Electronic Supplementary Information

Enhanced thermoelectric performance of Cu₃SbS₄ flower-like hierarchical architectures composed of Cl doped nanoflakes via an in situ generated CuS template

Qun Wang^{*1}, Jianhuan Li¹, Jianjun Li^{*2}

¹MIIT, Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering. Harbin Institute of Technology, 92 West Dazhi Stree, Harbin 150001, P. R. China ²Science and Technology on Advanced Composites in Special Environment

Laboratory, Harbin Institute of Technology, 92 West Dazhi Stree, Harbin 150001, P. R. China

*To whom correspondence should be addressed. E-mail: <u>wangqun5992@hit.edu.cn;</u> <u>ljj8081@gmail.com</u>

Fig.S1. SEM images of as-prepared samples synthesized with different amounts of Sb source (a-d) 0.06 g (0.09 mmol); 0.2 g (0.30 mmol); 1.0 g (1.48 mmol); 1.5 g (2.22 mmol), respectively.

Fig.S2. SEM images of samples obtained by solvothermal treatment after introducing (a) $CuSO_4$ (Sample 3), (b) $Cu(NO_3)_2$ and (c) 3.2 mmol $CuCl_2$ as Cu precursor (Sample 1), respectively. (d) The corresponding XRD patterns of Sample 1 and 3.

Table S1. Lattice parameters (a and c), chemical composition, band gap of the Cl-free and Cl-doped Cu_3SbS_4 at 300 K. The values in parentheses are the statistical errors. Other errors such as temperature fluctuations (<1 K) should be considered for a and c.

Sample	Lattice parameters(Å)		Cl adding amount	chemical composition	band gap (eV)
	а	c			
Sample 1	5.3842(1)	1.0764(2)	3.2mmol	Cu _{3.8} SbS _{3.8} Cl _{0.9}	1.06
Sample 2	5.3841(3)	1.0763(1)	1.6mmol	Cu _{3.2} SbS _{3.8} Cl _{0.3}	1.09
Sample 3	5.3840(2)	1.0762(2)	0 mmol	$Cu_{2.8}SbS_{3.8}$	0.98

Fig. S3 Powder X-ray diffraction pattern (a) and SEM image (b) of CuPbS₂ microspheres.

Fig. S4 SEM image (a) and powder X-ray diffraction pattern (b) of Cu₃Bi₃S₇ microspheres.

Table S2. A summary of *n* or *p* type semiconductor conduction behavior, room temperature Hall carrier concentration ($n_{\rm H}$), and mobility ($\mu_{\rm H}$) of the Cl-doped Cu₃SbS₄ pellets.

Pellet	Cl adding amount	behavior	$n_{\rm H} [{\rm cm}^{-3}]$	$\mu_{\rm H} [{\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1}]$
Sample 2	1.6mmol	p-type	3.9×10 ¹⁹	1.87
Sample 4	6.4mmol	n-type	2.2×10 ²⁰	0.32