The influence of like-charge attraction on the structure and dynamics of ionic liquids: NMR chemical shifts, quadrupole coupling constants, rotational correlation times and failure of Stokes-Einstein-Debye

Anne Strate, Viviane Overbeck, Viktoria Lehde, Jan Neumann, Anne-Marie Bonsa, Thomas Niemann, Dietmar Paschek, Dirk Michalik, Ralf Ludwig

University of Rostock, Institute for Chemistry, Physical and Theoretical Chemistry, Dr.-Lorenz-Weg 2, 18059, Rostock (Germany)

Supporting Information

- SI0 Measured and calculated values in a temperature range between 315 and 406 K for IL I.
- SI1 Measured and calculated values in a temperature range between 315 and 406 K for IL II.
- SI2 Measured and calculated values in a temperature range between 315 and 406 K for IL III.
- SI3 Measured and calculated values in a temperature range between 338 and 406 K for IL IV.
- SI4 Reorientational Dynamics from MD Simulations.

SI0 Measured and calculated values in a temperature range between 315 and 406 K for IL I

<i>Т </i> К	$\delta^{ ext{i}}$ H / ppm	$\chi_{\scriptscriptstyle m D}$ / kHz	<i>T</i> ₁ / ms	τ_{c} / ps
406	2,84	268,53	162,23	5,77
383	2,94	266,84	112,04	8,47
360	3,04	265,15	66,64	14,42
338	3,15	263,46	34,92	27,87
315	3,25	261,77	16,26	60,61

Tab. 1: Measured and calculated values for chemical shifts, δ^{1} H, quadrupole coupling constants, χ_{D} , deuteron relaxation times, T_{1} , and reorientational correlations times, τ_{OD} , in a temperature range between 315 and 406 K for IL I.

SI1 Measured and calculated values in a temperature range between 315 and 406 K for IL II

Т/К	$\delta^{ ext{1}}$ H / ppm	$\chi_{ m D}$ / kHz	<i>T</i> ₁ / ms	τ _c / ps
406	2,73			
383	2,86	268,14	94,70	9,92
360	2,99	266,03	59,51	16,04
338	3,12	263,92	34,55	28,07
315	3,25	261,81	18,01	54,70

Tab. 2: Measured and calculated values for chemical shifts, δ^{1} H, quadrupole coupling constants, χ_{D} , deuteron relaxation times, T_{1} , and reorientational correlations times, τ_{OD} , in a temperature range between 315 and 406 K for IL II.

SI2 Measured and calculated values in a temperature range between 315 and 406 K for IL III

Т/К	$\delta^{ ext{i}}$ H / ppm	$\chi_{ m D}$ / kHz	<i>T</i> ₁ / ms	τ_{c} / ps
406	3,52			
383	3,63	255,59	80,61	12,83
360	3,73	253,90	49,57	21,14
338	3,83	252,21	27,29	38,92
315	3,93	250,52	13,94	77,21

Tab. 3: Measured and calculated values for chemical shifts, δ^{1} H, quadrupole coupling constants, χ_{D} , deuteron relaxation times, T_{1} , and reorientational correlations times, τ_{OD} , in a temperature range between 315 and 406 K for IL III.

SI3 Measured and calculated values in a temperature range between 338 and 406 K for IL IV

<i>Т </i> К	$\delta^{ ext{i}}$ H / ppm	$\chi_{\rm D}$ / kHz	<i>T</i> ₁ / ms	$ au_{c}$ / ps
406	5,18	230,10	58,13	21,94
383	5,27	228,68	36,42	35,47
360	5,35	227,25	19,28	67,83
338	5,44	225,82	8,85	149,69

Tab. 4: Measured and calculated values for chemical shifts, δ^{1} H, quadrupole coupling constants, χ_{D} , deuteron relaxation times, T_{1} , and reorientational correlations times, τ_{OD} , in a temperature range between 338 and 406 K for IL IV.

SI4 Reorientational Dynamics from MD Simulations

We determine the reorientational dynamics by focusing the time evolution of the orientation of O-D vector in an external laboratory frame. The time-correlation function C(t) of the second Legendre polynomial of the angle θ of the O-D vector with a fixed external axis of reference $P_2\{\cos[\theta]\} = \{3 \cos^2[\theta] - 1\}/2$ is computed according to

$$C(t) = \left\langle P_2\{\cos\left[\theta(0)\right]\} \cdot P_2\{\cos\left[\theta(t)\right]\} \right\rangle \tag{1}$$

Assuming that the electric field gradient (EFG) at the deuteron position of the O-D bond is solely determined by the surrounding electron distribution and does not depend on the local molecular environment, as well as the actual molecular conformation of the [HEMIm]⁺ cation, and assuming that the reorientational motion is fast on the NMR timescale, the relaxation rate is directly proportional to the quadrupole coupling constant times the reorientational correlation time of the O-D bond τ_c with

$$\left(\frac{1}{T_{1}}\right)_{D} = \frac{3}{2}\pi^{2}\left(1 + \frac{\eta_{D}^{2}}{3}\right)\chi_{D}^{2} \cdot \tau_{c}$$
⁽²⁾

For the case of the extreme narrowing limit, the correlation time τ_c corresponds to an integral over the correlation function C(t) with

$$\tau_c = \int_0^\infty C(t)dt \tag{3}$$

т/к	A ₁	τ_1 / ps	β1	A ₂	τ ₂ / ps
300	0,734	12,7	0,321	0,234	143,6
320	0,781	6,4	0,325	0,206	65,2
340	0,798	3,5	0,347	0,195	40,8
360	0,814	2,3	0,369	0,181	28,0
380	0,831	1,6	0,382	0,167	19,8
400	0,843	1,2	0,394	0,156	14,7

Tab. 5: Parameters describing the time-dependent fitted reorientational correlation functions C(t) according to Eq. 4 as a function of temperature.

Т/К	τc / ps
300	98,2
320	46,2
340	22,4
360	12,9
380	8,4
400	5,8

Tab. 6: Integrated correlation times τ_c for the reorientational motion of the O-D bond-vector in the [HEMIm]⁺ cation as a function of temperature *T*.

For estimating τ_c , the long-time behavior of C(t) needs to be properly accounted for. To achieve this, we fitted the time correlation function C(t) to a combined mono-exponential and stretched exponential representation following

$$C(t) = A_1 \cdot e^{-\binom{t}{\tau_1}^{\beta_1}} + A_2 \cdot e^{-\frac{t}{\tau_2}}$$
(4)

leading to the following expression for the integrated correlation time:

$$\tau_c = A_1 \cdot \frac{\tau_1}{\beta_1} \Gamma\left(\beta_1^{-1}\right) + A_2 \cdot \tau_2 \tag{5}$$

Here $\Gamma(...)$ is representing the Gamma function. The computed time correlation functions, as well as the fitted representations are shown in **Fig 1**. In all cases the analytical representation according to **Eq. 4** provides an excellent description of the correlation functions determined from MD-simulation. All parameters necessary for describing the fitted time correlation functions are summarized in **Tab. 6**.

Fig. 1: Temperature dependence of the time correlation functions C(t) for the reorientational dynamics of the O-D vector in the [HEMIm]⁺ cation. Symbols indicate time correlation functions computed from MD-simulation, whereas the dashed lines represent the fitted data according to Eq. 4.