Supporting Information

Tuning inter-molecular charge transfer, second-order nonlinear optical and absorption spectra properties of π -dimer under the external electric field

Feng-Wei Gao, Hong-Liang Xu* and Zhong-Min Su*

Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China.

E-mail: hlxu@nenu.edu.cn, zmsu@nenu.edu.cn

Table of Contents

- 1. Evolutions of the distances between the boron and nitrogen atoms (D, [Å]) of BN-PLY₂ under the F ($F = 1 \times 10^{-4}$ au) in Figure S1.
- 2. Evolutions of frontier molecular orbital (FMO) of BN-PLY₂ under the *F* along direction of positive z-axis in **Figure S2**.

3. Evolutions of the interaction energy (E_{int} , kcal mol⁻¹) of BN-PLY₂ under the $F(F = 1 \times 10^{-4} \text{ au})$ in Figure S3.

S3

S1

S2

- 4. The first hyperpolarizabilities (β_{tot} , au) and the components of first hyperpolarizabilities for π -dimers under the F ($F = 1 \times 10^{-4}$ au) by using the M06-2X method with different basis sets (6–31+G**, 6–31+G*, 6–31++G** and 6–311+G**) in **Table S1**.
- 5. The first hyperpolarizabilities (β_{tot} , au) and the components of first hyperpolarizabilities for BN-PLY₂ under the *F* (*F* = 1 × 10⁻⁴ au) at the M06-2X/6-31+G** level in **Table S2**.

S5

S4

Figure S1. Evolutions of the distances between the boron and nitrogen atoms (D, [Å]) of PLY₂-BN under the F ($F = 1 \times 10^{-4}$ au).

Figure S1 presents the evolution of the distance between the boron and nitrogen atoms with the different strength of external electric fields. Obviously, the change trend of distances with F along direction of negative z-axis is consistent with the distances with F along direction of positive z-axis, and they are gradually increased.

Figure S2. Evolutions of frontier molecular orbital (FMO) of BN-PLY₂ under the F along direction of positive z-axis ($F = 1 \times 10^{-4}$ au).

Figure S2 shows that the evolutions of the lowest unoccupied molecular orbital (LUMO) under the *F*. When the F_{+z} ranging from 120 to 130 × 10⁻⁴ au, the LUMO and the LUMO +1 takes place orbital interchange. When *F* continues to increase from 150 × 10⁻⁴ to 160 × 10⁻⁴ au, LUMO+1 and LUMO +2 exhibit orbital interchange in π -dimer, corresponding evolutions of FMOs of BN-PLY₂ under the *F* are presented in Figure S2.

Figure S3. Evolutions of the interaction energy (E_{int} , kcal mol⁻¹) of BN-PLY₂ under the F ($F = 1 \times 10^{-4}$ au) by using the M06-2X with D3 method.

The dispersion-corrected is very important for evaluating interactions of π -dimer systems. Therefore, we use M06-2X-D3 method to calculate interaction energy (E_{int} , kcal mol⁻¹) of BN-PLY₂ in Figure S3. It can be clearly seen that tend of the E_{int} values calculated by using the M06-2X-D3 method are consistent with that of the M06-2X method, and the E_{int} value with the M06-2X-D3 method increase of above 1.5 kcal mol⁻¹ compared to M06-2X method.

Basis set		-190	-150	-100	-50	0	50	100	150	190
6-31+G**	β _x	12.85	7.05	1.22	-2.53	-7.22	-6.70	-6.33	-1.74	0.31
	β _y	1.80	-1.55	-5.96	-8.32	3.07	-10.70	-8.78	7.17	26.94
	βz	4.07×10 ³	3.24×10 ³	2.85×10 ³	2.85×10 ³	3.02×10 ³	3.00×10 ³	2.05×10 ³	-9.14×10 ²	-6.67×10 ³
	$\beta_{\rm tot}$	4.07×10 ³	3.24×10 ³	2.85×10 ³	2.85×10 ³	3.02×10 ³	3.00×10 ³	2.05×10 ³	9.14×10 ²	6.67×10 ³
6–31+G*	β _x	12.52	6.86	1.10	-2.55	-5.98	-6.57	-6.21	-1.79	0.16
	β _y	1.66	-1.43	-5.50	-7.46	3.01	-9.29	-7.55	7.69	26.71
	βz	4.10×10 ³	3.26×10 ³	2.86×10 ³	2.86×10 ³	3.04×10 ³	3.01×10 ³	2.05×10 ³	-9.13×10 ²	-6.67×10 ³
	$\beta_{\rm tot}$	4.10×10 ³	3.26×10 ³	2.86×10 ³	2.86×10 ³	3.04×10 ³	3.01×10 ³	2.05×10 ³	9.13×10 ²	6.67×10 ³
6–31++G**	β _x	12.75	6.65	1.08	-2.54	-7.22	-6.74	-6.46	-1.42	1.79
	β _y	3.40	-1.73	-6.25	-8.36	3.03	-10.88	-9.21	7.78	31.86
	βz	4.29×10 ³	3.34×10 ³	2.87×10 ³	2.83×10 ³	2.98×10 ³	2.93×10 ³	1.95×10 ³	-1.07×10 ³	-6.90×10 ³
	$\beta_{\rm tot}$	4.29×10 ³	3.34×10 ³	2.87×10 ³	2.83×10 ³	2.98×10 ³	2.93×10 ³	1.95×10 ³	1.07×10^{3}	6.90×10 ³
6–311+G**	ßx	10.95	6.42	0.90	-3.02	-6.44	-7.35	-6.84	-1.81	0.52
	ßy	-2.29	-4.95	-7.52	-8.33	3.60	-10.29	-11.27	-3.70	3.33
	βz	3.59×10 ³	2.96×10 ³	2.73×10 ³	2.80×10 ³	3.01×10 ³	2.99×10 ³	2.10×10 ³	-7.02×10^{2}	-6.56×10 ³
	$\beta_{\rm tot}$	3.59×10 ³	2.96×10 ³	2.73×10 ³	2.80×10 ³	3.01×10 ³	2.99×10 ³	2.10×10 ³	7.02×10^{2}	6.56×10 ³

Table S1. The first hyperpolarizabilities (β_{tot} , au) and the components of first hyperpolarizabilities for π -dimers under the F ($F = 1 \times 10^{-4}$ au) by using the M06-2X method with different basis sets (6–31+G**, 6–31+G*, 6–31+G** and 6–311+G**).

We used the M06-2X results to further evaluate the effect of the different basis sets on the second-order NLO properties, so four basis sets (6-31+G*, 6-31+G**, 6-31++G**, and 6-311+G**) were chosen to calculate the β_{tot} value under the *F*. Obviously, the different basis sets obtain the same trend in the β_{tot} value, and the β_{tot} values are very close. The above results confirm the reliability and accuracy of 6-31+G** basis set.

	β _x	$\beta_{\rm y}$	βz	$\beta_{\rm tot}$
-190	12.85	1.80	4.07×10 ³	4.07×10 ³
-150	7.05	-1.55	3.24×10 ³	3.24×10 ³
-100	1.22	-5.96	2.85×10 ³	2.85×10 ³
-50	-2.53	-8.32	2.85×10 ³	2.85×10 ³
0	-7.22	3.07	3.02×10 ³	3.02×10 ³
50	-6.70	-10.70	3.00×10 ³	3.00×10 ²
100	-6.33	-8.78	2.05×10 ³	2.05×10 ²
150	-1.74	7.17	-9.14×10 ²	9.14×10 ²
190	0.31	26.94	-6.67×10 ³	6.67×10 ³

Table S2. The first hyperpolarizabilities (β_{tot} , au) and the components of first hyperpolarizabilities for π -dimers under the *F* (*F* = 1 × 10⁻⁴ au) at the M06-2X/6–31+G** level.

Table S2 results show that the β_z values are very close to the β_{tot} values under the *F*, indicating that the greatest contribution to the β_{tot} is the β_z value for π -dimer.