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Content:
1)   Estimate of  parameters  of Eq. 1 (main text) based on molecular-scale modelling [S1].
2) Derivation of the 1-D drift-diffusion equation with mobility dependent on charge 

concentration. Derivation of the current-voltage characteristics for constant mobility 
(independent on charge concentration) and estimation of electric fields and their divergences 
at contacts. Discussion about the limits of the drift-diffusion equation model stemming from 
the model itself. 

1) Concentration dependence of the hole mobility
Figure 8 in Ref. S1 shows the calculated hole mobility as a function of the hole concentration 
and energetic disorder in crystalline (a) and amorphous (b) phase. Calculation was done for an 
external electric field 107 V/m oriented in the π-stacking direction in the crystalline phase and 
along one of the axes in the amorphous phase (see Fig. 6 in Ref. S1). These numerical results 
can be very well approximated using the empirical formula by Eq. 1 in main text. The 
calculated fitting parameters are shown in Table S1.

σ(ε) A 
[cm2/(Vs)]

np 
[cm-3]

p nq 
[cm-3]

q

Crystalline phase
0.00 7.4666E+00 1.0000E+21 0.0000E+00 1.4876E+20 1.8113E+00
0.05 4.1903E+00 3.0903E+20 5.1794E-01 1.8891E+20 2.1624E+00
0.10 8.8461E-02 1.7743E+18 7.8083E-01 1.8049E+20 2.3514E+00
0.15 6.0150E-04 5.6824E+17 1.2901E+00 2.4758E+20 3.2053E+00
0.20 3.2024E-06 4.5555E+17 1.9221E+00 3.1579E+20 4.9237E+00

Amorphous phase
0.00 5.0453E-05 1.4026E+20 5.7812E-01 1.7771E+20 2.1038E+00
0.05 1.4039E-05 8.4350E+18 6.0926E-01 1.5140E+20 2.0024E+00
0.10 5.6641E-07 7.3534E+17 8.7079E-01 1.5041E+20 2.0603E+00
0.15 1.0748E-08 3.6617E+17 1.3293E+00 1.6018E+20 2.3811E+00
0.20 1.6462E-10 3.2395E+17 1.8930E+00 1.6021E+20 2.7525E+00

Table S1: Optimized parameters of the empirical formula Eq. 1 in main text describing the 
concentration dependence of the hole mobility μʹcryst in the crystalline phases of P3HT 
oriented in the π-stacking direction and of the hole mobility μʹamorph in the amorphous phase 
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oriented along one of the axes shown in Fig. 6 of Ref. S1. Calculations were done for 
different values of the local energetic disorder σ(ε).

2) Thin layer model
This section is related to the part of the main article, which solves the 1-D kinetic 

transport of the so called “surface charges”, which due to the symmetry of the OFET reduces 
the problem to 1-D one. Here, we will first derive the drift-diffusion equation for 1-D systems 
with explicitly dependent mobility on charge concentration, next we show a correct analytical 
solution of the 1-D drift-diffusion equation with constant mobility without contact resistances 
and also we show consequences stemming from the exact solution, together with a possible 
approximation and its limitations.  

Let x is the coordinate along the active channel toward the drain contact and  is the 𝑧

coordinate perpendicular to the plain of the conducting channel. Thin layer model of hole 
transport assumes that the equivalent surface charge density  is given by the integration of 𝜎(𝑥)

volume charge density  in the Poisson equation ( ) in the direction z 𝜌(𝑥,𝑧) div 𝐸 =  𝜌(𝑥,𝑧)/𝜀

perpendicular to the transporting layer, i.e. . Moreover, it is assumed that 𝜎(𝑥) ≡ ∫𝜌(𝑥,𝑧)𝑑𝑧

divergences of electric field perpendicular to the conducting layer are dominant and 
divergences in the direction of the conducting layer are negligible. Then we get for the 
equivalent surface charge density  the following capacitor relation 𝜎(𝑥)

  
,                                                                                                  (S1)𝜎(𝑥) = 𝐶(𝑉(𝑥) ‒ 𝑉G + 𝑉T)

where C is the capacity of the insulating layer. In the calibration of the gate voltage VG also 
the work function of the gate and potential drops at interfaces of insulator should be taken into 
account. This is reflected by the potential shift of the threshold voltage VT. The latter also 
includes trapped (very deep traps) surface charges that do not contribute to the current but 
which had to be included in the integration of the Poisson equation. Therefore, the expression 
CVT includes trapped surface charges as well as shift of the gate level due to its work function 
and effects at interfaces. The source-to-drain-current ISD in the thin capacitor model includes 
both drift and diffusion currents. If we denote by  the component of the electric field along 𝐸𝑥

the conductive channel the drift term equals to , where t is the thickness of 
𝑤

𝑡

∫
0

𝜇(𝜌)𝜌𝐸𝑥(𝑥,𝑧)𝑑𝑧

the conducting layer inside the OFET. Linearizing the distribution of the component  𝐸𝑥

perpendicularly to the conducting channel   , we find for the drift 𝐸𝑥(𝑥,𝑧) ≈ 𝐸𝑥(𝑥,0) + 𝑧
∂

∂𝑧
𝐸𝑥(𝑥,0)

term

𝑤
𝑡

∫
0

𝜇(𝜌)𝜌.𝐸𝑥(𝑥,𝑧)𝑑𝑧 ≈ 𝑤
𝑡

∫
𝑡

𝜇(𝜌)𝜌.{𝐸𝑥(𝑥,0) + 𝑧
∂

∂𝑧
𝐸𝑥(𝑥,0)}𝑑𝑧 = 𝑤𝜇(𝜎)𝜎𝐸𝑥(𝑥,0) +

  .                                                                                                 (S2)
𝑤

∂
∂𝑧

𝐸𝑥(𝑥,0)
𝑡

∫
0

𝜇(𝜌)𝜌𝑧𝑑𝑧
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Here, in the first term of the expansion we introduced  as 
𝜇(𝜎(𝑥)) ≡

1
𝜎(𝑥)

𝑡

∫
0

𝜇(𝜌(𝑥,𝑧))𝜌(𝑥,𝑧)𝑑𝑧

mobility dependent on equivalent surface charge concentration  controlled by the instant 𝜎(𝑥)

potential  through Eq. (S1). The latter becomes obvious after realizing that the 𝑉(𝑥) ‒ 𝑉G + 𝑉T

distribution of volume charge density  along the direction z is fully controlled by the 𝜌(𝑥,𝑧)

equilibrium between the drift and diffusion current along the z direction. Solving that, it can 
be analytically found that the charge distribution is fully controlled by the component  𝐸𝑧(𝑥,0)

of electric field at the boundary, which is exactly given by , and whence also by 𝑉(𝑥) ‒ 𝑉G + 𝑉T

 through the capacity relation (S1). For the estimate of mutual contribution of both terms 𝜎(𝑥)

we can write

𝑤
𝑡

∫
0

𝜇(𝜌)𝜌𝑧
∂

∂𝑧
𝐸𝑥(𝑥,0).𝑑𝑧

𝑤
𝑡

∫
0

𝜇(𝜌)𝜌𝐸𝑥(𝑥,0)𝑑𝑧

=

∂
∂𝑧

𝐸𝑥(𝑥,0)

𝐸𝑥(𝑥,0)

𝑡

∫
0

𝜇(𝜌)𝜌.𝑧.𝑑𝑧

𝑡

∫
0

𝜇(𝜌)𝜌.𝑑𝑧

≤

∂
∂𝑧

𝐸𝑥(𝑥,0)

𝐸𝑥(𝑥,0)

𝑡

∫
0

𝜌.𝑧.𝑑𝑧

𝑡

∫
0

𝜌.𝑑𝑧

 =

∂
∂𝑧

𝐸𝑥(𝑥,0)

𝐸𝑥(𝑥,0)
.�̅� =  

∂
∂𝑥

𝐸𝑧(𝑥,0)

𝐸𝑥(𝑥,0)
.�̅� =

‒ 𝜀𝐷

𝜀𝑃3𝐻𝑇𝑑
∂

∂𝑥(𝑈(𝑥) ‒ 𝑈g + 𝑈th)

‒
∂

∂𝑥(𝑈(𝑥) ‒ 𝑈g + 𝑈th)

 �̅� =
𝜀𝐷

𝜀𝑃3𝐻𝑇

�̅�
𝑑

                                                                                              (S3)

In the inequality of (S3) we used the fact that  for  due to the mobility 𝜇(𝜌(𝑧)) ≥  𝜇(𝜌(𝑠)) 𝑧 < 𝑠

increase with charge concentration. We also introduced “mean thickness ” of charge �̅�

conducting channel in the conductive channel . For the numerator we also �̅� ≡  ∫𝜌𝑧𝑑𝑧/𝜎

utilized the relation , which yields   and that at the boundary 𝑟𝑜𝑡 �⃗� = 0
∂

∂𝑧
𝐸𝑥(𝑥,0) =

∂
∂𝑥

𝐸𝑧(𝑥,0)

. Next, taking into account permittivities of conductive polymer 
𝐸𝑧(𝑥,0) =

‒ 𝜀𝐷(𝑉(𝑥) ‒ 𝑉G + 𝑉T)
𝜀𝑃3𝐻𝑇𝑑

and insulating dielectrics satisfy  and  and that the “mean thickness ” of the 𝜀𝑃3𝐻𝑇 ≈ 4.2 𝜀𝐷 ≈ 3.9 �̅�

order of few nm is significantly shorter than the thickness of the insulating dielectric 
dielectrics d = 230 nm, the right hand side in (S3)  and for the drift current we can write→0

 

.                                                                              (S4)
𝐼𝑑𝑟𝑖𝑓𝑡  ≈‒  𝑤𝜇(𝜎)𝜎

∂
∂𝑥(𝑉(𝑥) ‒ 𝑉G + 𝑉T)

On the other hand, for the diffusion term we can write
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.                                                                                                                
𝐼𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  ≈‒

𝑡

∫
0

𝐷(𝜌)
∂𝜌(𝑥,𝑧)

∂𝑥
𝑑𝑧 =‒ ̅𝐷(𝜎(𝑥))

∂
∂𝑥

𝑡

∫
0

𝜌.𝑑𝑧 =‒ ̅𝐷(𝜎(𝑥)).
∂

∂𝑥
𝜎 ≈‒

𝑘𝐵𝑇

𝑒
𝜇(𝜎(𝑥))

∂
∂𝑥

𝜎

(S5) 

In the last equation we have used the mean value theorem for integration and the Einstein 

relation  . Morever, we can generalize Eq. S4 (and similarly Eq. S5) even for 
𝐷(𝜎(𝑥))
𝜇(𝜎(𝑥))

~
𝑘𝐵𝑇

𝑒

mobility also explicitly dependent on the coordinate z, which would account also 𝜇(𝑧,𝜌(𝑥,𝑧))  

for surface effects. Then in Eq. S4 (or S5)  would be used.
𝜇(𝜎(𝑥)) ≡

1
𝜎(𝑥)∫𝜇(𝑧,𝜌(𝑥,𝑧))𝜌(𝑥,𝑧)𝑑𝑧

Exact solution of the drift-diffusion with constant mobility
Let’s assume for simplicity that in the drift-diffusion equation (S4) controlling the current 
flowing between the source and drain along the 1-D chain, the mobility  is not dependent on 𝜇

the equivalent surface charge density . Eq. (S4) then takes the form𝜎

 .                                                                                       (S6)
𝐼𝑆𝐷 =  ‒ 𝑤𝜎(𝑥)𝜇

∂𝑉(𝑥)
∂𝑥

‒ 𝑤𝐷
∂𝜎(𝑥)

∂𝑥

Substituting for U(x) from Eq. S1 we get

𝐼𝑆𝐷 =‒
𝑤𝜇
𝐶

𝜎(𝑥)
∂

∂𝑥
𝜎(𝑥) ‒ 𝐷𝑤

∂
∂𝑥

𝜎(𝑥) =‒
𝑤𝜇
𝐶

∂
∂𝑥(𝜎(𝑥)2

2
+

𝐶𝐷
𝜇

𝜎(𝑥)) =

               .                          (S7)
=‒

𝑤𝜇
𝐶

∂
∂𝑥

{
1
2(𝜎(𝑥) +

𝐶𝐷
𝜇 )2 ‒

1
2(𝐶𝐷

𝜇 )2} =  ‒
𝑤𝜇
2𝐶

∂
∂𝑥(𝜎(𝑥) +

𝐶𝐷
𝜇 )2

Utilizing that the current  is constant, i.e., independent on x, along the chain the last 𝐼𝑆𝐷

equation S6 can be integrated to the solution

 ,                                                                                          (S8)
𝐼𝑆𝐷𝑥 + 𝐾 =‒  

𝑤𝜇
2𝐶(𝜎(𝑥) +

𝐶𝐷
𝜇 )2

with the integration constants K. After utilizing S1 we get

.                                                                     (S9)
𝐼𝑆𝐷𝑥 + 𝐾 = ‒

𝑤𝜇
2𝐶{𝐶(𝑉(𝑥) ‒ 𝑉𝐺 + 𝑉𝑇) +

𝐶𝐷
𝜇 }2

Utilizing the Einstein-Smoluchowski relation, Eq. S9 takes a form

.                                                                      (S10)
𝐼𝑆𝐷𝑥 + 𝐾 =‒

𝑤𝜇𝐶
2

(𝑉(𝑥) ‒ 𝑉𝐺 + 𝑉𝑇 +  
kT
e

)2

The last term in Eq. S10 kT/e  0.025 V and it correspond to the correction obtained from ≈

the diffusion current.  In manifold articles this term is neglected. Below, we will see that it is 
actually a very critical factor in the saturation regime at the drain. The equation above 
contains two constants of integration: the current “ISD” and the constant “K”. Both of them 
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can be obtained from boundary conditions of the potential at both contacts: V(x=0) = VS 
(source) and V(x=L) = VD (drain), respectively. Namely,

,                                                                                      (S11)   
𝐾 =  ‒  

𝑤𝜇𝐶
2

(𝑉S ‒ 𝑉G + 𝑉𝑇 +
kT
e

)2

                

 .                                                                         (S12)
𝐼𝑆𝐷𝐿 + 𝐾 =  ‒  

𝑤𝜇𝐶
2

(𝑉𝐷 ‒ 𝑉G + 𝑉𝑇 +
kT
e

)2

Finally, we arrive at the relation

 .                                            (S13)
𝐼𝑆𝐷 =  ‒  

𝑤𝜇𝐶
2𝐿

{(𝑉𝑆𝐺 ‒ 𝑉SD + 𝑉𝑇 +
kT
e )2 ‒ (𝑉SG + 𝑉𝑇 +

kT
e )2}

Eq. S13 directly expresses the dependence of the current  as a function of applied source-𝐼𝑆𝐷

to-drain ( ) and source-to-gate ( ) voltages. In the Ohmic limit for 𝑉𝑆𝐷 =‒ 𝑉𝐷 + 𝑉S 𝑉𝑆𝐺 =‒ 𝑉𝐺 + 𝑉S

small source-to-drain voltage VSD we get the linear regime

  .                                                                                           (S14)    
𝐼𝑆𝐷 ~ 𝑤𝜇𝐶(𝑉SG + 𝑉𝑇 +

kT
e

)
𝑉SD

𝐿

       
On the other hand, Eq. (S13) takes its maximum for  

 .                                                                                                          (S15)
𝑉SD =  𝑉SG + 𝑉T +

kT
e

However, there is a limitation that cannot be neglected. As for holes VSG > 0, earlier then the 
voltage VSD takes the value as shown in Eq. S15 for values  (and ), 𝑉SD =  𝑉SG + 𝑉𝑇 𝑉𝐷 = 𝑉𝐺 ‒ 𝑉T

the surface concentration ) disappears at the drain contact, because due to the Eq. S1  (L) 𝜎(𝑥 𝜎

= 0 and the current takes the value 

 .                               (S16)
𝐼𝑆𝐷 =

𝑤𝜇𝐶
2𝐿

{(𝑉SG + 𝑉T +
kT
e )2 ‒ (kT

e
)2} =

𝜇𝑤𝐶
2𝐿

{(𝑉SD +
kT
e )2 ‒ (kT

e )2}

For increasing value of the source-to-drain voltage  and fixed value of source-to-gate 𝑉SD

voltage  the local charge density at the drain remains (L) = 0 and this value is a new 𝑉SG 𝜎

“boundary condition” to the differential equation S8, instead of the value of drain voltage . 𝑉D

The solution for the current  in the saturation regime thus reads as𝐼𝑆𝐷

 .                                                                   (S17)
 𝐼𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑆𝐷 =
𝑤𝜇𝐶
2𝐿

{(𝑉SG + 𝑉T +
kT
e )2 ‒ (kT

e )2}

Hole concentration: 
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From the relation

                                                   (S18)
𝐼𝑆𝐷𝑥 + 𝐾 =‒  

𝑤𝜇
2𝐶(𝜎(𝑥) +

𝐶𝐷
𝜇 )2 =  ‒  

𝜇𝑤
2𝐶(𝜎(𝑥) +

k𝑇𝐶

e )2

we get

,                                                                                              (S19)
𝜎(𝑥) =  ‒  

k𝑇𝐶

e
+

2(𝐼𝑆𝐷𝑥 + 𝐾)𝐶

‒ 𝑤𝜇

which is not a linear function along the channel. In the same way, also the drop of the 

potential along the channel is not a linear function. The derivative  along the channel | ∂
∂𝑥

𝜎(𝑥)|
increases and particularly near the drain significantly increases in the saturation regime. 

Diffusion current:     From   Eq. (S19) we get 
 

,                        

‒ 𝐷𝑤
∂𝜎(𝑥)

∂𝑥
=  

𝐼𝑆𝐷𝑘𝑇

𝑒
𝐶

2(𝐼𝑆𝐷𝑥 + 𝐾)𝐶

‒ 𝜇𝑤

= 𝐼𝑆𝐷
𝑘𝑇
𝑒

𝐶

(𝜎(𝑥) +
𝑘𝑇
𝑒

𝐶)
= 𝐼𝑆𝐷

𝑘𝑇
𝑒

1

(𝑉(𝑥) ‒ 𝑉𝐺 + 𝑉𝑇 +
𝑘𝑇
𝑒 )

(S20)

where for both channel ends (x = 0, source) and (x = L, drain) we find:

                                                                                           

� ‒ 𝐷𝑤
∂𝜎(𝑥)

∂𝑥 |𝑥 = 0 = 𝐼𝑆𝐷

k𝑇

e

VSG + 𝑉T +
k𝑇

e
(S21)

From (S21) we observe that the diffusion current at the source is always negligible. On the 
other hand for the diffusion current at the drain we find

   .                                                      

� ‒ 𝐷𝑤
∂𝜎(𝑥)

∂𝑥 |𝑥 = 𝐿 = 𝐼𝑆𝐷

k𝑇

e

VDG + 𝑉𝑇 +
k𝑇

e

= 𝐼𝑆𝐷

k𝑇

e

VSG ‒ 𝑉𝑆𝐷 + 𝑉𝑇 +
k𝑇

e

(S22)

  Diffusion current at the drain is also always negligible except for the saturation regime, 
where . Then we find𝑉SD ≥  𝑉SG + 𝑉T
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   .                                                                                                        (S23)� ‒ 𝐷
∂𝜎(𝑥)

∂𝑥 |𝑥 = 𝐿→𝐼𝑆𝐷

Thus, in this limit the current  is fully diffusion controlled at the drain. Physically, 𝐼𝑆𝐷

within the 1-D model the current is controlled by the charge concentration gradient 

 for distances from drain where . 
∂𝜎(𝑥)

∂𝑥
𝑉(𝑥) ‒ 𝑉𝐺 + 𝑉𝑇 ≈

𝑘𝑇
𝑒

= 0.025 𝑒𝑉

 
Electric field:   
Utilizing Eq. S9 we find for the component of electric field Ex along the conductive channel 

                                                   

𝐸𝑥 =  ‒
∂𝑉(𝑥)

∂𝑥
=

𝐼𝑆𝐷

𝑤𝜇𝐶
1

2( ‒ 𝐼𝑆𝐷𝑥 ‒ 𝐾)
=

𝐼𝑆𝐷

𝑤𝜇𝐶
1

(𝑉(𝑥) ‒ 𝑉𝐺 + 𝑉𝑇 +
𝑘𝑇
𝑒

)

(S24) 
  
At x = 0 (source):

   .                                                                                         

� ‒ ∂𝑉(𝑥)
∂𝑥 |𝑥 = 0 =

𝐼𝑆𝐷

𝑤𝜇𝐶
1

(𝑉SG + 𝑉T +
k𝑇

e
)

(S25)

 If   (the Ohmic limit) we obtain𝑉SD→0

      ,                                                                                                          (S26)  � ‒ ∂𝑉(𝑥)
∂𝑥 |𝑥 = 0 =

𝑉SD

𝐿

which means that at the source the intensity of electric field corresponds to the mean slope of 
the source-to-drain potential  VSD.  On the other hand, in the saturation regime we get

   ,                                                                                                     � ‒ ∂𝑉(𝑥)
∂𝑥 |𝑥 = 0 ≈

(𝑉𝑆𝐺 + 𝑉T)

2𝐿

(S27)

indicating that at the source the intensity of electric field corresponds to the half of the source-
to-gate potential /2.(𝑉𝑆𝐺 + 𝑉T)

At x = L (drain):

  .                                                                                              

� ‒ ∂𝑉(𝑥)
∂𝑥 |𝑥 = 𝐿 =

𝐼𝑆𝐷

𝑤𝜇𝐶
1

V𝐷𝐺 + 𝑉T +
k𝑇

e

(S28)
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  If   (the Ohmic limit) then we get𝑉SD→0

     ,                                                                                                           (S29)� ‒ ∂𝑉(𝑥)
∂𝑥 |𝑥 = 𝐿 =

𝑉SD

𝐿

corresponding to the mean slope of the source-to-drain potential VSD. On the other hand, in 
the saturation regime we get

 .                                                                                                     

� ‒ ∂𝑉(𝑥)
∂𝑥 |𝑥 = 𝐿 ≈  

(𝑉𝑆𝐺 + 𝑉T)2

2𝐿
k𝑇

e

(S30)

For  = 5 V and L = 5 µm, which corresponds to moderate values of the applied gate 𝑉𝑆𝐺 + 𝑉T

voltage we obtain from Eq. S30 . On the other hand, for high values � ‒ ∂𝑉(𝑥)
∂𝑥 |𝑥 = 𝐿 ≈  2 x 107V/m

of gate voltage  = 25 V and L = 5 µm we obtain . However, 𝑉𝑆𝐺 + 𝑉T � ‒ ∂𝑉(𝑥)
∂𝑥 |𝑥 = 𝐿 ≈  5 x 108V/m

such a high value of the internal electric field is hardly possible in organic materials, since it 
would cause an electrical breakdown of the sample.
                                                                             
Divergence of electric field:
For the divergence of the component Ex along the conductive channel we obtain from (S24)

                                                                                   (S31)       

∂𝐸𝑥

∂𝑥
=‒

∂2𝑉(𝑥)

∂𝑥2
=‒

𝐼𝑆𝐷
2

𝑤𝜇𝐶
1

2( ‒ 𝐼𝑆𝐷𝑥 ‒ 𝐾)

At x = L (drain) in saturation regime:

                                                                                        (S32)

�∂𝐸𝑥

∂𝑥
=‒

∂2𝑉(𝑥)

∂𝑥2 |𝑥 = 𝐿 ≈  
1

𝐿2

(𝑉SG + 𝑉T)4

(
k𝑇

e
)3

If we restricted the Poisson equation just to the dimension along the channel, this divergence 
would produce a carrier density n(x)/e

  .                                                                                                            

𝑛(𝑥)
e

≈
𝜖
e

1

𝐿2

(𝑉SG + 𝑉T)4

(
k𝑇

e
)3

(S33)
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For the relative permittivity  ε = 4.2, L = 5 µm and VSG +  = VSD = 10 V, the carrier density 𝑉T

would be ca 5 x 1021 cm-3, which is comparable to the full density of all HOMO states for 
P3HT (ca 4 x 1021 cm-3). 

On the basis of calculated electric fields and their divergences at the drain we conjecture the 
model based purely on the capacity relation (S11) of the thin layer model controlled by the 
drift-diffusion equation (S4-S5) fails at the drain in the saturation regime. Our model 
presented in the main text, which eliminates these unphysical artifacts, includes the contact 
resistances connected in the series to the 1-D model. Nevertheless, these estimates of 
calculated electric fields and their divergences at the drain in “an ideal 1-D model” indicate 
possibility of non-trivial effects near contact even for OFET simulation based on macroscopic 
kinetic theory for charge transfer. 

3. Profiles of electric field intensity and charge concentration in transversal direction 
(perpendicular to the channel length)

For given value of the potential difference  the transversal component of 𝑉(𝑥) ‒ 𝑉G + 𝑉𝑇

the electric field intensity  at the bottom at the conducting layer is strictly determined. 𝐸𝑧(𝑥,0)

If in the transversal direction the drift and diffusion currents are in equilibrium and the 
Poisson equation is reduced just to the transversal direction also the distribution of the 
transversal electric field intensity and charge concentration is unambiguously determined as 
follows 

                                                            (S34)

𝐸𝑧(𝑧) = 𝐺𝑡𝑔{
𝑒𝐺𝑧
2𝐾𝑇

+ 𝑎𝑟𝑐𝑡𝑔{
𝐸(0)

𝐺
}} = 𝐺

(𝑡𝑔{
𝑒𝐺𝑧
2𝐾𝑇} +

𝐸𝑧(0)

𝐺
)

1 ‒ 𝑡𝑔{
𝑒𝐺𝑧
2𝐾𝑇

}
𝐸𝑧(0)

𝐺

,                                                              

𝜌(𝑧) = 𝜀𝑃3𝐻𝑇

∂𝐸𝑧

∂𝑧
=

𝜀𝑃3𝐻𝑇𝑒

2𝐾𝑇
𝐺2

𝑐𝑜𝑠2(
𝑒𝐺𝑧
2𝐾𝑇

+ 𝑎𝑟𝑐𝑡𝑔{
𝐸𝑧(0)

𝐺
})

> 0

(S35)

with the constant G determined from the “gate” boundary condition. 

                                                                                 (S36)
𝐺tg{

e𝐺𝑡
2𝐾𝑇

} =‒ 𝐸𝑧(0) =
(𝑉(𝑥) ‒ 𝑉G + 𝑉𝑇)

𝜀𝑃3𝐻𝑇
𝐶

which can be easily obtained from Eq. (S34) under the condition that at the opposite site to 
the insulating dielectrics the transversal electric field vanishes, i.e., . Utilizing Eqs. 𝐸𝑧(𝑡) = 0

(S34-S36) we can also estimate the factor  in Eq (S3) for the ratio of the first order and 

𝜀𝐷

𝜀𝑃3𝐻𝑇

�̅�
𝑑

zeroth order terms in the Taylor expansion as follows 
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𝑤
𝑡

∫
0

𝜇(𝜌)𝜌𝑧
∂

∂𝑧
𝐸𝑥(𝑥,0)𝑑𝑧

𝑤
𝑡

∫
0

𝜇(𝜌)𝜌𝐸𝑥(𝑥,0)𝑑𝑧

≤
𝜀𝐷

𝜀𝑃3𝐻𝑇

�̅�
𝑑

=
𝜀𝐷

𝜀𝑃3𝐻𝑇

𝑡

∫
0

𝜌(𝑧)𝑧𝑑𝑧

𝑑
𝑡

∫
0

𝜌(𝑧)𝑑𝑧

=
𝑘𝑇
𝑒

𝑙𝑛(1 + (
𝐸𝑧(0)

𝐺
)2)

( 𝑉(𝑥) ‒ 𝑉𝐺 + 𝑉𝑇)
≈

  .                                                                                    
≈

𝑘𝑇
𝑒

𝑙𝑛[1 + (
2
𝜋{ 𝜀𝐷

𝜀𝑃3𝐻𝑇

( 𝑉(𝑥) ‒ 𝑉𝐺 + 𝑉𝑇)

2
𝑘𝑇
𝑒

𝑡
𝑑

+ 1})2]
( 𝑉(𝑥) ‒ 𝑉𝐺 + 𝑉𝑇)

(S37)

In Eq. (S37) we utilized Eqs. (S34-S35) in performing integration and for the obtained result 

we used that Eq. (S36) provides  for

‒
𝐸𝑧(0)

𝐺
≈

2
𝜋{ 𝜀𝐷

𝜀𝑃3𝐻𝑇

( 𝑉(𝑥) ‒ 𝑉𝐺 + 𝑉𝑇)

2
𝑘𝑇
𝑒

𝑡
𝑑

+ 1}
 . When parameters of the studied OFET, i.e., , , d = 230 𝑉(𝑥) ‒ 𝑉𝐺 + 𝑉𝑇 > 1𝑉 𝜀𝑃3𝐻𝑇 ≈ 4.2 𝜀𝐷 ≈ 3.9

nm and t = 230 nm are inserted into Eq. (S37) we find for the limit of the upper boundary 

 values as shown in Table S2. We find that the “thin layer” OFET model is valid for 

𝜀𝐷

𝜀𝑃3𝐻𝑇

�̅�
𝑑

values of  of the order of units in V.𝑉(𝑥) ‒ 𝑉𝐺 + 𝑉𝑇

𝑉(𝑥) ‒ 𝑉𝐺 + 𝑉𝑇 𝜀𝐷

𝜀𝑃3𝐻𝑇

�̅�
𝑑

1 V 0. 088
2 V 0.06
3 V 0.046
4 V 0.038
5 V 0.033

Table S2:  The upper boundary limit   for the ratio of the first and zeroth order 

𝜀𝐷

𝜀𝑃3𝐻𝑇

�̅�
𝑑

expansion terms in Eq. (S3).

Distributions of both quantities in Eqs. (S34-35) for parameters of FET setup are shown in 
Fig. S1 up to 10 nm. We observe that the transversal electric field intensity reduces to 10 % of 
its boundary value within just “few” nm so that the also the “equivalent surface charge”  𝜎(𝑥)

is concentrated just within just “few” nm to the bottom of the channel. The effect is more 
pronounced for higher values of gate voltage drop. We also note that within thin layer the 
charge concentration can be the order of ca , which was shown in [S1] to be in 0.01 ÷ 0.1 𝑛𝑚 ‒ 3

the range of mobility increase. Next, we also note that within this “thin layer” also transversal 
electric field intensities are very high. Namely, for , the transversal 𝑉(𝑥) ‒ 𝑉G + 𝑉𝑇 ≥ 20 𝑉
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electric field intensity  is of the order of ca . Both these high charge 𝐸𝑧(𝑧) 108𝑉.𝑚 ‒ 1

concentration and electric field intensities, as well as the variability of the mobility 
dependence along the transversal direction must be taken into account for rigorous molecular 
scale modelling. We find

 ,                   (S38)
𝜇(𝑉(𝑥)) ≡

1

(𝐶(𝑉(𝑥) ‒ 𝑉G + 𝑉T))

𝑡

∫
0

𝜇𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 ‒  𝑠𝑐𝑎𝑙𝑒(𝑧,𝜌(𝑥,𝑧),𝐸𝑧(𝑥,𝑧))𝜌(𝑥,𝑧).𝑑𝑧)

      
 where inputs   and  are given by Eqs. (S34-35) and molecular scale mobility 𝜌(𝑥,𝑧) 𝐸𝑧(𝑥,𝑧)

  can critically depend on local morphology, and therefore, for its evaluation 𝜇𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 ‒  𝑠𝑐𝑎𝑙𝑒

suitable model must be chosen, which exactly matches given morphology
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Fig. S1: Transversal electric field intensity and charge concentration distribution along 
transversal direction of the conducting channel for various applied gate voltage 

: 40 V (solid line), 30 V (dash line), 20 V (dotted line), 10 V (dash-dotted line).(𝑉(𝑥) ‒ 𝑉G + 𝑉𝑇)

4. Examples of mobility dependences on gate voltage for P3HT samples prepared under 
different conditions.
For the sake of illustration of mobility dependence on gate voltage we show in Fig S2 several 
other dependences for samples prepared under various different conditions than shown in the 
main text:
In all additional samples a poly(3-hexylthiophene), P3HT, Mw=44000, regioregularity 96 %, 
obtained from LISICON was used. The thin polymeric layers were cast on Si(n+)/SiO2 
substrates in ambient air conditions. The Si(n+)/SiO2 substrates were purchased from 
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Fraunhofer Institute for Photonic Microsystems, Dresden, Germany (SiO2 thickness 230 nm, 
with corresponding gate capacitance C = 15 nF.cm-2, 30 nm thick Au electrodes with 10 nm 
ITO undercoat, channel width W = 1 cm and channel lengths L = 5 μm, 10 μm, 15 μm and 20 
μm), respectively.
a)  dip-coated … high. The thin active layer was deposited from a fresh solution of P3HT in 
toluene (10mg/ml) at sample withdrawing speed 4mm/min onto the previously silanizated 
substrate surface with octadecyltrietoxysilane (OTS) purchased from Sigma-Aldrich. The 
OTS modified substrate surface has increased hydrophobicity compared to bare substrate; 
water contact angel is around 90° while for fresh not treated substrate it is around 60°. The 
final active layer was annealed on the hot plate for 1h at 150°C in N2 glovebox atmosphere 
and then slowly cooled dawn in order to improve layer crystallinity. The threshold voltage 

 was found independent on the channel length L.𝑈𝑇 =  ‒ 15 𝑉

b)  dip-coated … low. The 20 nm thin active layer was deposited from fresh solution in 
dichlorobenzene (5mg/ml) at sample withdrawing speed 4mm/min onto the bare (not treated) 
substrate. The threshold voltage   was found independent on the channel length L𝑈𝑇 =  ‒ 16 𝑉

c)  spin-coated … The 120 nm thick active layer was deposited from a fresh solution of P3HT 
in chloroform (10mg/ml) by spin-coating at 1000 rpm for 30s onto the bare (not treated) 
substrate. threshold voltage   , independent on the channel length 𝑈𝑇 =  ‒ 12 𝑉

We observed that the mobility dependences can be generally very different either in 
absolute values of mobility changes by several order of magnitudes or in their profiles. This is 
given by the variability of the dependence  with respect to the 𝜇𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 ‒  𝑠𝑐𝑎𝑙𝑒(𝑧,𝜌(𝑥,𝑧),𝐸𝑧(𝑥,𝑧))

charge concentration  and transversal electric field  for concrete morphology. 𝜌 𝐸𝑧

In the estimation of the mobility dependences we took the identical methodological 
concept as indicated in the main text, utilizing identical equations for separation of mobility 
and contact resistances for given gate voltage, with threshold voltage estimation from the 
conductance  (Eq. 13 in the main text) in the Ohmic limit for each channel length. For 𝑔𝑠 ‒ 𝑂ℎ𝑚𝑖𝑐

the latter one we found it independent on the channel length. 
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Fig. S2: Mobility dependences for P3Ht samples prepared under different conditions. 
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