# Supplementary Information: Correlating geminal ${}^{2}J_{Si-O-Si}$ couplings to structure in framework silicates.

D. J. Srivastava<sup>a</sup>, P. Florian<sup>b</sup>, J. H. Baltisberger<sup>c</sup> and P. J. Grandinetti<sup>\*a1</sup> <sup>a</sup>Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, OH, USA. E-mail: grandinetti.1@osu.edu <sup>b</sup>CNRS, UPR3079 CEMHTI, 1D Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France. <sup>c</sup>Division of Natural Science, Mathematics, and Nursing, Berea College, Berea, KY, USA.

# S1. GAUSSIAN INTEGRATION GRID SIZE

The effect of change in  ${}^{2}J_{\text{Si-O-Si}}$  coupling evaluation with the size of the integration grid was tested to avoid integration errors. A series of calculations were run with (1) 'fine', pruned (75, 302) and (2) 'ultrafine', pruned (99, 590) integration grids. As seen in Fig. S1, no difference in the  ${}^{2}J_{\text{Si-O-Si}}$  coupling was observed with the increase in the integration grid size. Thus, all remaining calculations were run with 'fine' integration grid.

# S2. CONTRIBUTIONS TO THE NET J COUPLING

The net *J*-coupling includes contributions from Fermi contact (FC), Spin-dipolar (SD), paramagnetic spin-orbit (PSO) and diamagnetic spin-orbit (DSO).

$$J = J_{\rm FC} + J_{\rm SD} + J_{\rm PSO} + J_{\rm DSO}$$

For  ${}^{2}J_{\text{Si-O-Si}}$  couplings—calculated using Gaussian 09<sup>1</sup> with high level of theory—across a Si-O-Si linkage, the net *J*coupling is dominated by the Fermi contact term. As shown in Fig. S2, the combined contribution from SD, PSO, DSO



FIG. S1. A perfect correlation of  ${}^{2}J_{\text{Si-O-Si}}$  coupling evaluated from 'fine' and 'ultrafine' integration grid.



FIG. S2. Combined contribution from SD, PSO and DSO terms accounts to less that 10% of the net *J*-coupling. The horizontal axis—labeled as index—refer to the index number in Table S1-S3.

terms account to less than 10% of the contribution from net J-coupling. The combined contribution increases slightly around indexes 1 to 10, indexes 52-67 and indexes 108, 114, 120 and 126, and is associated with clusters with lower Si-O-Si bond angles,  $\Omega_0$  in the range of 120° to 130°.

# S3. S-CHARACTER MODEL

#### A. s-character at the Si HTO along Si-O bond

In cluster calculations with all the Si-O bond distances fixed at  $d_{\text{Si-O}} = 1.6$  Å and with all intra-tetrahedral-angles fixed at  $\angle \text{O-Si-O} = 109.5^{\circ}$ , we found that the  $a_{\text{Si}}^2$  of a given Si-O bond depends not only on the Si-O-Si bond angle of its linkage, but also on the other three Si-O-Si bond angles around the silicon. As explained in the main text this arises because the sum of  $a_{\text{Si}}^2$  from all four Si-O bonds about the Si tetrahedron must remain constant. A strong correlation between  $a_{\text{Si}}^2$  of a given Si-O bond and the four surrounding Si-O-Si bond angles was found to be

$$a_{\rm Si}^2 \approx c_{\rm Si} + m_{\rm Si} \left( \cos \Omega_0 - \cos \langle \Omega \rangle \right), \tag{1}$$

where  $m_{\rm Si} = 0.0279$ ,  $c_{\rm Si} = 0.2465$  with  $R^2 = 0.96894$ . The *ab-initio*-derived data supporting this correlation are



FIG. S3. Variation in the s-character at Si HTO along the Si-O bond as the function of the Si-O-Si tetrahedral angle  $\Omega_0$  and average Si-O-Si bond angle,  $\langle \Omega \rangle$ .

shown in Fig. S3. From Eq. (1), it follows that when all four Si-O-Si bond angles about the Si tetrahedron are equal, the s-character along all four Si-O bonds are also equal.



FIG. S4. Comparison of the s-character at bridging oxygen HTO along the Si-O bond against the popular<sup>2,3</sup> approximation  $f_s(\Omega_0)$ .

## B. s-character at the bridging O HTO along Si-O bond

The popular<sup>2,3</sup> approximation of the s-character at the bridging oxygen along the Si-O bond follows,

$$f_s(\Omega_0) = \frac{\cos \Omega_0}{\cos \Omega_0 - 1}.$$
 (2)

Although the approximation in Eq. (2) gives a good agreement with respect to *ab-initio* calculated s-character,  $a_{\rm O}^2$ , at higher  $\Omega_0$ , we shown in Fig. S4 that this agreement appears to break at lower  $\Omega_0$ .

# S4. <sup>29</sup>SI ISOTROPIC CHEMICAL SHIFT

In 1983, Smith and Blackwell<sup>4</sup> first showed a correlation between the <sup>29</sup>Si isotropic chemical shift,  $\delta_{CS}$ , and the average secant of the four Si-O-Si bond angles,  $\Omega$ , about a Si tetrahedron given by

$$\delta_{CS} = a'_{\delta} \left\langle \sec \Omega \right\rangle + b'_{\delta}. \tag{3}$$

Later, the same year, Thomas *et. al.*<sup>5</sup> showed that <sup>29</sup>Si isotropic chemical shift correlate linearly with  $\langle \Omega \rangle$ , according to

$$\delta_{CS} = a_\delta \langle \Omega \rangle + b_\delta. \tag{4}$$

The two models, stating different apparent correlations, both showed a good agreement with experiment. In 1984, Engelhardt and Radeglia<sup>3</sup>, with the assumption that the chemical shift is dominated by paramagnetic contribution, described <sup>29</sup>Si isotropic chemical shift using a simple quantum mechanical model to follow

$$\delta_{CS} = A_{\delta} \sum_{n=1}^{4} f_{\mathcal{O}}(\Omega_n) + B_{\delta}.$$
 (5)

The authors showed that the reason Eqs. (3)-(5) all show a good agreement with experiment is that the weak curvature of both  $f_{\rm O}(\Omega)$  and sec  $\Omega$  in the relevant range of about 140°-160° cause the <sup>29</sup>Si isotropic chemical shift to remain mostly linear with respect to the average Si-O-Si bond angle,  $\langle \Omega \rangle$ . Many other models<sup>6</sup> have since been proposed, however, by far the simplest correlation is given by Thomas *et. al.*<sup>5</sup>, which can be derived by performing a Taylor series expansion of Eq. (5) about 150° with coefficients

$$a_{\delta} = 1.0025 \times 10^{-2} A_{\delta}$$
 and  $b_{\delta} = 0.3527 A_{\delta} + B_{\delta}$ .

The coefficient  $A_{\delta} = -61.7625 \text{ ppm/}^{\circ}$  and  $B_{\delta} = 2.19 \text{ ppm}$ from Engelhardt and Radeglia<sup>3</sup> yields  $a_{\delta} = -0.6191 \text{ ppm/}^{\circ}$ and  $b_{\delta} = -19.593 \text{ ppm}$  which is within 1.5% of the linear fit reported in the main document.

#### S5. J-COUPLING AS A FUNCTION OF $\Omega_0$

Cadars *et. al.*<sup>7</sup> discussed the scattering of  ${}^{2}J_{\text{Si-O-Si}}$  coupling as a function of the central linkage angle  $\Omega_{0}$  resulting from the local structural variations about the central



FIG. S5. Scattering of <sup>2</sup>*J*-coupling as a function of central Si-O-Si linkage angle  $\Omega_0$  arising from the variation is local structure around the central Si-O-Si linkage, specially the double average  $\overline{\langle \Omega \rangle}$ . The gray dots are the *ab-initio* calculated <sup>2</sup>*J*-couplings and the background image is the intensity plot of <sup>2</sup>*J*-coupling assuming a uniform distribution of  $\overline{\langle \Omega \rangle}$ .

Si-O-Si linkage. In Fig. S5 we show the extent of this scattering as a function of  $\Omega_0$ . The gray dots are the *ab-initio* calculated *J*-couplings—presented in Table S1-S4—and the image in the background is calculated using Eq. (19) from the main document—assuming a uniform distribution of  $\langle \Omega \rangle$ . A significant scatter of *J*-coupling is observed when only considering the center linkage angle  $\Omega_0$ —specially at higher  $\Omega_0$ .

### S6. J-COUPLING MODEL APPROXIMATION

In the main text, we described an analytical expression for calculating the Si-O-Si bond angle

$$\Omega_0(x) = \frac{180^\circ}{\pi} \cos^{-1} \left[ -\frac{1}{3}x + \{S(x) + T(x)\} \right], \quad (6)$$

where

$$S(x) = \sqrt[3]{R(x) + \sqrt{D(x)}},$$
  

$$T(x) = \sqrt[3]{R(x) - \sqrt{D(x)}},$$
  

$$D(x) = \frac{1}{108}x^2 (4x + 27),$$
  

$$R(x) = -\frac{1}{54}x (2x^2 + 18x + 27) \text{ and}$$
  

$$x = \frac{J - J_0}{m_1 \langle \overline{\Omega} \rangle}.$$

Due to the overly complicated parameterization of Eq. (6), we approximated Eq. (6) by

$$g(x) = a_j + b_j \ x + c_j \ \exp\{d_j \ x\}$$
(8)



FIG. S6. (A) Comparison of  $\Omega_0(x)$  and g(x) as a function of  $x \in [1/18, 1/4]$ . A good agreement between g(x) and  $\Omega_0(x)$  is observed within the range corresponding to  $\Omega_0 \in [120^\circ, 176^\circ]$  shown in (B).

where the coefficients  $a_j = 107.88^\circ$ ,  $b_j = 223.49^\circ$ ,  $c_j = 0.00002487^\circ$  and  $d_j = 53.01$  were determined from the least square minimization. In Fig. S6, we show the comparison between  $\Omega_0(x)$  and g(x). A good agreement is observed for the range of x corresponding to  $\Omega_0(x) \in [120^\circ, 176^\circ]$  to within  $\pm 0.5^\circ$ . The deviation at 176° and onwards is significant to a maximum of 3.7° at  $\Omega_0(x) = 180^\circ$ . However, due to the low probability of Si-O-Si bond angles in this range  $[176^\circ, 180^\circ]$ , this deviation has been neglected in our study.

<sup>1</sup>M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. M. Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,

- O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 Revision D.01 (2013).
- <sup>2</sup>M. Klessigner, M. Barfield, The structural dependence of geminal <sup>13</sup>C-<sup>13</sup>C coupling constants, Ellis Horwood, Chichester, 1987, Ch. 16, pp. 269–284.
- <sup>3</sup>G. Engelhardt, R. Radeglia, A semi-empirical quantum-chemical rationalization of the correlation between SiOSi angles and <sup>29</sup>Si NMR chemical shifts of silica polymorphs and framework aluminosilicates (zeolites), Chemical Physics Letters 108 (1984) 271 – 274. doi:10.1016/0009-2614(84)87063-3.
- <sup>4</sup>J. V. Smith, C. S. Blackwell, Nuclear magnetic resonance of silica polymorphs, Nature 303 (1983) 223 – 225. doi:10.1038/303223a0.
- <sup>5</sup>J. Thomas, J. Klinowski, S. Ramdas, B. Hunter, D. Tennakoon, The evaluation of non-equivalent tetrahedral sites from <sup>29</sup>Si NMR chemical shifts in zeolites and related aluminosilicates, Chemical Physics Letters 102 (1983) 158 162. doi:10.1016/0009-2614(83)87384-9.
- <sup>6</sup>F. Mauri, A. Pasquarello, B. G. Pfrommer, Y.-G. Yoon, S. G. Louie, Si-O-Si bond-angle distribution in vitreous silica from first-principles <sup>29</sup>Si NMR analysis, Phys. Rev. B 62 (8) (2000) 4786–4789.
- <sup>7</sup>S. Cadars, D. H. Brouwer, B. F. Chmelka, Probing local structures of siliceous zeolite frameworks by solid-state NMR and first-principles calculations of <sup>29</sup>Si-O-<sup>29</sup>Si scalar couplings, Phys. Chem. Chem. Phys. 11 (2009) 1825–1837. doi:10.1039/b815361b.

TABLE S1. *ab-initio* calculated vs  ${}^{2}J_{\text{Si-O-Si}}$  coupling model  $J(\Omega_{0}, \overline{\langle \Omega \rangle}, \phi)$  and  $J(\Omega_{0}, \overline{\langle \Omega \rangle})$ , Eq. (17) and (19) respectively of the main document, as a function of local parameters including  $\Omega$ ,  $\overline{\langle \Omega \rangle}$  and  $\phi$ . The initial geometry was optimized with RHF/6-311G(d). Individual geometry, after structural constraint on  $\Omega_{0}, \Omega_{k}$  and  $\phi$ , was not optimized. All Si-O bond distances were fixed to 1.6 Å and O-Si-O intra-tetrahedral angle set to 109.5°.

| Index    | $\Omega_0/1^\circ$ |            |            | $\Omega_k$ | $/1^{\circ}$ |              |            | $\overline{\langle \Omega \rangle}/1^{\circ}$ | $\phi/1^{\circ}$ | 2                     | $J_{\rm Si-O-Si}$ -coupling                            | /Hz                                              |
|----------|--------------------|------------|------------|------------|--------------|--------------|------------|-----------------------------------------------|------------------|-----------------------|--------------------------------------------------------|--------------------------------------------------|
|          |                    | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_4$   | $\Omega_5$   | $\Omega_6$ |                                               |                  | $ab\mathchar`-initio$ | $J(\Omega_0, \overline{\langle \Omega \rangle}, \phi)$ | $J(\Omega_0, \overline{\langle \Omega \rangle})$ |
| 1        | 120                | 146        | 146        | 146        | 146          | 146          | 146        | 139.5                                         | -59.837          | -1.8738               | -1.7949                                                | -2.1819                                          |
| 2        | 120                | 146        | 146        | 146        | 146          | 146          | 146        | 139.5                                         | -45.539          | -1.4292               | -1.9006                                                | -2.1819                                          |
| 3        | 120                | 146        | 146        | 146        | 146          | 146          | 146        | 139.5                                         | -20.286          | -1.8025               | -2.3703                                                | -2.1819                                          |
| 4        | 120                | 146        | 146        | 146        | 146          | 146          | 146        | 139.5                                         | 8.237            | -1.9657               | -2.5334                                                | -2.1819                                          |
| 5        | 120                | 146        | 146        | 146        | 146          | 146          | 146        | 139.5                                         | 36.126           | -1.9524               | -2.0598                                                | -2.1819                                          |
| 6        | 130                | 146        | 146        | 146        | 146          | 146          | 146        | 142                                           | -42.783          | 3.0394                | 2.9474                                                 | 2.6332                                           |
| 7        | 130                | 146        | 146        | 146        | 146          | 146          | 146        | 142                                           | -18.639          | 2.4312                | 2.3494                                                 | 2.6332                                           |
| 8        | 130                | 146        | 146        | 146        | 146          | 146          | 146        | 142                                           | 7.502            | 2.2193                | 2.1653                                                 | 2.6332                                           |
| 9        | 130                | 146        | 146        | 146        | 146          | 146          | 146        | 142                                           | 33.269           | 2.4992                | 2.7195                                                 | 2.6332                                           |
| 10       | 130                | 146        | 146        | 146        | 146          | 146          | 146        | 142                                           | 56.619           | 2.9022                | 3.1317                                                 | 2.6332                                           |
| 11       | 140                | 146        | 146        | 146        | 146          | 146          | 146        | 144.5                                         | -51.305          | 8.7829                | 8.4861                                                 | 7.9345                                           |
| 12       | 140                | 146        | 146        | 146        | 146          | 146          | 146        | 144.5                                         | -40.432          | 8.2917                | 8.2535                                                 | 7.9345                                           |
| 13       | 140                | 146        | 146        | 146        | 146          | 146          | 146        | 144.5                                         | -17.334          | 7.4491                | 7.5564                                                 | 7.9345                                           |
| 14       | 140                | 146        | 146        | 146        | 146          | 146          | 146        | 144.5                                         | 6.935            | 7.2072                | 7.3604                                                 | 7.9345                                           |
| 15       | 140                | 146        | 146        | 146        | 146          | 146          | 146        | 144.5                                         | 30.992           | 7.6871                | 7.9664                                                 | 7.9345                                           |
| 16       | 140                | 146        | 146        | 146        | 146          | 146          | 146        | 144.5                                         | 53.6             | 8.4367                | 8.5145                                                 | 7.9345                                           |
| 17       | 150                | 146        | 146        | 146        | 146          | 146          | 146        | 147                                           | -58.431          | 14.029                | 13.739                                                 | 13.035                                           |
| 18       | 150                | 146        | 146        | 146        | 146          | 146          | 146        | 147                                           | -48.184          | 13.966                | 13.611                                                 | 13.035                                           |
| 19       | 150                | 146        | 146        | 146        | 146          | 146          | 146        | 147                                           | -38.449          | 13.526                | 13.338                                                 | 13.035                                           |
| 20       | 150                | 146        | 146        | 146        | 146          | 146          | 146        | 147                                           | -27.49           | 12.984                | 12.943                                                 | 13.035                                           |
| 21       | 150                | 146        | 146        | 146        | 146          | 146          | 146        | 147                                           | -16.296          | 12.57                 | 12.571                                                 | 13.035                                           |
| 22       | 150                | 146        | 146        | 146        | 146          | 146          | 146        | 147                                           | -4.938           | 12.342                | 12.352                                                 | 13.035                                           |
| 23       | 150                | 146        | 146        | 146        | 146          | 146          | 146        | 147                                           | 6.494            | 12.329                | 12.369                                                 | 13.035                                           |
| 24       | 150                | 146        | 146        | 146        | 146          | 146          | 146        | 147                                           | 17.896           | 12.527                | 12.617                                                 | 13.035                                           |
| 25       | 150                | 146        | 146        | 146        | 146          | 146          | 146        | 147                                           | 29.171           | 12.915                | 13.004                                                 | 13.035                                           |
| 26       | 150                | 146        | 146        | 146        | 146          | 146          | 146        | 147                                           | 40.238           | 13.41                 | 13.396                                                 | 13.035                                           |
| 27       | 150                | 146        | 146        | 146        | 146          | 146          | 146        | 147                                           | 51.045           | 13.836                | 13.665                                                 | 13.035                                           |
| 28       | 160                | 146        | 146        | 146        | 146          | 146          | 146        | 149.5                                         | -50.489          | 18.597                | 18.014                                                 | 17.329                                           |
| 29       | 160                | 140        | 140        | 140        | 140          | 140          | 140        | 149.5                                         | -36.792          | 18.051                | 17.0                                                   | 17.329                                           |
| 30       | 160                | 140        | 140        | 140        | 140          | 140          | 140        | 149.5                                         | -15.472          | 17.092                | 16.792                                                 | 17.329                                           |
| 31       | 160                | 140        | 140        | 140        | 140          | 140          | 140        | 149.5                                         | 6.149            | 16.879                | 16.59                                                  | 17.329                                           |
| 32<br>22 | 160                | 140<br>140 | 140<br>140 | 140<br>140 | 140          | 140          | 140        | 149.5                                         | 27.718           | 17.034                | 17.230                                                 | 17.329                                           |
| 33<br>24 | 100                | 140<br>140 | 140<br>140 | 140<br>140 | 140          | 140          | 140        | 149.5                                         | 48.901           | 18.407                | 17.981                                                 | 17.329                                           |
| 34<br>25 | 170                | 140<br>146 | 140<br>146 | 140<br>146 | $140 \\ 146$ | $140 \\ 146$ | 140<br>146 | 152                                           | -02.000          | 21.793<br>21.155      | 21.099                                                 | 20.331                                           |
| 30<br>26 | 170                | 140        | 140        | 140        | 140          | 140          | 140        | 152                                           | -35.420          | 21.155                | 20.304<br>10.720                                       | 20.331                                           |
| 30<br>27 | 170                | 140        | 140        | 140        | 140          | 140          | 140        | 152                                           | -14.024          | 20.27                 | 19.759                                                 | 20.331                                           |
| 30       | 170                | 140        | 140        | 140        | 140          | 140          | 140        | 152                                           | 26 560           | 20.123<br>20.837      | 19.04                                                  | 20.331                                           |
| 30       | 170                | 140        | 140        | 140        | 140          | 140          | 140        | 152                                           | 47 194           | 20.857<br>21.707      | 20.183                                                 | 20.331                                           |
|          | 180                | 140        | 140        | 140        | 140          | 140          | 140        | 154.5                                         | 24 222           | 21.107                | 20.98                                                  | 20.331<br>21.703                                 |
| 40       | 180                | 140        | 140        | 140        | 140          | 140          | 140        | 154.5                                         | -54.552          | 22.417                | 21.050<br>21.076                                       | 21.703<br>21.703                                 |
| 41       | 180                | 140        | 140        | 140        | 140          | 140          | 140        | 154.5                                         | 5 670            | 21.025<br>21.555      | 21.070                                                 | 21.703<br>21.703                                 |
| 42       | 180                | 140        | 140        | 140        | 140          | 140          | 140        | 154.5                                         | 25 685           | 21.000                | 20.885                                                 | 21.703<br>21.703                                 |
| 40       | 180                | 140        | 140        | 140        | 140          | 140          | 140        | 154.5                                         | 25.005<br>45.601 | 22.04<br>23.158       | 21.011 22.21                                           | 21.703<br>21.703                                 |
| 44       | 180                | 146        | 146        | 146        | 146          | 146          | 146        | 154.5                                         | 65 604           | 23.100<br>23.177      | 22.001<br>22.501                                       | 21.703                                           |
| 46       | 180                | 180        | 180        | 180        | 180          | 180          | 180        | 180                                           | 15 68            | 25 269                | 25.022                                                 | 26 635                                           |
| 47       | 180                | 180        | 180        | 180        | 180          | 180          | 180        | 180                                           | 25.68            | 25.203<br>25.607      | 26.411                                                 | 26.635                                           |
| 48       | 180                | 180        | 180        | 180        | 180          | 180          | 180        | 180                                           | 45 69            | 26.321                | 27 366                                                 | 26.635                                           |
| 49       | 180                | 180        | 180        | 180        | 180          | 180          | 180        | 180                                           | 65.694           | 26.604                | 27.589                                                 | 26.635                                           |
| 50       | 180                | 180        | 180        | 180        | 180          | 180          | 180        | 180                                           | -14.327          | 25.174                | 25.904                                                 | 26.635                                           |
| 51       | 180                | 180        | 180        | 180        | 180          | 180          | 180        | 180                                           | -34.332          | 26.061                | 26.859                                                 | 26.635                                           |

TABLE S2. *ab-initio* calculated vs  ${}^{2}J_{\text{Si-O-Si}}$  coupling model. The initial geometry was optimized with RHF/6-311G(d). Individual geometry, after structural constraint on  $\Omega_0, \Omega_k$  and  $\phi$ , was not optimized. All Si-O bond distances were fixed to 1.6 Å and O-Si-O intra-tetrahedral angle set to 109.5°.

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Index | $\Omega_0/1^\circ$ |            |            | $\Omega_k$ | $/1^{\circ}$ |            |            | $\overline{\langle \Omega \rangle}/1^{\circ}$ | $\phi/1^{\circ}$ | 1                | $^{2}J_{ m Si-O-Si}$ -coupling                         | $/\mathrm{Hz}$                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|------------|------------|------------|--------------|------------|------------|-----------------------------------------------|------------------|------------------|--------------------------------------------------------|--------------------------------------------------|
| 62         120         120         120         120         8.237         -2.4602         -3.3223         -3.0199           53         120         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         150         <                                                                                                                                                                                          |       |                    | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_4$   | $\Omega_5$ | $\Omega_6$ |                                               |                  | ab- $initio$     | $J(\Omega_0, \overline{\langle \Omega \rangle}, \phi)$ | $J(\Omega_0, \overline{\langle \Omega \rangle})$ |
| 53         120         130         130         130         127,5         8,237         -2,3752         -3,0180         -2,6976           54         120         146         146         146         146         146         146         146         146         146         145         5,237         -1,9657         -2,5334         -2,1819           56         120         150         150         150         150         150         150         150         150         150         150         150         150         150         150         15224         -1,6033           58         120         170         170         170         170         170         170         170         155         1522         -1,6033         1,301         130         130         130         130         140         140         140         140         140         140         140         145         155         155         155         155         156         156         156         156         156         156         156         156         150         156         156         156         156         156         150         156         156         156         156                                                                                                                                                                                                         | 52    | 120                | 120        | 120        | 120        | 120          | 120        | 120        | 120                                           | 8.237            | -2.4502          | -3.3223                                                | -3.0199                                          |
| 554         120         144         140         140         140         140         140         140         140         135         8.237         -2.1284         -2.2155         -2.27155         -2.27155         -2.2753           56         120         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150 <td>53</td> <td>120</td> <td>130</td> <td>130</td> <td>130</td> <td>130</td> <td>130</td> <td>130</td> <td>127.5</td> <td>8.237</td> <td>-2.3752</td> <td>-3.0189</td> <td>-2.6976</td> | 53    | 120                | 130        | 130        | 130        | 130          | 130        | 130        | 127.5                                         | 8.237            | -2.3752          | -3.0189                                                | -2.6976                                          |
| 55         120         146         146         146         146         139.5         8.237         -1.9857         -2.5334         -2.189           56         120         160         160         160         160         160         150         8.237         -1.6123         -2.1086         -1.7306           58         120         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170 <td>54</td> <td>120</td> <td>140</td> <td>140</td> <td>140</td> <td>140</td> <td>140</td> <td>140</td> <td>135</td> <td>8.237</td> <td>-2.1224</td> <td>-2.7155</td> <td>-2.3753</td>          | 54    | 120                | 140        | 140        | 140        | 140          | 140        | 140        | 135                                           | 8.237            | -2.1224          | -2.7155                                                | -2.3753                                          |
| $      56 \  \  \  \  \  \  \  \  \  \  \  \  \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55    | 120                | 146        | 146        | 146        | 146          | 146        | 146        | 139.5                                         | 8.237            | -1.9657          | -2.5334                                                | -2.1819                                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56    | 120                | 150        | 150        | 150        | 150          | 150        | 150        | 142.5                                         | 8.237            | -1.8819          | -2.412                                                 | -2.0529                                          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57    | 120                | 160        | 160        | 160        | 160          | 160        | 160        | 150                                           | 8.237            | -1.6123          | -2.1086                                                | -1.7306                                          |
| 59 120 180 180 180 180 180 180 180 180 180 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58    | 120                | 170        | 170        | 170        | 170          | 170        | 170        | 157.5                                         | 8.237            | -1.2821          | -1.8052                                                | -1.4083                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59    | 120                | 180        | 180        | 180        | 180          | 180        | 180        | 165                                           | 8.237            | -1.083           | -1.5017                                                | -1.0859                                          |
| 61       130       130       130       130       130       175       1.6351       1.2913       1.1716         62       130       146       146       146       146       146       146       142       7.5       2.2933       2.1653       2.2363         64       130       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150       150 </td <td>60</td> <td>130</td> <td>120</td> <td>120</td> <td>120</td> <td>120</td> <td>120</td> <td>120</td> <td>122.5</td> <td>7.5</td> <td>1.4423</td> <td>0.74504</td> <td>1.1487</td>                                                                                                        | 60    | 130                | 120        | 120        | 120        | 120          | 120        | 120        | 122.5                                         | 7.5              | 1.4423           | 0.74504                                                | 1.1487                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61    | 130                | 130        | 130        | 130        | 130          | 130        | 130        | 130                                           | 7.5              | 1.6351           | 1.2913                                                 | 1.7196                                           |
| 63         130         146         146         146         146         142         7.5         2.2193         2.1653         2.6332           66         130         160         160         160         160         160         152.5         7.5         2.762         2.9301         3.4326           66         130         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170                                                                                                                                                                                                          | 62    | 130                | 140        | 140        | 140        | 140          | 140        | 140        | 137.5                                         | 7.5              | 1.9939           | 1.8376                                                 | 2.2906                                           |
| 64         130         150         150         150         145         7.5         2.3633         2.3838         2.8616           65         130         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         160         7.5         3.3655         4.0226         4.5764           68         140         120         120         120         120         120         120         120         120         120         120         120         6.335         5.8964         5.6635         7.3527         7.3604         7.9345           71         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140                                                                                                                                                                                                     | 63    | 130                | 146        | 146        | 146        | 146          | 146        | 146        | 142                                           | 7.5              | 2.2193           | 2.1653                                                 | 2.6332                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64    | 130                | 150        | 150        | 150        | 150          | 150        | 150        | 145                                           | 7.5              | 2.3653           | 2.3838                                                 | 2.8616                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65    | 130                | 160        | 160        | 160        | 160          | 160        | 160        | 152.5                                         | 7.5              | 2.762            | 2.9301                                                 | 3.4326                                           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66    | 130                | 170        | 170        | 170        | 170          | 170        | 170        | 160                                           | 7.5              | 3.2326           | 3.4764                                                 | 4.0035                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67    | 130                | 180        | 180        | 180        | 180          | 180        | 180        | 167.5                                         | 7.5              | 3.6555           | 4.0226                                                 | 4.5745                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68    | 140                | 120        | 120        | 120        | 120          | 120        | 120        | 125                                           | 6.935            | 5.8964           | 5.2636                                                 | 5.7602                                           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 69    | 140                | 130        | 130        | 130        | 130          | 130        | 130        | 132.5                                         | 6.935            | 6.2592           | 6.07                                                   | 6.5965                                           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70    | 140                | 140        | 140        | 140        | 140          | 140        | 140        | 140                                           | 6.935            | 6.8246           | 6.8765                                                 | 7.4327                                           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71    | 140                | 146        | 146        | 146        | 146          | 146        | 146        | 144.5                                         | 6.935            | 7.2072           | 7.3604                                                 | 7.9345                                           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72    | 140                | 150        | 150        | 150        | 150          | 150        | 150        | 147.5                                         | 6.935            | 7.4552           | 7.6829                                                 | 8.269                                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73    | 140                | 160        | 160        | 160        | 160          | 160        | 160        | 155                                           | 6.935            | 8.0411           | 8.4894                                                 | 9.1052                                           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 74    | 140                | 170        | 170        | 170        | 170          | 170        | 170        | 162.5                                         | 6.935            | 8.722            | 9.2958                                                 | 9.9415                                           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75    | 140                | 180        | 180        | 180        | 180          | 180        | 180        | 170                                           | 6.935            | 9.3362           | 10.102                                                 | 10.778                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76    | 150                | 120        | 120        | 120        | 120          | 120        | 120        | 127.5                                         | 6.494            | 10.354           | 9.6437                                                 | 10.221                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77    | 150                | 130        | 130        | 130        | 130          | 130        | 130        | 135                                           | 6.494            | 10.962           | 10.692                                                 | 11.304                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78    | 150                | 140        | 140        | 140        | 140          | 140        | 140        | 142.5                                         | 6.494            | 11.771           | 11.74                                                  | 12.386                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79    | 150                | 146        | 146        | 146        | 146          | 146        | 146        | 147                                           | 6.494            | 12.329           | 12.369                                                 | 13.035                                           |
| 81150160160160160160160175 $6.494$ 13.52713.83714.5582150170170170170170170165 $6.494$ 14.44814.84815.6338315018018018018018018018018018018018084160120120120120120130 $6.149$ 14.19413.35914.00285160140140140140140145 $6.149$ 16.15415.84416.56187160146146146146146146146146145.556.14916.87916.5917.32988160150150150150150152.56.14917.36117.08717.841891601601601601601601606.14918.46218.32919.121901601701701701701701756.14920.30820.81421.68921701201201201201201201201305.8216.90715.98416.67494170140140140140140140140140147.55.88216.90715.98416.674951701461461461461461525.882 <td>80</td> <td>150</td> <td>150</td> <td>150</td> <td>150</td> <td>150</td> <td>150</td> <td>150</td> <td>150</td> <td>6.494</td> <td>12.696</td> <td>12.789</td> <td>13.468</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80    | 150                | 150        | 150        | 150        | 150          | 150        | 150        | 150                                           | 6.494            | 12.696           | 12.789                                                 | 13.468                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81    | 150                | 160        | 160        | 160        | 160          | 160        | 160        | 157.5                                         | 6.494            | 13.527           | 13.837                                                 | 14.55                                            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82    | 150                | 170        | 170        | 170        | 170          | 170        | 170        | 165                                           | 6.494            | 14.448           | 14.885                                                 | 15.633                                           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83    | 150                | 180        | 180        | 180        | 180          | 180        | 180        | 172.5                                         | 6.494            | 15.182           | 15.933                                                 | 16.715                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84    | 160                | 120        | 120        | 120        | 120          | 120        | 120        | 130                                           | 6.149            | 14.194           | 13.359                                                 | 14.002                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85    | 160                | 130        | 130        | 130        | 130          | 130        | 130        | 137.5                                         | 6.149            | 15.085           | 14.602                                                 | 15.282                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86    | 160                | 140        | 140        | 140        | 140          | 140        | 140        | 145                                           | 6.149            | 16.154           | 15.844                                                 | 16.561                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 87    | 160                | 140        | 146        | 146        | 146          | 146        | 146        | 149.5                                         | 6.149            | 16.879           | 16.59                                                  | 17.329                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88    | 160                | 150        | 150        | 150        | 150          | 150        | 150        | 152.5                                         | 6.149<br>C 140   | 17.361           | 17.087                                                 | 17.841                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89    | 160                | 160        | 160        | 160        | 160          | 160        | 160        | 160                                           | 6.149<br>C 140   | 18.462           | 18.329                                                 | 19.121                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90    | 160                | 100        | 1/0        | 100        | 100          | 100        | 100        | 167.5                                         | 6.149<br>C 140   | 19.567           | 19.572                                                 | 20.4                                             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 91    | 100                | 180        | 180        | 180        | 180          | 180        | 180        | 10                                            | 0.149            | 20.308           | 20.814                                                 | 21.08                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92    | 170                | 120        | 120        | 120        | 120          | 120        | 120        | 132.3                                         | 0.002            | 10.907           | 10.964                                                 | 10.074                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93    | 170                | 130        | 130        | 130        | 130          | 130        | 130        | $140 \\ 147 5$                                | 5.882<br>5.992   | 18.015           | 17.352                                                 | 18.081                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94    | 170                | 140        | 140        | 140        | 140          | 140        | 140        | 147.0                                         | 5.002            | 19.278           | 10.719                                                 | 19.407                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95    | 170                | 140        | 140        | 140        | 140          | 140        | 140        | 152                                           | 5.002            | 20.123           | 19.04                                                  | 20.331                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90    | 170                | 160        | 160        | 160        | 160          | 160        | 160        | 162.5                                         | 5.882            | 20.088           | 20.087                                                 | 20.894                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91    | 170                | 170        | 170        | 170        | 170          | 170        | 170        | 102.5                                         | 5.882            | 21.970           | 21.400                                                 | 22.301<br>22.707                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90    | 170                | 180        | 180        | 180        | 180          | 180        | 180        | 170<br>1775                                   | 5.882            | 23.100<br>23.705 | 22.022                                                 | 25.707                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100   | 180                | 190        | 190        | 190        | 190          | 190        | 190        | 125                                           | 5.670            | 18 208           | 24.19<br>17 916                                        | 20.114                                           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101   | 180                | 120        | 120        | 120        | 120          | 120        | 130        | 1/9 5                                         | 5 670            | 10.250           | 18 696                                                 | 10 289                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 101   | 180                | 1/0        | 1/0        | 1/0        | 1/0          | 1/0        | 1/0        | 142.0                                         | 5 670            | 20.607           | 20 020                                                 | 20.855                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 102   | 180                | 140        | 1/6        | 1/6        | 1/6          | 1/6        | 1/6        | 154 5                                         | 5 670            | 20.057           | 20.037                                                 | 20.000                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104   | 180                | 150        | 150        | 150        | 150          | 150        | 150        | 157.5                                         | 5.679            | 21.000           | 20.000                                                 | 21.100                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105   | 180                | 160        | 160        | 160        | 160          | 160        | 160        | 165                                           | 5 670            | 22.13            | 21.440                                                 | 22.203<br>93 734                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 106   | 180                | 170        | 170        | 170        | 170          | 170        | 170        | 172.5                                         | 5 679            | 25.44<br>24.552  | 22.000                                                 | 25.154                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107   | 180                | 180        | 180        | 180        | 180          | 180        | 180        | 180                                           | 5.679            | 25.017           | 25.68                                                  | 26.635                                           |

TABLE S3. *ab-initio* calculated vs  ${}^{2}J_{\text{Si-O-Si}}$  coupling model. Individual geometry, after structural constraint on  $\Omega_{0}$  and  $\Omega_{k}$ , was optimized using RHF/6-311G(d). The *ab-initio* J-coupling were then evaluated on the optimized geometry and compare with Eq. (19) of the main document. Excellent agreement in J-coupling model and *ab-initio* result is observed. All Si-O bond distances were fixed to 1.6 Å and O-Si-O intra-tetrahedral angle set to 109.5°.

| Index | $\Omega_0/1^\circ$ |            |            | $\Omega_k$ | $/1^{\circ}$ |            |            | $\overline{\langle \Omega \rangle}/1^{\circ}$ | $\phi/1^{\circ}$ | 1            | $^{2}J_{\mathrm{Si-O-Si}}$ -coupling                   | /Hz                                              |
|-------|--------------------|------------|------------|------------|--------------|------------|------------|-----------------------------------------------|------------------|--------------|--------------------------------------------------------|--------------------------------------------------|
|       |                    | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_4$   | $\Omega_5$ | $\Omega_6$ |                                               | optimized        | ab- $initio$ | $J(\Omega_0, \overline{\langle \Omega \rangle}, \phi)$ | $J(\Omega_0, \overline{\langle \Omega \rangle})$ |
| 108   | 130                | 142        | 142        | 142        | 142          | 142        | 142        | 139                                           | 48.553           | 2.374        | 2.8141                                                 | 2.4048                                           |
| 109   | 140                | 142        | 142        | 142        | 142          | 142        | 142        | 141.5                                         | -3.63            | 7.1588       | 7.0094                                                 | 7.6                                              |
| 110   | 150                | 142        | 142        | 142        | 142          | 142        | 142        | 144                                           | -1.01            | 12.333       | 11.911                                                 | 12.602                                           |
| 111   | 160                | 142        | 142        | 142        | 142          | 142        | 142        | 146.5                                         | -48.131          | 18.823       | 17.438                                                 | 16.817                                           |
| 112   | 170                | 142        | 142        | 142        | 142          | 142        | 142        | 149                                           | -43.526          | 21.655       | 20.298                                                 | 19.769                                           |
| 113   | 180                | 142        | 142        | 142        | 142          | 142        | 142        | 151.5                                         | -163.34          | 22.695       | 21.663                                                 | 21.123                                           |
| 114   | 130                | 146        | 146        | 146        | 146          | 146        | 146        | 142                                           | -51.352          | 2.2449       | 3.0886                                                 | 2.6332                                           |
| 115   | 140                | 146        | 146        | 146        | 146          | 146        | 146        | 144.5                                         | 69.457           | 8.2131       | 8.4749                                                 | 7.9345                                           |
| 116   | 150                | 146        | 146        | 146        | 146          | 146        | 146        | 147                                           | 6.494            | 12.329       | 12.369                                                 | 13.035                                           |
| 117   | 160                | 146        | 146        | 146        | 146          | 146        | 146        | 149.5                                         | -43.389          | 18.997       | 17.832                                                 | 17.329                                           |
| 118   | 170                | 146        | 146        | 146        | 146          | 146        | 146        | 152                                           | -44.749          | 22.294       | 20.911                                                 | 20.331                                           |
| 119   | 180                | 146        | 146        | 146        | 146          | 146        | 146        | 154.5                                         | -158.46          | 23.025       | 22.07                                                  | 21.703                                           |
| 120   | 130                | 149        | 149        | 149        | 149          | 149        | 149        | 144.25                                        | -53.188          | 2.323        | 3.2866                                                 | 2.8045                                           |
| 121   | 140                | 149        | 149        | 149        | 149          | 149        | 149        | 146.75                                        | 68.928           | 8.0614       | 8.7422                                                 | 8.1853                                           |
| 122   | 150                | 149        | 149        | 149        | 149          | 149        | 149        | 149.25                                        | -44.896          | 14.262       | 13.864                                                 | 13.36                                            |
| 123   | 160                | 149        | 149        | 149        | 149          | 149        | 149        | 151.75                                        | -40.024          | 19.09        | 18.109                                                 | 17.713                                           |
| 124   | 170                | 149        | 149        | 149        | 149          | 149        | 149        | 154.25                                        | -36.953          | 22.181       | 21.053                                                 | 20.753                                           |
| 125   | 180                | 149        | 149        | 149        | 149          | 149        | 149        | 156.75                                        | -63.423          | 24.16        | 22.994                                                 | 22.138                                           |
| 126   | 120                | 178        | 178        | 178        | 178          | 178        | 178        | 163.5                                         | -73.729          | -0.84366     | -0.80904                                               | -1.1504                                          |
| 127   | 130                | 178        | 178        | 178        | 178          | 178        | 178        | 166                                           | -69.237          | 4.3472       | 4.9844                                                 | 4.4603                                           |
| 128   | 140                | 178        | 178        | 178        | 178          | 178        | 178        | 168.5                                         | -69.038          | 10.709       | 11.248                                                 | 10.61                                            |
| 129   | 150                | 178        | 178        | 178        | 178          | 178        | 178        | 171                                           | -55.352          | 16.639       | 17.296                                                 | 16.498                                           |
| 130   | 160                | 178        | 178        | 178        | 178          | 178        | 178        | 173.5                                         | -40.144          | 21.178       | 21.882                                                 | 21.424                                           |
| 131   | 170                | 178        | 178        | 178        | 178          | 178        | 178        | 176                                           | -26.716          | 24.167       | 24.668                                                 | 24.833                                           |
| 132   | 180                | 178        | 178        | 178        | 178          | 178        | 178        | 178.5                                         | -142.29          | 25.249       | 25.956                                                 | 26.345                                           |

TABLE S4. *ab-initio* calculated vs  ${}^{2}J_{\text{Si-O-Si}}$  coupling model. The initial geometry was optimized with RHF/6-311G(d). Individual geometry, after structural constraint on  $\Omega_{0}$ ,  $\Omega_{k}$  and  $\phi$ , was not optimized. All Si-O bond distances were fixed to 1.6 Å and O-Si-O intra-tetrahedral angle set to 109.5°.

| Index | $\Omega_0/1^\circ$ |            |            | $\Omega_k$ | $/1^{\circ}$ |            |            | $\overline{\langle \Omega \rangle}/1^{\circ}$ | $\phi/1^{\circ}$ | $^{2}j$               | $J_{\rm Si-O-Si}$ -coupling                            | /Hz                                              |
|-------|--------------------|------------|------------|------------|--------------|------------|------------|-----------------------------------------------|------------------|-----------------------|--------------------------------------------------------|--------------------------------------------------|
|       |                    | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_4$   | $\Omega_5$ | $\Omega_6$ |                                               |                  | $ab\mathchar`-initio$ | $J(\Omega_0, \overline{\langle \Omega \rangle}, \phi)$ | $J(\Omega_0, \overline{\langle \Omega \rangle})$ |
| 133   | 140                | 140        | 140        | 140        | 130          | 130        | 130        | 136.25                                        | 6.935            | 6.5463                | 6.4733                                                 | 7.0146                                           |
| 134   | 140                | 140        | 140        | 140        | 150          | 150        | 150        | 143.75                                        | 6.935            | 7.1414                | 7.2797                                                 | 7.8508                                           |
| 135   | 140                | 140        | 140        | 140        | 160          | 160        | 160        | 147.5                                         | 6.935            | 7.4539                | 7.6829                                                 | 8.269                                            |
| 136   | 140                | 140        | 140        | 140        | 170          | 170        | 170        | 151.25                                        | 6.935            | 7.7772                | 8.0862                                                 | 8.6871                                           |
| 137   | 140                | 150        | 150        | 150        | 130          | 130        | 130        | 140                                           | 6.935            | 6.867                 | 6.8765                                                 | 7.4327                                           |
| 138   | 140                | 150        | 150        | 150        | 140          | 140        | 140        | 143.75                                        | 6.935            | 7.1414                | 7.2797                                                 | 7.8508                                           |
| 139   | 140                | 150        | 150        | 150        | 160          | 160        | 160        | 151.25                                        | 6.935            | 7.7665                | 8.0862                                                 | 8.6871                                           |
| 140   | 140                | 150        | 150        | 150        | 170          | 170        | 170        | 155                                           | 6.935            | 8.0846                | 8.4894                                                 | 9.1052                                           |
| 141   | 150                | 130        | 146        | 146        | 146          | 146        | 146        | 145                                           | 6.494            | 11.882                | 12.09                                                  | 12.747                                           |
| 142   | 150                | 140        | 146        | 146        | 146          | 146        | 146        | 146.25                                        | 6.494            | 12.129                | 12.264                                                 | 12.927                                           |
| 143   | 150                | 150        | 146        | 146        | 146          | 146        | 146        | 147.5                                         | 6.494            | 12.47                 | 12.439                                                 | 13.107                                           |
| 144   | 150                | 160        | 146        | 146        | 146          | 146        | 146        | 148.75                                        | 6.494            | 12.848                | 12.614                                                 | 13.288                                           |
| 145   | 150                | 170        | 146        | 146        | 146          | 146        | 146        | 150                                           | 6.494            | 13.223                | 12.789                                                 | 13.468                                           |
| 146   | 120                | 154.5      | 153.24     | 142.43     | 158.36       | 134.56     | 157.87     | 142.62                                        | 47.643           | -2.1903               | -1.7321                                                | -2.0478                                          |
| 147   | 130                | 157.08     | 153.88     | 145.05     | 160.56       | 135.83     | 157.46     | 146.23                                        | 50.461           | 2.3991                | 3.4132                                                 | 2.9554                                           |
| 148   | 140                | 160.95     | 155.8      | 147.36     | 161.25       | 137.16     | 153.78     | 149.54                                        | 51.534           | 8.11                  | 9.0703                                                 | 8.4962                                           |
| 149   | 150                | 164.5      | 159.12     | 148.42     | 160.44       | 138.09     | 149.49     | 152.51                                        | 52.6             | 13.882                | 14.508                                                 | 13.83                                            |
| 150   | 160                | 158.21     | 163.61     | 149.71     | 158.25       | 139.28     | 147.48     | 154.57                                        | 55.06            | 18.593                | 18.973                                                 | 18.194                                           |
| 151   | 170                | 153.31     | 166.12     | 149.46     | 157.43       | 140.91     | 144.64     | 156.48                                        | 56.761           | 21.393                | 22.015                                                 | 21.172                                           |
| 152   | 125                | 142        | 156        | 160        | 158          | 149        | 161        | 147                                           | 7.845            | 0.10924               | 0.060112                                               | 0.48901                                          |
| 153   | 135                | 142        | 156        | 160        | 158          | 149        | 161        | 149.5                                         | 7.2              | 4.9043                | 5.3085                                                 | 5.8538                                           |
| 154   | 145                | 142        | 156        | 160        | 158          | 149        | 161        | 152                                           | 6.701            | 10.224                | 10.705                                                 | 11.353                                           |

TABLE S4. ...continued. *ab-initio* calculated vs  ${}^{2}J_{\text{Si-O-Si}}$  coupling model, continued. The initial geometry was optimized with RHF/6-311G(d). Individual geometry, after structural constraint on  $\Omega_0$ ,  $\Omega_k$  and  $\phi$ , was not optimized. All Si-O bond distances were fixed to 1.6 Å and O-Si-O intra-tetrahedral angle set to 109.5°.

| Index | $\Omega_0/1^\circ$ |            |            | $\Omega_k$ | $/1^{\circ}$     |                  |            | $\overline{\langle \Omega \rangle}/1^{\circ}$ | $\phi/1^{\circ}$ | 2                     | $J_{\rm Si-O-Si}$ -coupling                       | /Hz                                              |
|-------|--------------------|------------|------------|------------|------------------|------------------|------------|-----------------------------------------------|------------------|-----------------------|---------------------------------------------------|--------------------------------------------------|
|       |                    | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_4$       | $\Omega_5$       | $\Omega_6$ |                                               |                  | $ab\mathchar`-initio$ | $J(\Omega_0,\overline{\langle\Omega angle},\phi)$ | $J(\Omega_0, \overline{\langle \Omega \rangle})$ |
| 155   | 155                | 142        | 156        | 160        | 158              | 149              | 161        | 154.5                                         | 6.311            | 15.398                | 15.572                                            | 16.307                                           |
| 156   | 165                | 142        | 156        | 160        | 158              | 149              | 161        | 157                                           | 6.007            | 19.632                | 19.344                                            | 20.144                                           |
| 157   | 175                | 142        | 156        | 160        | 158              | 149              | 161        | 159.5                                         | 5.772            | 22.186                | 21.594                                            | 22.436                                           |
| 158   | 170                | 145        | 155        | 160        | 167              | 172              | 161        | 162.5                                         | 5.882            | 21.671                | 21.455                                            | 22.301                                           |
| 159   | 170                | 137        | 170        | 153        | 150.1            | 179.9            | 170        | 162.5                                         | 5.882            | 20.741                | 21.455                                            | 22.301                                           |
| 160   | 170                | 157        | 166        | 137        | 166              | 173              | 161        | 162.5                                         | 5.882            | 21.563                | 21.455                                            | 22.301                                           |
| 161   | 170                | 146        | 164        | 150        | 162              | 168              | 170        | 162.5                                         | 5.882            | 21.491                | 21.455                                            | 22.301                                           |
| 162   | 160                | 145        | 155        | 160        | 167              | 172              | 161        | 160                                           | 6.149            | 18.143                | 18.329                                            | 19.121                                           |
| 163   | 160                | 137        | 170        | 153        | 150.1            | 179.9            | 170        | 160                                           | 6.149            | 17.095                | 18.329                                            | 19.121                                           |
| 164   | 160                | 157        | 166        | 137        | 166              | 173              | 161        | 160                                           | 6.149            | 18.127                | 18.329                                            | 19.121                                           |
| 165   | 160                | 146        | 164        | 150        | 162              | 168              | 170        | 160                                           | 6.149            | 17.913                | 18.329                                            | 19.121                                           |
| 166   | 150                | 145        | 155        | 160        | 167              | 172              | 161        | 157.5                                         | 6.494            | 13.23                 | 13.837                                            | 14.55                                            |
| 167   | 150                | 137        | 170        | 153        | 150.1            | 179.9            | 170        | 157.5                                         | 6.494            | 12.175                | 13.837                                            | 14.55                                            |
| 168   | 150                | 157        | 166        | 137        | 166              | 173              | 161        | 157.5                                         | 6.494            | 13.275                | 13.837                                            | 14.55                                            |
| 169   | 150                | 146        | 164        | 150        | 162              | 168              | 170        | 157.5                                         | 6.494            | 12.964                | 13.837                                            | 14.55                                            |
| 170   | 130                | 145        | 155        | 160        | 167              | 172              | 161        | 152.5                                         | 7.502            | 2.5666                | 2.9301                                            | 3.4326                                           |
| 171   | 130                | 137        | 170        | 153        | 150.1            | 179.9            | 170        | 152.5                                         | 7.502            | 1.8455                | 2.9301                                            | 3.4326                                           |
| 172   | 130                | 157        | 166        | 137        | 166              | 173              | 161        | 152.5                                         | 7.502            | 2.6513                | 2.9301                                            | 3.4326                                           |
| 173   | 130                | 146        | 164        | 150        | 162              | 168              | 170        | 152.5                                         | 7.502            | 2.3541                | 2.9301                                            | 3.4326                                           |
| 174   | 180                | 145        | 155        | 160        | 167              | 172              | 161        | 165                                           | 5.679            | 23.192                | 22.858                                            | 23.734                                           |
| 175   | 180                | 137        | 170        | 153        | 150.1            | 179.9            | 170        | 165                                           | 5.679            | 22.472                | 22.858                                            | 23.734                                           |
| 176   | 180                | 157        | 166        | 137        | 166              | 173              | 161        | 165                                           | 5.679            | 22.973                | 22.858                                            | 23.734                                           |
| 177   | 180                | 146        | 164        | 150        | 162              | 168              | 170        | 165                                           | 5.679            | 23.06                 | 22.858                                            | 23.734                                           |
| 178   | 135                | 164        | 155        | 140        | 150              | 166              | 172        | 152.12                                        | 7.2              | 5.1271                | 5.5453                                            | 6.1002                                           |
| 179   | 145                | 164        | 155        | 140        | 150              | 166              | 172        | 154.62                                        | 6.701            | 10.523                | 11.031                                            | 11.691                                           |
| 180   | 155                | 164        | 155        | 140        | 150              | 166              | 172        | 157.12                                        | 6.311            | 15.748                | 15.976                                            | 16.723                                           |
| 181   | 165                | 164        | 155        | 140        | 150              | 166              | 172        | 159.62                                        | 6.007            | 19.973                | 19.804                                            | 20.617                                           |
| 182   | 175                | 164        | 155        | 140        | 150              | 166              | 172        | 162.12                                        | 5.772            | 22.458                | 22.084                                            | 22.939                                           |
| 183   | 127.5              | 135.6      | 142.8      | 161.2      | 155.4            | 147.3            | 169.8      | 145.89                                        | 7.668            | 1.1973                | 1.2069                                            | 1.6604                                           |
| 184   | 132.5              | 135.6      | 142.8      | 161.2      | 155.4            | 147.3            | 169.8      | 147.14                                        | 7.346            | 3.5995                | 3.8128                                            | 4.324                                            |
| 185   | 142.5              | 135.6      | 142.8      | 161.2      | 155.4            | 147.3            | 169.8      | 149.64                                        | 6.814            | 8.8003                | 9.1787                                            | 9.7959                                           |
| 186   | 152.5              | 135.6      | 142.8      | 161.2      | 155.4            | 147.3            | 169.8      | 152.14                                        | 6.399            | 13.998                | 14.183                                            | 14.89                                            |
| 187   | 162.5              | 135.6      | 142.8      | 161.2      | 155.4            | 147.3            | 169.8      | 154.64                                        | 6.076            | 18.462                | 18.233                                            | 19.01                                            |
| 188   | 1(2.5              | 135.0      | 142.8      | 101.2      | 155.4            | 141.3            | 169.8      | 157.14                                        | 5.825            | 21.434                | 20.87                                             | 21.695                                           |
| 189   | 120                | 108.34     | 108.34     | 108.34     | 109.00           | 109.00           | 109.00     | 150.55                                        | -08.042          | -0.50969              | -1.0590                                           | -1.4502                                          |
| 190   | 129.9              | 108.34     | 108.34     | 108.34     | 109.00<br>179.11 | 109.00<br>179.11 | 109.00     | 109                                           | -03.499          | 4.9418                | 4.428                                             | 3.8710                                           |
| 191   | 130                | 177.0      | 177.0      | 177.0      | 177.04           | 177.04           | 177.04     | 102.21                                        | -03.442          | 4.7433                | 4.7408                                            | 4.1/1/                                           |
| 192   | 140                | 175 4      | 175 4      | 175 4      | 170.12           | 170.12           | 170.12     | 108.14                                        | -39.20           | 10.000                | 11.284                                            | 10.07                                            |
| 193   | 100                | 170.4      | 170.4      | 170.4      | 177.75           | 177 75           | 177 75     | 172.00                                        | -0/              | 17.008                | 1(.1/2)                                           | 10.305                                           |
| 194   | 100                | 170.07     | 170.07     | 170.07     | 170.72           | 170.72           | 170 72     | 177.20                                        | -03.18           | 22.027                | 22.327                                            | 21.478                                           |
| 195   | 1/0                | 179.97     | 179.97     | 179.97     | 179.73           | 179.73           | 179.73     | 170.07                                        | -01.021          | 25.272                | 25.957                                            | 25.093                                           |
| 190   | 140                | 118.58     | 1/8.58     | 1(8.58     | 1/8.08           | 170              | 1/8.08     | 118.97                                        | -49.354          | 20.525                | 21.219                                            | 20.430                                           |
| 197   | 140                | 145<br>197 | 100        | 100        | 150 1            | 170.0            | 101        | 105                                           | 0.935            | (.(815                | ð.4894<br>8 4804                                  | 9.1052                                           |
| 198   | 140                | 157        | 1/0        | 155        | 100.1            | 1/9.9            | 1/0        | 155                                           | 0.935            | 0.8387                | 8.4894                                            | 9.1052                                           |
| 199   | 140                | 157        | 100        | 157        | 100              | 1/3              | 101        | 155                                           | 0.935            | 7 5001                | 8.4894                                            | 9.1052                                           |
| 200   | 140                | 146        | 164        | 150        | 162              | 168              | 170        | 155                                           | 0.935            | 7.5261                | 8.4894                                            | 9.1052                                           |

TABLE S5. *ab-initio* calculated vs  $^2J_{\rm Si-O-Si}$  coupling model from Sigma-2

| Index    | $\Omega_0/1^\circ$ |            | $\Omega_k$ | $/1^{\circ}$ |            |            | $\overline{\langle \Omega \rangle}/1^{\circ}$ | $\phi/1^{\circ}$ | $^{2}J_{\rm Si-O-Si}$ -coupling /Hz |                       |                                                        |                                                  |
|----------|--------------------|------------|------------|--------------|------------|------------|-----------------------------------------------|------------------|-------------------------------------|-----------------------|--------------------------------------------------------|--------------------------------------------------|
|          |                    | $\Omega_1$ | $\Omega_2$ | $\Omega_3$   | $\Omega_4$ | $\Omega_5$ | $\Omega_6$                                    |                  |                                     | $ab\mathchar`-initio$ | $J(\Omega_0, \overline{\langle \Omega \rangle}, \phi)$ | $J(\Omega_0, \overline{\langle \Omega \rangle})$ |
| site 2-3 | 153.45             | 148.7      | 153.45     | 148.7        | 172.76     | 153.45     | 160.8                                         | 155.595          | 0.47                                | 16.0                  | 15.035                                                 | 15.035                                           |
| site 1-3 | 172                | 137.2      | 158.21     | 158.21       | 160.8      | 153.45     | 153.45                                        | 158.165          | -0.45                               | 22.07                 | 20.958                                                 | 20.958                                           |
| site 4-1 | 137.2              | 158.21     | 172.26     | 158.21       | 148.78     | 152.04     | 148.74                                        | 151.575          | 0.0                                 | 6.48                  | 6.552                                                  | 6.552                                            |
| site 4-2 | 148.74             | 137.2      | 148.74     | 152.04       | 148.74     | 153.45     | 153.45                                        | 148.8878         | 27.95                               | 11.09                 | 12.652                                                 | 11.993                                           |