Electronic Supplementary Information for

Probing Electron Transfer Between Hemin and Riboflavin Using A Combination

of Analytical Approaches and Theoretical Calculations

Wen-Lan Wang*, Yuan Min*, Sheng-Song Yu, Wei Chen, Jie-Jie Chen**, Xiao-Yang

Liu, Han-Qing Yu**

Department of Chemistry, University of Science & Technology of China, Hefei,

230026, China

*These authors contributed equally to this work.

****Corresponding authors**:

Dr. Jie-Jie Chen, Fax: +86 551 63601592; E-mail: chenjiej@mail.ustc.edu.cn;

Prof. Han-Qing Yu, Fax: +86 551 63607592; E-mail: hqyu@ustc.edu.cn

Table S1. Gibbs Free Energy Change (ΔG^{O}), Activation Energy (E_{a}), Entropy of Activation ($\Delta^{\neq}S^{O}$), and Rate Constant (k_{ET}) for the Hemin(III) to Hemx(II) Reduction with or without RF_{ox} Cofactor in Aqueous Solution at Room Temperature (298.15 K) and Atmospheric pressure.

Reaction	ΔG^{O}	E_{a}	$\Delta^{\neq}S^{\mathrm{O}}$	$k_{ m ET}$
	(kcal/mol)	(kcal/mol)	(cal/mol·K)	(s ⁻¹)
Hemin(III) + H_3O^+ + OH^- + e^- \Rightarrow Hemx(II) + $2H_2O$	-127.690	0.011	-12.247	1.284×10^{10}
Hemin(III) - $RF_{ox} + H_3O^+ + OH^-$ + $e^- \rightleftharpoons Hemx(II) - RF_{ox} + 2H_2O$	-190.819	1.030	8.558	4.602×10^{14}

fon and Kr in Aqueous Solution at Room Temperature and Atmospherie Pressure.				
Reaction	$\Delta G^{ m O}$	$\Delta H^{ m O}$		
	(kcal/mol)	(kcal/mol)		
$\text{Hemx}(\text{II}) \rightleftharpoons \text{Heme}(\text{II})$	1.067	0.039		
$\text{Hemx(II)} - \text{RF}_{\text{ox}} \rightleftharpoons \text{Heme(II)} - \text{RF}_{\text{ox}}$	-130.414	-128.323		
$RF_{ox} + Heme(II) \rightleftharpoons RF_{rad} - Hemin(III)$	-55.077	-56.077		
RF_{rad} · + $H_3O^+ \rightleftharpoons RF_{rad}H^+ + H_2O$	-37.576	-38.168		
RF_{rad} + Heme(II) $\rightleftharpoons RF_{red}^{2-}$ + Hemin(III)	-23.323	-25.379		
$RF_{rad}H^{\bullet} + Heme(II) \rightleftharpoons RF_{red}H^{-} + Hemin(III)$	-43.924	-45.612		
$RF_{red}^{2-} + H_3O^+ \rightleftharpoons RF_{red}H^- + H_2O$	-58.177	-58.401		
$RF_{red}H^- + H_3O^+ \rightleftharpoons RF_{red}H_2 + H_2O$	-22.217	-22.338		

Table S2. Standard Gibb's Free Energy Change (ΔG^{O}) and Enthalpy Change (ΔH^{O}) of the Reactions Involved in the Electron and Proton Transfer Reaction of Porphyrin Iron and RF in Aqueous Solution at Room Temperature and Atmospheric Pressure

Figure S1. Energy-minimized structures of heme(II) and RF_{ox} . (a) Heme(II) structure with porphyrin ring and iron (II); and (b) RF_{ox} structure with N-heterocycle isoalloxazine ring

Figure S2. (a) CVs of 50 μ M RF at a CPE at scan rates from 50 to 500 mV/s in the TL-cell. Scan range: 0 to -0.70 V vs. Ag/AgCl; working electrode: CPE with a surface area of 0.6 cm²; buffer solution: PBS (pH = 7.0); (b) Relationship between RF peak current (the first step of reduction and oxidation) and scan rate; (c) CVs of 50 μ M Hemin(III) at a CPE at scan rate from 50 to 500 mV/s in the TL-cell. Scan range: 0 to -0.70 V vs. Ag/AgCl; working electrode: CPE with a surface area of 0.6 cm²; buffer solution: PBS (pH = 7.0); and (d) Relationship between Hemin(III) peak current and scan rate

Figure S3. CV of 50 μ M RF and 50 μ M Hemin(III) mixture in the TL-cell at a scan rate from 50 to 500 mV/s. Scan range: -0.05 to -0.75 V vs. Ag/AgCl; buffer solution: PBS (pH = 7.0); working electrode: CPE with a surface area of 0.6 cm²

Figure S4. UV-Vis spectrum of 50 μ M RF, 50 μ M hemin(III) and 50 μ M RF-hemin(III) mixture in the TL-cell without electron supply. Buffer solution: PBS (pH = 7.0)

Figure S5. *In situ* electrochemical fluorescence spectra of RF at -0.415 V vs. Ag/AgCl for 90 min in the TL-cell. Excitation wavelength was 444 nm; the excitation and emission slits were both 5 nm; scanning speed was set at 600 nm/min, wavelength of 490-620 nm; buffer solution: PBS (pH = 7.0)