a brownish solid (78 mg, 76% yield): ¹H NMR (400 MHz, acetone-*d*₆) δ 11.71 (s, 1H), 8.15-8.06 (m, 6H), 7.86 (d, *J* = 8.4 Hz, 4H), 7.50 (d, *J* = 8.8 Hz, 2H), 7.18-7.14 (m, 2H), 6.22-6.18 (t, 2H); ¹³C NMR (101 MHz, acetone-*d*₆) δ 140.1, 140.0, 132.4, 131.3, 128.7, 127.9, 127.8, 127.3, 126.7, 124.9, 123.3, 117.5, 117.4, 113.2, 113.1; HRMS-APCI (*m*/*z*) [M+H]⁺ calcd for C₂₈H₁₈N, 368.1434; found, 368.1457.

Synthesis of methyl 9*H*-dinaphtho[2,1-*c*:1',2'-*g*]carbazole-9-carboxylate (7)

n-BuLi (2.6 M in hexane, 0.045 mL, 0.12 mmol) was added dropwise to the solution of **21** (0.037 g, 0.10 mmol) in THF (1.5 mL) at 0 °C. After stirring at room temperature for 30 min, methyl chloroformate (0.011 mL, 0.14 mmol) was added to the reaction mixture at room temperature. The resulting mixture was stirred for overnight, and the reaction was quenched with water (20 mL).

The resulting mixture was extracted with CH₂Cl₂ (10 mL × 3), and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting crude residue was purified by silica-gel column chromatography with CH₂Cl₂/hexane (1/1) as an eluent to give **7** as a colorless solid (31 mg, 72% yield): 235-236 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, J = 9.2 Hz, 2H), 8.05 (d, J = 9.2 Hz, 2H), 7.91 (d, J = 8.8 Hz, 2H), 7.80 (d, J = 8.8 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.13 (dt, J = 6.8, 1.2 Hz, 2H), 6.24 (dt, J = 7.2, 1.2 Hz, 2H), 4.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.1, 138.0, 131.4, 130.4, 129.0, 128.0, 127.6, 126.6, 126.44 (two carbons), 126.40, 126.1, 123.3, 120.9, 115.2, 54.2; HRMS-APCI (*m*/*z*) calcd for C₃₀H₂₀NO₂ ([M+H]⁺) 426.1489, found 426.1494.

Synthesis of 1-(9*H*-dinaphtho[2,1-*c*:1',2'-*g*]carbazol-9-yl)ethan-1-one (8)

n-BuLi (2.6 M in hexane, 0.045 mL, 0.12 mmol) was added dropwise to the solution of **21** (0.037 g, 0.10 mmol) in THF (1.5 mL) at 0 °C. After stirring at room temperature for 30 min, acetyl chloride (0.011 mL, 0.16 mmol) was added to the reaction mixture at room temperature. The resulting mixture was stirred for overnight, and the reaction was quenched with water (20 mL). The resulting mixture was extracted with CH₂Cl₂ (10 mL × 3), and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting crude residue was purified by silica-gel column chromatography with CH₂Cl₂/hexane (1/1) as an eluent to give **8** as a colorless solid (23 mg, 60% yield): 236-237 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, *J* = 8.8 Hz, 2H), 8.07 (d, *J* = 8.4 Hz, 2H), 7.92 (d, *J* = 8.8 Hz, 2H), 7.82 (d, *J* = 8.8 Hz, 2H), 7.73 (d, *J* = 6.8 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.14 (dt, *J* = 6.8, 1.6 Hz, 2H), 6.26 (dt, *J* = 7.6, 1.6 Hz, 2H), 3.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 138.1, 131.5, 130.4, 129.0, 128.0, 127.6, 126.63, 126.57, 126.5, 126.4, 126.3, 123.4, 121.2, 114.8, 28.6; HRMS-APCI (*m/z*) calcd for C₃₀H₂₀NO ([M+H]⁺) 410.1539, found 410.1545.

Figure S1. ¹H NMR spectrum of 1 (400 MHz, CD_2Cl_2 , 35 °C).

Figure S3. ¹³C NMR spectrum of 2 (126 MHz, CDCl₃).

Figure S4. ¹H NMR spectrum of 3 (400 MHz, CDCl₃).

Figure S5. ¹³C NMR spectrum of 3 (101 MHz, Cl₂CDCDCl₂, 60 °C).

Figure S6. ¹H NMR spectrum of 4 (500 MHz, CDCl₃, 40 °C).

Figure S7. ¹³C NMR spectrum of **4** (101 MHz, DMSO-*d*₆, 100 °C).

Figure S8. ¹H NMR spectrum of 5 (500 MHz, CDCl₃).

Figure S9. ¹³C NMR spectrum of 5 (101 MHz, CDCl₃).

Figure S10. ³¹P NMR spectrum of 5 (202 MHz, CDCl₃).

Figure S11. ¹H NMR spectrum of 7 (400 MHz, CDCl₃).

Figure S12. ¹³C NMR spectrum of 7 (101 MHz, CDCl₃).

Figure S13. ¹H NMR spectrum of 8 (400 MHz, CDCl₃).

Figure S14. ¹³C NMR spectrum of 8 (101 MHz, CDCl₃).

Figure S15. ¹H NMR spectrum of 10 (400 MHz, CDCl₃).

Figure S17. ¹H NMR spectrum of 12 (400 MHz, CDCl₃).

Figure S18. ¹³C NMR spectrum of 12 (101 MHz, CDCl₃).

Figure S19. ¹H NMR spectrum of 13 (400 MHz, CDCl₃).

Figure S20. ¹³C NMR spectrum of 13 (101 MHz, CDCl₃)

Figure S21. ¹H NMR spectrum of 14 (500 MHz, CDCl₃).

Figure S22. ¹³C NMR spectrum of 14 (126 MHz, CDCl₃)

Figure S24. ¹H NMR spectrum of 16 (400 MHz, DMSO-*d*₆, 100 °C).

Figure S25. ¹³C NMR spectrum of 16 (126 MHz, DMSO-*d*₆, 100 °C)

Figure S28. ¹H NMR spectrum of **18** (400 MHz, DMSO-*d*₆).

Figure S29. ¹³C NMR spectrum of 18 (126 MHz, DMSO-*d*₆, 100 °C)

Figure S30. ¹H NMR spectrum of **19** (500 MHz, DMSO-*d*₆).

Figure S31. ¹³C NMR spectrum of 19 (126 MHz, DMSO-*d*₆)

Figure S33. ¹³C NMR spectrum of 20 (101 MHz, CDCl₃)

Figure S35. ¹³C NMR spectrum of 21 (101 MHz, acetone-*d*₆)

X-ray Analysis

Figure S36. X-ray crystallographic structure of **2** (ORTEP drawing with 50% probability. All hydrogen atoms are omitted for clarity).

Formula	$C_{45}H_{38}S_2$
Formula weight	642.87
Temperature	193(2) K
Wavelength	1.54187 Å
Crystal system	monoclinic
Space group	C2/c
Unit cell dimensions	$a = 22.8514(4) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 12.0435(2)$ Å $\beta = 115.7690(10)$ °
	$c = 13.7823(3) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	3415.83(11) Å ³
Ζ	4
Density (calculated)	1.250 g/cm ³
Absorption coefficient	1.641 mm ⁻¹
<i>F</i> (000)	1360
Crystal size	$0.35 \times 0.20 \times 0.15 \text{ mm}^3$
Theta range for data collection	4.253 to 68.240°
Index ranges	-27<=h<=27, -14<=k<=14, -16<=l<=16
Reflections collected	29606
Independent reflections	3113 [$R_{\text{int}} = 0.0174$]
Completeness to theta	99.4%
Max. and min. transmission	0.782 and 0.621
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	216/0/3113
Goodness-of-fit on F^2	1.070
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0388, wR_2 = 0.1075$
<i>R</i> indices (all data)	$R_1 = 0.0415, wR_2 = 0.1098$
I argest diff neak and hole	$0.287 \text{ and } -0.179 \text{ e}/\text{\AA}^3$

Table S1. C	Crystallographic	data and structu	re refinement de	tails for compo	und 2

Figure S37. X-ray crystallographic structure of **4** (ORTEP drawing with 50% probability. All hydrogen atoms are omitted for clarity).

	1
Formula	$C_{26}H_{15}NOS_2 \bullet 0.5(CHCl_3)$
Formula weight	481.19
Temperature	193(2) K
Wavelength	1.54187
Crystal system	triclinic
Space group	$P\overline{1}$
Unit cell dimensions	$a = 12.1314(2) \text{ Å}$ $\alpha = 83.5273(7)^{\circ}$
	$b = 12.3033(2)$ Å $\beta = 85.5012(7)$ °
	$c = 14.3697(3) \text{ Å}$ $\gamma = 81.3505(7)^{\circ}$
Volume	2102.72(7) Å ³
Ζ	4
Density (calculated)	1.520 g/cm^3
Absorption coefficient	4.217 mm ⁻¹
<i>F</i> (000)	988
Crystal size	$0.35 \times 0.20 \times 0.080 \text{ mm}^3$
Theta range for data collection	3.101 to 68.229°
Index ranges	-14<=h<=14, -14<=k<=14, -17<=l<=17
Reflections collected	39772
Independent reflections	7590 [$R_{\text{int}} = 0.0247$]
Completeness to theta	98.5%
Max. and min. transmission	0.714 and 0.304
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	7590/0/577
Goodness-of-fit on F^2	1.088
Final <i>R</i> indices $[I>2\sigma(I)]$	$R_1 = 0.0673, wR_2 = 0.1837$
<i>R</i> indices (all data)	$R_1 = 0.0762, wR_2 = 0.1917$
Largest diff. peak and hole	1.753 and -0.719 e/Å ³

Table S2. Crystallographic data and structure refinement details for compound 4

Figure S38. X-ray crystallographic structure of **5** (ORTEP drawing with 50% probability. All hydrogen atoms are omitted for clarity).

	1
Formula	$C_{30}H_{17}OPS_2$
Formula weight	488.52
Temperature	193(2) K
Wavelength	1.54187 Å
Crystal system	monoclinic
Space group	$P2_{1}/n$
Unit cell dimensions	$a = 12.0140(2) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 9.11776(17) \text{ Å}$ $\beta = 104.4257(7) ^{\circ}$
	$c = 21.2612(4) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	2255.54(7) Å ³
Ζ	4
Density (calculated)	1.439 g/cm ³
Absorption coefficient	2.985 mm ⁻¹
<i>F</i> (000)	1008
Crystal size	$0.50\times0.40\times0.15\ mm^3$
Theta range for data collection	3.870 to 68.249°
Index ranges	-14<=h<=14, -10<=k<=10, -25<=l<=25
Reflections collected	40480
Independent reflections	4121 [$R_{int} = 0.0337$]
Completeness to theta	100%
Max. and min. transmission	0.639 and 0.220
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4121/0/307
Goodness-of-fit on F^2	1.062
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0344, wR_2 = 0.0924$
<i>R</i> indices (all data)	$R_1 = 0.0352, wR_2 = 0.0931$
Largest diff. peak and hole	0.361 and -0.254 e/Å ³

 Table S3. Crystallographic data and structure refinement details for compound 5

	Table S4. Summary of Fluorescence Lifetime Measurement of Compounds 1, 3–5, 7, and 8							
	τ_{l} (ns) [α_{l}]	τ_2 (ns) [α_2]	$\tau_{\rm ave} ({\rm ns})^a$	$\varPhi(\%)$	$k_{\rm r} (imes 10^7 { m s}^{-1})^b$	$k_{\rm nr} \ (\times 10^9 \ {\rm s}^{-1})^c$		
1	0.49 [1.00]	-	0.49	1.8	3.7	2.0		
3	0.16 [0.99]	1.29 [0.01]	0.17	0.29	1.7	5.9		
4	0.15 [0.91]	2.26 [0.09]	0.34	0.11	0.32	2.9		
5	0.18 [0.94]	0.68 [0.06]	0.21	0.17	0.81	4.8		
7	4.16 [0.83]	6.46 [0.17]	4.55	8.4	1.8	0.20		
8	3.37 [0.99]	23.8 [0.01]	3.57	12.2	3.4	0.25		

T :fat: 2 5 7 CTI М c a 4 0

 $a \tau_{ave} = \alpha_1 \cdot \tau_1 + \alpha_2 \cdot \tau_2$. $b k_r$ (radiative rate constant) = Φ / τ_{ave} . $c k_{nr}$ (non-radiative rate constant) = $(1-\Phi)/\tau_{ave}$.

DFT and TD-DFT Calculation Results

Figure S39. HOMOs and LUMOs of (a) 6, (b) 7, (c) 8, (d) 9, (e) 1-(7H-dithieno[2,3-b:3',2'-d]pyrrol-7-yl)ethan-1-one calculated by DFT method at the B3LYP /6-31G(d) level of theory.

		transition energy	wavelength	transition configulation	oscillator
	1	2 2460	270		0.0171
1	1	3.3409	360	$HOMO_1 \rightarrow LUMO (0.700)$	0.0171
	2	5.7757	500	HOMO \rightarrow LUMO (-0.207)	0.0010
	3	3 7080	326	HOMO = LUMO(0.640)	0 2725
	5	5.1707	520	$HOMO \rightarrow LUMO+1 (0.260)$	0.2725
	4	3 8553	377	$HOMO-2 \rightarrow UUMO(0.101)$	0.0368
	-	5.0555	522	HOMO-1 \rightarrow LUMO+1 (0.604)	0.0500
				$HOMO \rightarrow UIMO+2 (0.316)$	
		3 5620	348	$HOMO-1 \rightarrow LUMO (0.186)$	0.0416
3	1	5.5620	540	HOMO-1 \rightarrow LUMO+1 (0.165)	0.0410
				HOMO \rightarrow LUMO (0.632)	
				HOMO \rightarrow LUMO+1 (0.141)	
	2	3,6419	340	HOMO-1 \rightarrow LUMO (0.639)	0.1207
	-		0.0	HOMO-1 \rightarrow LUMO+1 (-0.216)	011207
				HOMO \rightarrow LUMO (-0.137)	
	3	3.7104	334	HOMO-1 \rightarrow LUMO (-0.146)	0.0339
				HOMO-1 \rightarrow LUMO+1 (-0.219)	
				HOMO \rightarrow LUMO+1 (0.643)	
	4	3.8604	321	HOMO-1 \rightarrow LUMO (0.128)	0.2121
				HOMO-1 \rightarrow LUMO+1 (0.602)	
				HOMO \rightarrow LUMO (-0.221)	
				HOMO \rightarrow LUMO+1 (0.216)	
4	1	3.4276	362	HOMO → LUMO (0.691)	0.0081
-				HOMO \rightarrow LUMO (0.114)	
	2	3.5529	349	HOMO-1 \rightarrow LUMO (-0.475)	0.0357
				HOMO-1 \rightarrow LUMO+1 (-0.152)	
				HOMO \rightarrow LUMO+1 (0.479)	
	3	3.6617	339	HOMO-1 →LUMO (-0.299)	0.0939
				HOMO-1 \rightarrow LUMO+1 (0.610)	
				HOMO \rightarrow LUMO+1 (-0.112)	
	4	3.7660	329	HOMO-1 \rightarrow LUMO (0.409)	0.2647
				HOMO-1 \rightarrow LUMO+1 (0.284)	
				$HOMO \rightarrow LUMO+1 (0.455)$	
5	1	3.0193	411	HOMO \rightarrow LUMO (0.701)	0.0091
	2	3.3503	370	HOMO-1 \rightarrow LUMO (0.606)	0.0096
				HOMO \rightarrow LUMO+1 (0.353)	
	3	3.6502	3.65	HOMO-2 \rightarrow LUMO (0.659)	0.0698
				HOMO \rightarrow LUMO+1 (-0.104)	
				HOMO \rightarrow LUMO+2 (-0.182)	
	4	3.7009	335	HOMO-2 \rightarrow LUMO (0.116)	0.3325
				HOMO-1 \rightarrow LUMO (-0.340)	
				HOMO \rightarrow LUMO+1 (0.583)	

Table S5. The selected absorption peaks of compounds 1 and 3-5 calculated by TD–DFT
method at the B3LYP $/6-31G(d)$ level of theory.

	excited	transition energy (eV)	wavelength (nm)	transition configulation (CI expansion coefficient)	oscillator strength f
6	1	3.1644	392	HOMO \rightarrow LUMO (0.677)	0.1363
		0.4440		$HOMO \rightarrow LUMO+1 (-0.137)$.
	2	3.4662	358	$HOMO-2 \rightarrow LUMO+2 (0.108)$	0.0055
				$HOMO-I \rightarrow LUMO(0.594)$	
	2	2 400 4	0.5.4	$HOMO \rightarrow LUMO+2 (0.341)$	0.0004
	3	3.4804	356	HOMO-2 \rightarrow LUMO (0.502)	0.0224
				$HOMO \rightarrow LUMO (0.154)$	
	4	2 72 40	222	$HOMO \rightarrow LUMO+1 (0.460)$	0.0700
	4	3.7248	333	$HOMO-2 \rightarrow LUMO (-0.486)$	0.0780
		2 2000		$HOMO \rightarrow LUMO+1 (0.496)$	0.1.440
7	I	3.2908	3/7	HOMO-1 \rightarrow LUMO (0.142)	0.1442
				HOMO-1 \rightarrow LUMO+1 (-0.120)	
				$HOMO \rightarrow LUMO (0.657)$	
	2	2 21 60	274	$HOMO \rightarrow LUMO+2 (-0.134)$	0.0444
	2	3.3160	3/4	$HOMO-I \rightarrow LUMO (0.626)$	0.0444
				$HOMO \rightarrow LUMO (-0.146)$	
	2	2 (204	241	$HOMO \rightarrow LUMO+1 (0.256)$	0.0242
	3	3.6304	341	$HOMO-2 \rightarrow LUMO (0.610)$	0.0343
				$HOMO \rightarrow LUMO (0.115)$	
				$HOMO \rightarrow LUMO+1 (0.110)$	
		2 00 21	210	$HOMO \rightarrow LUMO+2 (0.295)$	0.0400
	4	3.8931	318	HOMO-3 \rightarrow LUMO (0.101)	0.0433
				$HOMO-2 \rightarrow LUMO (-0.311)$	
				$HOMO-1 \rightarrow LUMO (-0.109)$	
				$HOMO-1 \rightarrow LUMO+1 (0.188)$	
				$HOMO-1 \rightarrow LUMO+3 (-0.110)$	
				$HOMO \rightarrow LUMO (0.105)$	
				$HOMO \rightarrow LUMO+1 (0.402)$	
				$HOMO \rightarrow LUMO+2 (0.381)$	
8	1	3.2225	385	$HOMO-1 \rightarrow LUMO (0.182)$	0.1344
				$HOMO \rightarrow LUMO (0.655)$	
				$HOMO \rightarrow LUMO (-0.108)$	
	2	3.2635	380	$HOMO-1 \rightarrow LUMO (0.624)$	0.0678
				$HOMO \rightarrow LUMO (-0.190)$	
				$HOMO \rightarrow LUMO+1 (0.343)$	
				$HOMO \rightarrow LUMO+2 (-0.148)$	
	3	3.5390	350	$HOMO-2 \rightarrow LUMO (0.568)$	0.0174
				$HOMO \rightarrow LUMO+1 (0.343)$	
				$HOMO \rightarrow LUMO+2 (0.176)$	
	4	3.7770	328	$HOMO-2 \rightarrow LUMO (-0.406)$	0.0247
				$HOMO-1 \rightarrow LUMO+1 (0.107)$	
				HOMO-1 \rightarrow LUMO+2 (-0.115)	
				$HOMO \rightarrow LUMO+1 (0.476)$	
				$HOMO \rightarrow LUMO+2 (0.240)$	
9	1	3.0587	405	$HOMO \rightarrow LUMO (0.691)$	0.0768
	2	3.2576	381	$HOMO-1 \rightarrow LUMO (0.581)$	0.0113
	2	A 1500	050	HOMO \rightarrow LUMO+1 (-0.378)	0.0000
	3	3.4599	358	HOMO-3 \rightarrow LUMO+1 (0.105)	0.0228
				$HOMO-2 \rightarrow LUMO (0.618)$	
				$HOMO-1 \rightarrow LUMO (-0.131)$	
				HOMO \rightarrow LUMO (0.232)	
	4	3.5622	348	$HOMO-2 \rightarrow LUMO (0.638)$	0.0012
				HOMO-1 \rightarrow LUMO (0.370)	
				HOMO \rightarrow LUMO+1 (0.567)	

Table S6. The selected absorption peaks of compounds 6-9 calculated	by TD–DFT
method at the B3LYP $/6-31G(d)$ level of theory	

Table S7. Coordinates (A) and Absolute I					of the Optin	nized Struct	ure for 1^a
atom	Х	у	Z	atom	Х	у	Z
С	-0.58154	2.63258	3.84664	Н	-4.68086	1.47572	10.81437
С	-1.31897	1.87485	4.73819	С	-2.06792	0.78378	8.04504
С	-1.25138	0.47768	4.46954	Н	-1.28814	0.57772	7.31848
С	-0.13216	0.24887	3.64116	С	-3.17312	0.13943	10.0902
S	0.54145	1.72277	3.00396	Н	-3.29185	-0.5527	10.91955
С	0.32625	-1.04751	3.34637	С	-2.21768	-0.1048	9.11146
Η	1.21128	-1.1951	2.73331	Н	-1.5841	-0.98597	9.1725
С	-2.04438	-0.669	4.82724	С	-0.90202	4.14715	3.85147
С	-0.38492	-2.14471	3.82751	С	-1.61946	4.65104	2.57277
Н	-0.02035	-3.14276	3.5919	С	-2.97933	5.64252	0.29871
С	-1.5757	-1.97533	4.5302	С	-1.77424	6.03721	2.35308
С	-2.33205	-3.09123	4.92311	С	-2.19798	3.77967	1.63032
Н	-1.97684	-4.09871	4.71681	С	-2.86322	4.27111	0.50279
С	-3.31432	-0.53791	5.42903	С	-2.43896	6.52644	1.2262
Η	-3.75045	0.44113	5.60132	Н	-1.37573	6.75592	3.06827
С	-3.56078	-2.93382	5.56389	Н	-2.15518	2.70046	1.75656
Η	-4.13788	-3.80681	5.85681	Н	-3.29801	3.5774	-0.21262
С	-4.0579	-1.65869	5.80343	Н	-2.53832	7.59872	1.07878
Η	-5.02561	-1.52908	6.28129	Н	-3.49957	6.0212	-0.57686
С	-1.9334	4.06268	5.00289	С	0.38774	4.93057	4.20711
С	-2.09192	2.80517	5.55637	С	2.79558	6.29625	4.79096
С	-2.76957	2.83013	6.80896	С	0.73107	5.27292	5.52888
С	-3.44064	4.06696	6.91454	С	1.30862	5.26757	3.19119
S	-2.95577	5.1988	5.68329	С	2.49368	5.94873	3.47885
С	-4.35678	4.33379	7.94757	С	1.91791	5.95472	5.81514
Η	-4.88575	5.28225	7.98637	Н	0.09057	5.00771	6.36666
С	-2.88855	1.92551	7.92215	Н	1.10908	4.99641	2.15509
С	-4.55897	3.37659	8.93954	Н	3.18198	6.20114	2.6764
Н	-5.27	3.59532	9.73396	Н	2.15842	6.21144	6.8439
С	-3.81691	2.19789	8.96059	Н	3.71849	6.8233	5.01708
С	-3.9612	1.28799	10.02028				

Table S7. Coordinates (Å) and Absolute Energy of the Optimized Structure for 1^a

					1		-
atom	Х	У	Z	atom	X	у	Z
Н	-3.78644	-1.39211	-2.114	С	-1.11279	0.85852	2.00007
С	-2.77455	-1.28779	-1.73178	С	-1.40158	3.26739	1.91674
Н	-2.44381	-3.40122	-1.65071	С	-2.44074	0.70551	2.40333
С	-2.01017	-2.42191	-1.45915	С	-0.57963	2.13056	1.69934
С	-0.9295	0.10807	-1.04908	С	-0.87131	4.5479	1.77627
С	-0.69739	-2.30714	-0.97434	Н	-2.83129	-0.28797	2.60833
С	-2.22858	-0.02426	-1.54347	Н	-0.49539	-0.03234	1.93817
С	-0.15649	-1.02226	-0.70616	С	0.48099	4.73738	1.50029
С	0.08544	-3.44496	-0.7921	Н	-1.49328	5.42445	1.94788
Н	-2.80904	0.86378	-1.77993	Н	0.90079	5.73941	1.48028
Н	-0.5239	1.11008	-0.94964	С	1.29609	3.61424	1.27539
С	1.42476	-3.34194	-0.42297	С	0.77591	2.30123	1.24542
Н	-0.31954	-4.43304	-1.00249	С	1.81709	1.45078	0.79282
Н	2.04884	-4.22993	-0.37008	S	3.02751	3.64588	1.06469
С	1.96159	-2.07227	-0.1471	С	3.05571	1.99654	0.83464
С	1.1697	-0.90162	-0.15889	Ν	4.02502	1.02484	0.65457
С	1.96984	0.14847	0.35985	С	5.4249	1.13316	0.70006
S	3.6422	-1.73368	0.18265	0	6.1536	0.17353	0.49802
С	3.29372	-0.12224	0.40971	0	5.80757	2.40108	0.99118
Н	-4.29209	1.70259	2.85217	С	7.22257	2.57503	1.05384
С	-3.25757	1.8208	2.54114	Н	7.65102	1.95109	1.84449
Н	-3.38514	3.95609	2.461	Н	7.42516	3.62292	1.29176
С	-2.73846	3.0943	2.30968	Н	7.68056	2.34447	0.08684

Table S8. Coordinates (Å) and Absolute Energy of the Optimized Structure for 3^a

Table 53. Coordinates (A) and Absolute Energy of the Optimized Structure for 4							
atom	Х	У	Z	atom	Х	У	Z
Н	-3.81834	-1.39677	-1.99441	С	-0.88618	0.88722	1.90484
С	-2.78253	-1.27585	-1.68868	С	-1.2354	3.28845	1.83657
Н	-2.42009	-3.38388	-1.60745	С	-2.17516	0.70624	2.41016
С	-1.98582	-2.39729	-1.45964	С	-0.40679	2.16942	1.55965
С	-0.911	0.15063	-1.15813	С	-0.74748	4.58007	1.65146
С	-0.64288	-2.26066	-1.07313	Н	-2.52601	-0.29456	2.64833
С	-2.24078	-0.00358	-1.55477	Н	-0.25503	0.01052	1.79893
С	-0.10049	-0.96619	-0.86022	С	0.57428	4.79905	1.26994
С	0.16574	-3.38647	-0.93404	Н	-1.37377	5.44327	1.86867
Н	-2.84866	0.8745	-1.75747	Н	0.96888	5.80999	1.21408
Н	-0.51317	1.15905	-1.09882	С	1.39507	3.69388	0.98508
С	1.52669	-3.26248	-0.66336	С	0.90522	2.36879	1.00089
Н	-0.24132	-4.38191	-1.10184	С	1.92799	1.54065	0.47151
Н	2.16298	-4.14309	-0.64338	S	3.10331	3.7649	0.63716
С	2.06503	-1.98264	-0.44344	С	3.14975	2.11533	0.41093
С	1.26061	-0.82358	-0.41325	Ν	4.13291	1.17471	0.15437
С	2.08385	0.24139	0.0346	С	5.51844	1.41933	0.09449
S	3.75567	-1.6169	-0.23819	0	5.953	2.54338	0.31999
С	3.41688	0.00009	-0.01766	С	6.39872	0.26115	-0.25156
Н	-4.00837	1.66391	2.99828	Н	7.43276	0.61635	-0.31826
С	-3.00406	1.80352	2.60741	Н	6.1355	-0.15028	-1.22876
Н	-3.18571	3.93514	2.53106	Н	6.36557	-0.49768	0.53335
С	-2.5335	3.08719	2.33257				

Table S9. Coordinates (Å) and Absolute Energy of the Optimized Structure for 4^a

Table S10. Coordinates (A) and Absolute Energy of the Optimized Structure for 5								
atom	Х	У	Z	atom	X	У	Z	
Н	-2.34101	1.27536	-5.21753	С	-0.56868	2.71934	0.38371	
С	-1.65698	0.92239	-4.4504	С	-0.34211	5.09558	0.87372	
Н	-2.08902	-1.13995	-4.82512	Н	-3.45512	0.9647	-0.20533	
С	-1.51328	-0.44482	-4.21752	Н	-1.06305	0.61336	0.11706	
С	-0.02576	1.37632	-2.73229	С	1.01181	4.92749	1.15209	
С	-0.62853	-0.9203	-3.23638	Н	-0.77596	6.08705	0.99031	
С	-0.90319	1.8311	-3.71868	Н	1.60728	5.76781	1.4993	
С	0.09974	0.00079	-2.43813	С	1.58725	3.65328	1.00671	
С	-0.4444	-2.28994	-3.06477	С	0.85729	2.54802	0.51638	
Н	-0.99189	2.89699	-3.91264	С	2.96141	1.66943	0.95169	
Н	0.57187	2.11609	-2.20988	С	1.77604	1.47137	0.27787	
С	0.49854	-2.77929	-2.16429	S	3.21168	3.22728	1.45934	
Н	-0.99369	-3.00184	-3.67816	Р	3.87011	0.18433	1.08221	
Н	0.6903	-3.84711	-2.09985	0	5.21767	0.257	0.42088	
С	1.21768	-1.87276	-1.36597	С	3.72525	-0.36535	2.747	
С	0.96925	-0.48275	-1.39432	С	3.59634	-1.25881	5.41229	
С	2.69429	-0.70341	0.14515	С	4.88566	-0.75502	3.43481	
С	1.69838	0.12731	-0.31974	С	2.49736	-0.43347	3.42465	
S	2.52991	-2.29077	-0.30327	С	2.43387	-0.87667	4.74739	
Н	-4.42077	3.2447	-0.06095	С	4.82302	-1.19839	4.75663	
С	-3.35245	3.09589	0.07158	Н	5.85186	-0.7116	2.93213	
Н	-2.97382	5.16981	0.43962	Н	1.57377	-0.14089	2.9295	
С	-2.52462	4.18289	0.34889	Н	1.4758	-0.9232	5.25967	
С	-1.43837	1.63029	0.15547	Н	5.73214	-1.4959	5.27349	
С	-1.14287	4.01003	0.52841	Н	3.54636	-1.60354	6.44204	
С	-2.81192	1.81915	-0.01071					

Table S10. Coordinates (Å) and Absolute Energy of the Optimized Structure for 5^a

atom	X	y	Z	atom	x	y	Z
Н	5.8245892	1.9519825	-2.0528943	Н	3,7604959	-4.3861668	-1.4584906
C	4.8589207	1.9046579	-1.5568345	C	3.3215388	-2.7042744	-0.1519299
Н	5.3130341	3.4691337	-0.1583212	C	4.5778204	-2.7419359	0.4954563
С	4.5778204	2.741936	-0.4954563	С	2.3441004	-1.7415323	0.2501267
С	2.6463469	0.9379987	-1.3744789	С	4.8589207	-1.9046578	1.5568345
С	3.3215387	2.7042745	0.1519299	Н	5.3130342	-3.4691336	0.1583212
С	3.8705091	1.0147381	-2.0137083	Н	5.8245892	-1.9519823	2.0528944
С	2.3441004	1.7415323	-0.2501267	С	3.8705091	-1.0147381	2.0137084
С	2.9955879	3.6758609	1.1541014	Н	4.0638236	-0.3843362	2.8772413
Н	4.0638236	0.3843362	-2.8772413	С	2.6463469	-0.9379987	1.3744789
Н	1.8946753	0.2635289	-1.7625359	С	-2.2672977	0	0
С	1.7323158	3.7605374	1.6456947	С	-3.1225751	0.5783689	-1.1515901
Н	3.7604958	4.3861669	1.4584906	С	-4.6053781	1.504238	-3.3700987
Н	1.4595996	4.550142	2.3417207	С	-4.2993426	-0.0710391	-1.5583387
С	0.7162216	2.8199644	1.264827	С	-2.7013229	1.6965703	-1.8850226
С	-0.6112553	3.0171714	1.7069593	С	-3.4352565	2.1553818	-2.9803115
С	1.0518166	1.7061284	0.4273602	С	-5.0326928	0.3858014	-2.6536797
С	-1.6238471	2.1731921	1.2970294	Н	-4.6556477	-0.9344937	-1.0052714
Н	-0.8297639	3.8776953	2.334242	Н	-1.791621	2.2154665	-1.6027158
Н	-2.656748	2.3721569	1.5642749	Η	-3.0870369	3.0272945	-3.5280565
С	-1.2886023	1.0284886	0.5682845	Η	-5.9421962	-0.1343865	-2.9433682
С	0.0428853	0.6990777	0.2631088	Η	-5.1780584	1.8641155	-4.2206737
Н	-2.6567479	-2.372157	-1.5642749	С	-3.1225751	-0.5783689	1.15159
С	-1.6238471	-2.1731921	-1.2970294	С	-4.6053779	-1.504238	3.3700987
Н	-0.8297638	-3.8776953	-2.3342419	С	-2.701323	-1.6965706	1.8850223
С	-0.6112552	-3.0171714	-1.7069592	С	-4.2993424	0.0710393	1.558339
С	0.0428854	-0.6990777	-0.2631088	С	-5.0326925	-0.3858012	2.65368
С	0.7162216	-2.8199644	-1.264827	С	-3.4352566	-2.1553821	2.9803112
С	-1.2886023	-1.0284886	-0.5682845	Η	-1.7916213	-2.2154669	1.6027152
С	1.0518166	-1.7061284	-0.4273602	Η	-4.6556473	0.9344941	1.0052719
С	1.732316	-3.7605374	-1.6456947	Н	-5.9421957	0.1343868	2.9433687
Н	1.8946752	-0.2635289	1.762536	Н	-3.0870371	-3.027295	3.528056
С	2.995588	-3.6758608	-1.1541015	Η	-5.1780582	-1.8641155	4.2206738
Н	1.4595998	-4.550142	-2.3417207				

Table S11. Coordinates (Å) and Absolute Energy of the Optimized Structure for 6^a

atom	Х	У	Z	atom	Х	у	Z
Н	-4.52553	1.76807	-0.96539	С	0.6301	-0.57488	2.54527
С	-3.49788	1.48302	-0.76024	С	-0.87829	-1.0452	4.40892
Н	-3.00669	1.23911	-2.82492	С	1.63389	-0.28429	3.47497
С	-2.63265	1.17453	-1.80535	С	-0.61082	-1.17158	3.01747
С	-1.70511	1.07821	0.79567	С	-2.12594	-1.41004	4.91993
С	-1.29839	0.80738	-1.55827	Н	-0.35729	-2.2105	0.42683
С	-3.0281	1.45196	0.54223	С	-3.10506	-1.95493	4.09588
С	-0.8102	0.69094	-0.2314	Н	-2.35235	-1.28057	5.97652
С	-0.44206	0.58356	-2.63721	Н	-4.06599	-2.21858	4.53253
Н	-3.68131	1.71759	1.36884	С	-2.8368	-2.22591	2.75378
Н	-1.37363	1.11419	1.82904	С	-3.81651	-2.86511	1.97417
С	0.90533	0.30601	-2.43013	С	-1.57554	-1.88432	2.20112
Н	-0.80416	0.67554	-3.65902	С	-3.56027	-3.2294	0.65607
Н	1.55188	0.20419	-3.29956	Н	-4.79003	-3.10189	2.3982
С	1.42036	0.1697	-1.1389	Н	-4.32484	-3.72612	0.06614
С	2.78859	-0.03329	-0.98335	С	-2.31026	-2.98147	0.1141
С	0.55601	0.25548	-0.01329	Н	-2.08156	-3.28696	-0.90314
С	3.36847	-0.09579	0.27869	С	-1.33528	-2.33651	0.88089
Н	3.44279	-0.07984	-1.85253	Ν	2.82538	-0.05811	2.77538
Н	4.44829	-0.1735	0.35506	С	4.0853	0.16598	3.38924
С	2.53227	-0.09331	1.40586	0	4.25018	0.0635	4.59671
С	1.13787	-0.10001	1.27113	0	5.03022	0.52083	2.48199
Н	2.1305	0.0096	5.58145	С	6.3109	0.78414	3.05526
С	1.37314	-0.26733	4.8532	Н	6.99382	1.05858	2.24654
Н	-0.11416	-0.5161	6.3589	Н	6.70137	-0.11105	3.54938
С	0.09256	-0.58083	5.29183	Н	6.25191	1.62129	3.75787

Table S12. Coordinates (Å) and Absolute Energy of the Optimized Structure for 7^a

Table 515. Coordinates (A) and Absolute Energy of the Optimized Structure for 8								
atom	Х	У	Z	atom	Х	У	Z	
Н	-4.47796	1.88334	-0.93083	С	0.64045	-0.63048	2.52166	
С	-3.45811	1.56468	-0.73625	С	-0.85464	-1.10238	4.3962	
Н	-2.99638	1.30658	-2.80605	С	1.65965	-0.36779	3.44304	
С	-2.614	1.22929	-1.79044	С	-0.6064	-1.21161	2.99974	
С	-1.66515	1.09754	0.80198	С	-2.10302	-1.44989	4.91738	
С	-1.2904	0.81746	-1.55721	Н	-0.40414	-2.22682	0.39506	
С	-2.97753	1.51456	0.56181	С	-3.10373	-1.96031	4.09746	
С	-0.79305	0.68592	-0.23534	Н	-2.31329	-1.33289	5.97877	
С	-0.45363	0.56126	-2.64471	Н	-4.06452	-2.21062	4.54218	
Н	-3.61454	1.79811	1.39514	С	-2.85742	-2.21602	2.74835	
Н	-1.32416	1.11655	1.83282	С	-3.85995	-2.82268	1.97175	
С	0.88444	0.23176	-2.45193	С	-1.59558	-1.89325	2.18561	
Н	-0.82376	0.66327	-3.66278	С	-3.62699	-3.17433	0.646	
Н	1.51561	0.09949	-3.32855	Н	-4.83332	-3.04445	2.40421	
С	1.40869	0.08127	-1.16601	Н	-4.40892	-3.64642	0.05861	
С	2.76757	-0.1861	-1.02276	С	-2.37779	-2.94728	0.09331	
С	0.56091	0.20884	-0.03223	Н	-2.16695	-3.24529	-0.92998	
С	3.35979	-0.25814	0.23378	С	-1.38029	-2.33425	0.85742	
Н	3.40601	-0.28197	-1.89986	Ν	2.83941	-0.10997	2.73412	
Н	4.43172	-0.40619	0.29427	С	4.08661	0.18567	3.34191	
С	2.5401	-0.18164	1.36946	0	4.27854	-0.07695	4.52537	
С	1.14485	-0.15546	1.24669	С	5.12572	0.84783	2.49252	
Н	2.1844	-0.11196	5.54679	Н	5.81391	1.38925	3.15105	
С	1.41456	-0.36947	4.82436	Н	4.69058	1.58945	1.81869	
Н	-0.05631	-0.62091	6.34495	Н	5.70736	0.09882	1.95191	
С	0.13536	-0.67156	5.27435					

Table S13. Coordinates (Å) and Absolute Energy of the Optimized Structure for $\mathbf{8}^a$

	C 514. C001	uniaus (A) a	inu Ausoluie	Thereby of the Optimized Structure for 9			
atom	Х	У	Z	atom	Х	У	Z
Н	-5.9973899	-0.4784728	-1.7513836	С	-0.4735581	1.6105585	-0.3210869
С	-4.9915597	-0.7381688	-1.4329057	С	-1.1497333	3.9133809	-0.9628769
Н	-5.6265802	-2.3598171	-0.1770492	Н	-0.8718288	-0.1114583	1.8032515
С	-4.7859727	-1.7782239	-0.5482354	С	-2.219186	3.8669706	-0.1277005
С	-2.6014677	-0.3603845	-1.5356484	Н	-0.9703054	4.7852413	-1.586872
С	-3.4826992	-2.1388645	-0.1364516	Н	-2.923161	4.6941617	-0.0796325
С	-3.8831315	-0.0444458	-1.9497963	С	-2.3917423	2.7675195	0.776307
С	-2.3589536	-1.3784795	-0.5841955	С	-3.3912984	2.8197983	1.7743379
С	-3.2770264	-3.31318	0.6598119	С	-1.4990904	1.6532808	0.7198347
Н	-4.0286835	0.7396746	-2.6876108	С	-3.4848214	1.839431	2.7421281
Н	-1.766537	0.1675172	-1.9761963	Н	-4.0708997	3.6687188	1.7832117
С	-2.0224304	-3.7738233	0.9001224	Н	-4.2505313	1.8969184	3.5108162
Н	-4.1473899	-3.8664948	1.0040324	С	-2.5552916	0.7845936	2.744922
Н	-1.8672701	-4.7123324	1.426313	Н	-2.5881152	0.0332819	3.5290878
С	-0.8625836	-3.0432792	0.4711904	С	-1.5887511	0.697496	1.7587178
С	0.4171755	-3.6148987	0.6494094	Р	2.7058635	-0.6813327	-1.1048411
С	-1.0180684	-1.7551028	-0.1421579	0	3.3479493	-1.3120961	-2.3073385
С	1.5440863	-2.9613088	0.1933232	С	3.9511793	-0.1480206	0.1238206
Н	0.4903743	-4.6012718	1.1002145	С	5.9464828	0.6068752	1.9330315
Н	2.5198074	-3.437924	0.2206012	С	5.2994753	-0.3735715	-0.1810211
С	1.4107116	-1.6489093	-0.2721951	С	3.6066264	0.4587698	1.3407883
С	0.1741672	-0.9810687	-0.3212055	С	4.6018919	0.8339733	2.2413926
Н	2.8165429	2.0873232	-2.4254239	С	6.2940418	0.0040254	0.7235089
С	1.8753469	1.9525773	-1.90011	Н	5.552113	-0.8443087	-1.1265115
Н	1.0900437	3.8947103	-2.3854323	Н	2.5631687	0.6418329	1.5845755
С	0.9328532	2.9602458	-1.8529949	Н	4.3304496	1.3045369	3.1826101
С	0.3528706	0.4833823	-0.6381705	Н	7.3388774	-0.1728196	0.4824639
С	-0.2222699	2.8202481	-1.0521431	Н	6.7209337	0.9010681	2.6366233
C	1 5718658	0 7263823	-1 2998119				

Table S14. Coordinates (Å) and Absolute Energy of the Optimized Structure for 9^a