Supporting Information

Dipole-correlated carrier transportation and orbital reconfiguration in strain-distorted SrNb_xTi_{1-x}O₃

Jikun Chen^{1,2†}*, Xinyou Ke³, Jiaou Wang⁴*, Takeaki Yajima², Haijie Qian⁴ and Song Sun⁵*

¹School of Materials Science and Engineering, University of Science and Technology Beijing,

Beijing 100083, China

²School of Engineering, The University of Tokyo, Tokyo 1138656, Japan

³John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

⁴Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

⁵National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei 230029, China

[†]J. Chen is presently at School of Engineering, The University of Tokyo, Tokyo 1138656, Japan

*Correspondences: Prof. Jikun Chen (jikun@adam.t.u-tokyo.ac.jp), Prof. Jiaou Wang (wangjo@ihep.ac.cn) and Prof. Song Sun (wangjo@ihep.ac.cn). Request for materials: Prof. Jikun Chen (jikun@adam.t.u-tokyo.ac.jp).

Additional XRD and RSM results

Figure S1. (a) XRD patterns (θ -2 θ scan) for SrNb_{0.4}Ti_{0.8}O₃/KTaO₃ (001) and **(b)** XRD patterns SrNb_{0.2}Ti_{0.8}O₃/KTaO₃ (001) and SrNb_{0.4}Ti_{0.6}O₃/KTaO₃ (001). The film and substrate show the same crystal structure and orientation, since the diffraction peaks for the film are present beside those for the substrate. It indicates that as-grown thin films exhibit the same crystal structure and orientation as compared to the substrate.

Figure S2. RSM results for *as-grown* SrNb_{0.2}Ti_{0.8}O₃/LaAlO₃ (001) with a thickness around 50 nm. The upper and lower diffraction patterns are the reciprocal space vectors of [114] from the substrate and film, respectively. Smaller $Q_{//}$ and Q_{\perp} for the film compared with the substrate were observed. The interfacial strain is completely relaxed at an early stage of the deposition from a large lattice mismatch (3.65%).

Figure S3. Estimation of the activation energy was estimated from the temperature dependence of carrier concentration as shown in Figure 2b. The temperature dependence of the carrier concentration by, $n = N_{Sat.} Exp(\frac{-\Delta E}{k_B T})$, from 50-300 K. Transforming the above

formula to $\ln(n/n_{300K}) = \ln(N_{Sat.}/n_{300K}) + (\frac{-\Delta E}{k_B})(1/T)$ and plotting $\ln(n/n_{300K})$ vs. 1 / T,

obtains the above two graph for Nb2STO/KTO and Nb4STOKTO, respectively. The slope indicates the activation energy divided by the Boltzmann constant.