Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supplementary Information For Vibrational states of nano-confined water molecules in beryl investigated by first principles calculations and optical experiments

M.A.Belyanchikov^{1,2}, E.S.Zhukova¹, S.Tretiak^{3,4}, A.Zhugayevych⁴, M. Dressel^{1,2}, F. Uhlig⁵, J. Smiatek⁵, M. Fyta⁵, V.G.Thomas^{6,7}, and B.P. Gorshunov^{1,2}

¹Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 Russia

²1. Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany

³Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

⁴Skolkovo Institute of Science and Technology, Moscow 143026, Russia

⁵Institute for Computational Physics, Universität Stuttgart, 70569 Stuttgart, Germany

⁶Sobolev Institute of Geology and Mineralogy, RAS, 630090 Novosibirsk, Russia

⁷Novosibirsk State University, Novosibirsk 630090, Russia

Table S1. Chemical composition (in wt. %) of the hydrous beryl crystals used for the measurements of terahertz-infrared excitation spectra of nanocaged water molecules.

Sample name (water molecule type)	SiO ₂	Al ₂ O ₃	BeO	Fe ₂ O ₃	MnO	Cr ₂ O ₃	CuO	Li ₂ O	Na ₂ O	LOI*	Total
FeNa (H ₂ O)	66.12	18.27	13.86	0.60	0.00	0.00	0.01	0.02	0.05	0.85	99.78
Mn (H ₂ O)	66.79	17.32	13.75	1.30	0.09	0.00	0.00	0.15	0.00	1.93	101.18
3902 (D ₂ O, DHO)	66.18	18.66	13.80	0.05	0.00	0.00	0.00	0.04	0.00	1.14	99.87

*LOI: loss on ignition.

Table S2. Calculated geometries of water molecules in nanopores of beryl crystal lattice. The data for 50% and 100% fillings of crystalline pores are presented. Results corresponding to water molecules that are spatially arranged in vacuum in an arrangement as in the beryl lattice, but with the lattice ions absent (see text) are also given.

Water geometry	HOH angle (deg.)	OH distance (Å)	HH distance (Å)	
Water type I in vacuum, 50% filling	104.39	0.972	1.536	
Water type I in vacuum, 100% filling	104.33	0.972	1.536	
Water vapor (exp. ^{S1})	104.47	0.957	1.513	
Water type I in beryl, 50% filling	105.07	0.973	1.545	
Water type I in beryl, 100% filling	104.59	0.973	1.540	
Water type II + Li in beryl	105.08	0.983	1.560	
Water type II + Na in beryl	103.69	0.979	1.541	

Table S3. Comparison of the vibrational frequencies (in cm⁻¹) of the modes calculated by different methods. Here DFPT refers to density functional perturbation theory, and FD means finite differences, PBE - Perdew-Burke-Ernzerhof exchange-correlation functional,^{S2} MBD - many-body dispersion energy correction.^{S3} Negative values indicate imaginary frequencies.

Mode type	PBE/DFPT	PBE/FD	PBE-MBD/FD
L_{z1}	32	-73	-50
T _x	71	54	49
Tz	90	78	86
L _{z2}	109	107	92
L _v	222	219	220
L _x	228	230	222
bending	1587	1586	1580
sym. stretch	3701	3708	3702
asym. stretch	3805	3807	3805

Table S4. Normal modes and their frequencies (in cm⁻¹) of complexes involving water-II molecules and alkali ions. v_1 , v_2 and v_3 denote internal H₂O molecular modes. L and T stand for librational and translational motions, respectively. The numbers in the brackets indicate relative intensities for two principle polarizations, parallel (||) and perpendicular (\perp) to the crystallographic *c*-axis. The cases of modes labeled Lw2 (Lw2TLi, LwTNa) correspond to H₂O libration around c (a, b) axes. TLi, TNa correspond to translational modes of alkali ions with corresponding H₂O translations negligibly small.

		Li		Na				
Mode type	H ₂ O	D ₂ O	DHO	Mode type	H ₂ O	D ₂ 0	DHO	
<i>ν</i> ₃	$3540.4^{(\perp 0.62)}_{(\parallel 0.00)}$	$2591.4^{(\perp 0.28)}_{(\parallel 0.00)}$	$3508.9^{(\perp 0.37)}_{(\parallel 0.10)}$	ν_3	$3634.0^{(\perp 0.75)}_{(\parallel 0.00)}$	$2659.5^{(\perp 0.70)}_{(\parallel 0.00)}$	$3599.1^{(\perp 0.52)}_{(\parallel 0.15)}$	
ν ₁	$3475.4^{(\perp 0.00)}_{(\parallel 0.13)}$	$2505.0^{(\perp 0.00)}_{(\parallel 0.18)}$	$2547.0^{(\perp 0.17)}_{(\parallel 0.06)}$	ν_1	$3562.7^{(\perp 0.00)}_{(\parallel 0.26)}$	$2567.8^{(\perp 0.00)}_{(\parallel 0.29)}$	$2613.1^{(\ \ 1\ 0.23)}_{(\ \ 1\ 0.10)}$	
<i>v</i> ₂	$1544.3^{(\downarrow0.00)}_{(\ 1.00)}$	$1132.3^{(\perp 0.00)}_{(\parallel 1.00)}$	$1357.7^{(\perp 0.02)}_{(\parallel 1.00)}$	ν_2	$1575.0^{(\perp 0.00)}_{(\parallel 1.00)}$	$1152.8^{(\perp 0.00)}_{(\parallel 1.00)}$	$1382.8^{(\perp 0.02)}_{(\parallel 1.00)}$	
Tw2TLi	$459.8^{(\perp 0.04)}_{(\parallel 0.15)}$	$451.9^{(\downarrow0.05)}_{(\parallel0.28)}$	$457.3^{(\perp 0.05)}_{(\parallel 0.20)}$	Lw2	$353.0^{(\perp 1.00)}_{(\parallel 0.00)}$	$254.5^{(\perp 1.00)}_{(\parallel 0.00)}$	$315.8^{(\perp 1.00)}_{(\parallel 0.00)}$	
Lw2TLi	$390.3^{(\perp 0.49)}_{(\parallel 0.00)}$	$304.8^{(\downarrow0.41)}_{(\parallel0.00)}$	$337.1^{(\perp 0.55)}_{(\parallel 0.00)}$	Lw2	$300.7^{(\perp0.23)}_{(\parallel0.00)}$	$248.3^{(\perp0.00)}_{(\parallel0.01)}$	$264.6^{(\perp 0.13)}_{(\parallel 0.00)}$	
Lw2	$290.4^{(\perp 1.00)}_{(\parallel 0.00)}$	$209.7^{(\perp 1.00)}_{(\parallel 0.00)}$	$256.8^{(\perp 0.91)}_{(\parallel 0.00)}$	Tw2TNa	$252.7^{(\perp 0.00)}_{(\parallel 0.01)}$	$228.1^{(\perp 0.33)}_{(\parallel 0.00)}$	$243.5^{(\perp 0.12)}_{(\parallel 0.00)}$	
TLi	$203.4^{(\perp 0.87)}_{(\parallel 0.00)}$	$202.3^{(\perp 0.26)}_{(\parallel 0.00)}$	$203.8^{(\perp 1.00)}_{(\parallel 0.00)}$	Lw2	$215.9^{(\perp 0.00)}_{(\parallel 0.00)}$	$177.3^{(\perp 0.32)}_{(\parallel 0.00)}$	$177.5^{(\perp 0.26)}_{(\parallel 0.00)}$	
Lw2	$168.9^{(\perp 0.04)}_{(\parallel 0.00)}$	$125.7^{(\perp 0.38)}_{(\parallel 0.00)}$	$136.0^{(\perp 0.19)}_{(\parallel 0.00)}$	TNa	$176.9^{(\perp 0.18)}_{(\parallel 0.00)}$	$170.1^{(\perp 0.15)}_{(\parallel 0.00)}$	$173.0^{(\perp 0.14)}_{(\parallel 0.00)}$	
Lw2TLi	$132.1^{(\perp 0.48)}_{(\parallel 0.00)}$	$117.1^{(\perp 0.09)}_{(\parallel 0.00)}$	$127.0^{(\perp 0.43)}_{(\parallel 0.00)}$	Lw2TNa	$174.6^{(\perp 0.14)}_{(\parallel 0.00)}$	$152.6^{(\perp 0.00)}_{(\parallel 0.00)}$	$172.2^{(\perp 0.01)}_{(\parallel 0.00)}$	
Tw2TLi	$111.9^{(\perp 0.00)}_{(\parallel 0.10)}$	$107.1^{(\perp 0.00)}_{(\parallel 0.17)}$	$108.3^{(\perp 0.02)}_{(\parallel 0.12)}$	Tw2TNa	$99.9^{(\perp 0.03)}_{(\parallel 0.00)}$	$89.3^{(\perp 0.05)}_{(\parallel 0.00)}$	$92.9^{(\perp 0.04)}_{(\parallel 0.00)}$	
Tw2TLi	$95.8^{(\perp 0.26)}_{(\parallel 0.00)}$	$89.2^{(\perp 0.14)}_{(\parallel 0.00)}$	$90.9^{(\perp 0.23)}_{(\parallel 0.00)}$	Lw2	$90.9^{(\perp 0.01)}_{(\parallel 0.00)}$	$84.8^{(\perp 0.02)}_{(\parallel 0.00)}$	$86.3^{(\perp 0.01)}_{(\parallel 0.00)}$	
Lw2	$88.2^{(\perp 0.01)}_{(\parallel 0.00)}$	$83.3^{(\perp 0.01)}_{(\parallel 0.01)}$	$83.3^{(\perp 0.01)}_{(\parallel 0.00)}$	Tw2TNa	$87.6^{(\perp 0.00)}_{(\parallel 0.03)}$	$66.4^{(\perp 0.00)}_{(\parallel 0.06)}$	$67.2^{(\perp 0.00)}_{(\parallel 0.04)}$	

References

- S1 J. B. Hasted, in *The Physics and Physical Chemistry of Water*, ed. F. Franks, Springer, New York, 1972, 255-309.
- S2 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- S3 A. Tkatchenko, R. A. DiStasio, R. Car and M. Scheffler, Phys. Rev. Lett., 2012, 108, 236402.