PCCP

ARTICLE TYPE

Cite this: DOI: 10.1039/xxxxxxxxx

Supporting Information

Cameron J. Mackie,^{*a} Alessandra Candian,^a Xinchuan Huang,^b Elena Maltseva,^c Annemieke Petrignani,^c Jos Oomens,^d Wybren Jan Buma,^c Timothy J. Lee,^e and Alexander G. G. M. Tielens^a

Received Date Accepted Date

DOI: 10.1039/xxxxxxxxx

www.rsc.org/journalname

Fig. 1 Theoretical anharmonic IR spectrum of this work of 9– methylanthracene compared with the high–resolution gas–phase IR absorption spectrum of this work.

Table 1 Line positions $[cm^{-1}]$, relative intensities, resonance components, and intensity origins for the bands of 9–methylanthracene determined from the high–resolution gas–phase IR absorption spectra and the theoretical anharmonic spectrum of this work (figure 1).

exp ¹	rel I ¹	anharm re	el I	components	I source
3099.3	0.53	3100.0 0	.58	$v_2, v_{13}+v_{22},$	v_2, v_4
				v_4	
		3101.6 0	.42 [$v_{16} + v_{17}, v_{13}$	<i>v</i> ₃
3092.3	0.43	3089.5 0	.40	$v_{14} + v_{19}$,	v_4, v_1
				$v_{15} + v_{18}$,	
				$v_{14} + v_{21}, v_8$	
3087.1	0.50	3083.8 0	.50	$v_{13} + v_{19}, v_3$	v_3, v_1
3072.7	1	3077.3 0	.64	$v_{13} + v_{22}$,	v_1, v_4
				$v_{14} + v_{21}, v_1$	
3068.5	0.88	3073.1 0	.60	$v_{14} + v_{22}$,	v_4
				$v_{14} + v_{19}$,	
				$v_{13} + v_{22}, v_4$	
3061.5	0.94	3063.6 0	.99	$v_4, v_{14}+v_{22},$	$v_4, v_3,$
00400	0.41			<i>V</i> ₅	v_5, v_6
3048.0	0.41	3056.6 0	.47	$v_5, v_{14} + v_{22}$	<i>v</i> ₅
3037.8	0.70	3041.8 0	.26	$v_9, v_{15}+v_{19},$	v_5, v_9
		0041 6 0		$v_{13} + v_{23}, v_5$	
0000 (0.50	3041.6 0	.32	$v_{16} + v_{18}, v_6$	v_6, v_4
3020.6	0.58	3027.4 0	.52	$v_{10}, v_{15} + v_{21},$	v_{10}
0001 0	0.00			$v_{15} + v_{22}$	
3001.2	0.30	2998.6 0	.21	$v_{16} + v_{22}$,	v_4, v_3
2015 0	0.00			$v_{13} + v_{26}$	
2965.8	0.30	29/2.5 0	.09	$v_{15} + v_{24}$	v_4, v_3
2949.8	0.55	2945.9 0	.54	$v_{11}, v_{18} + v_{20}$	<i>v</i> ₁₁
2933.8	0.44	2930.9 0	.49 60 1	$v_{18} + v_{22}, v_{12}$	<i>v</i> ₁₂
2927.9	0.40	2927.4 0	.02	$v_{19} + v_{19}, v_{12},$	<i>v</i> ₁₂
2877 5	0.32	2860.3 0	55	$v_{18} + v_{22}$	Via
2077.3	0.34	2000.3 0	.55	$v_{20} + v_{20}, v_{12}$	v12

^a Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands. E-mail: mackie@strw.leidenuniv.nl

^b SETI Institute, 189 Bernardo Avenue, Suite 200, Mountain View, California 94043, United States.

^c University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.

^d Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.

^e NASA Ames Research Center, Moffett Field, California 94035-1000, United States.

Fig. 2 The matrix–isolation infrared spectrum^{2,3} of 9–methylanthracene (green, bottom of each panel) compared to the convolved (FWHM 2 cm⁻¹) theoretical anharmonic calculations of this work (blue, top each panel). Three spectral ranges are shown, with each range normalized to the local maximum to enhance details.

Table 2 Line positions [cm ⁻¹], relative intensities, and vibrational mode
identifications for the bands of 9-methylanthracene determined from the
matrix isolation spectra and the theoretical anharmonic spectrum of this
work (figure 2).

n 2	1 -			
exp ^{2,3}	rel l	anharm	rel l	mode
1939.1	0.030	1941.0	0.035	$v_{42} + v_{42}$
1918.8	0.012	1920.2	0.024	$v_{44} + v_{42}$
1901 5	0.011	1899 1	0.015	$v_{45} + v_{44}$
1855.0	0.011	1847 3	0.017	$V_{45} + V_{44}$
1000.0	0.010	1077.3	0.007	V47 1 V43
1833.4	0.045	1824.7	0.020	$v_{42} + v_{49}$
1825./	0.004	1819.3	0.012	$v_{43} + v_{49}$
1813.5	0.016	1807.9	0.029	$v_{46} + v_{46}$
1802.4	0.015	1803.2	0.018	$v_{45} + v_{49}$
1793.3	0.009	1791.1	0.008	$v_{45} + v_{50}$
1784.9	0.006	1786.0	0.010	$v_{44} + v_{50}$
1758.4	0.013	1755.8	0.011	$V_{47} + V_{47}$
17/7 2	0.010	1742.0	0.011	$V_{47} + V_{47}$
17110	0.010	1742.9	0.000	$v_{43} + v_{52}$
1/11.9	0.000	1/19.4	0.014	$v_{48} + v_{48}$
1/09.8	0.008	1/15.4	0.011	$v_{47} + v_{50}$
1703.3	0.016	1703.5	0.018	$v_{44} + v_{53}$
1682.7	0.018	1669.3	0.011	$v_{37} + v_{58}$
1678.8	0.017	1661.6	0.018	$v_{45} + v_{55}$
1629.7	0.053	1632.7	0.056	<i>v</i> ₁₃
1573.4	0.007	1572.9	0.008	$v_{28} + v_{70}$
1563.0	0.010	1565.2	0.016	V16
1532.6	0.052	1537.4	0.042	V17
1515.6	0.000	1508.2	0.012	V_{1}
1402.0	0.009	1404.0	0.020	v51 i v56
1492.9	0.008	1494.0	0.044	V18
1480.9	0.004	14/9.9	0.020	$v_{54} + v_{54}$
1452.7	0.024	1457.7	0.028	$v_{37} + v_{66}$
1444.5	0.053	1448.4	0.093	$v_{44} + v_{63}$
1424.3	0.007	1419.7	0.020	$v_{45} + v_{64}$
1414.3	0.020	1412.4	0.029	$v_{47} + v_{61}$
1410.1	0.029	1407.6	0.041	<i>v</i> ₂₃
1388.2	0.023	1390.8	0.022	V24
1387.6	0.020	1385.1	0.032	V25
1378.8	0.056	1380.9	0.039	$v_{40} + v_{61}$
13521	0.000	1345.6	0.007	V27
1222.1	0.101	1222 7	0.101	V ₂ /
1017 5	0.011	1222.7	0.021	V28
1017.0	0.007	1322.9	0.011	$v_{54} + v_{59}$
1307.9	0.005	1303.2	0.011	$v_{52} + v_{61}$
1239.5	0.011	1229.6	0.009	v_{31}
1225.1	0.006	1219.6	0.011	$v_{58} + v_{58}$
1189.1	0.022	1191.0	0.021	<i>v</i> ₃₂
1186.6	0.026	1186.8	0.009	<i>v</i> ₃₃
1162.9	0.036	1168.3	0.029	$v_{52} + v_{66}$
1160.6	0.057	1166.0	0.030	V34
1141.0	0.039	-	-	
1137.3	0.017	-	_	
1000.0	0.049	1109 5	0.012	$v_{co} + v_{co}$
1096.5	0.017	1107.0	0.012	*00 * *00
1000.5	0.017	1022.1	0.027	14
1033.9	0.041	1052.1	0.027	V38
997.8	0.133	1007.0	0.153	V_{41}
952.8	0.038	951.5	0.032	v_{44}
880.0	0.507	879.1	0.363	v_{47}
863.1	0.041	859.6	0.043	v_{48}
833.9	0.156	834.6	0.133	<i>v</i> ₅₀
816.1	0.016	816.7	0.006	$v_{62} + v_{69}$
777.4	0.301	772.2	0.205	V52
729.7	1	727.9	1	V55
603.5	0.175	609.2	0.076	V50
587.0	0.030	585.8	0.038	V50
521 2	0.000	533.6	0 101	· 39
551.5	0.21/	555.0	0.171	v 61

mode	freq	symm	description
v_1	3225.9	a′	hindered quarto CH stretch
v_2	3219.1	a′	unhindered quarto CH stretch
$\bar{v_3}$	3202.1	a′	hindered quarto CH stretch
v_4	3201.4	a′	unhindered quarto CH stretch
V5	3186.9	a′	hindered quarto CH stretch
V6	3186.3	a′	unhindered quarto CH stretch
v7	3176.8	a′	solo/quarto CH stretch
Vo	3171.2	a′	solo CH stretch
V10	3165.6	a′	methyl CH stretch
V11	3083.7	a″	methyl CH stretch
V12	3038.6	a′	methyl CH stretch
V12	1670.9	a′	CC stretch
V14	1664.2	a′	CC stretch
V15	1621.0	a′	CC stretch
V16	1601 1	a′	CC stretch
V17	1570.8	a′	CC stretch/CH in-plane bend
V10	1528.1	a'	CH in-plane bend
V10	1496.6	a'	methyl HCH bend
V20	1489 7	a″	methyl HCH bend
V20	1481.9	a′	CH in-plane bend
V21 V22	1478.0	a'	CH in-plane bend
V22	1445.3	a′	CC stretch
V23	1420.1	a′	CH in-plane bend
· 24 V25	1413.1	a′	CH in-plane bend
V25	1408.6	a′	CH in-plane bend
V20	1373.8	a′	CH in-plane bend
V28	1356.7	a′	CH in-plane bend
V20	1252.0	a′	CH in-plane bend
V32	1210.4	a′	CH in-plane bend
V33	1200.7	a′	CH in-plane bend
V34	1181.4	a′	CH in-plane bend
V37	1078.8	a′	CH in-plane bend (incl. methyl)
V ₃₈	1050.6	a′	methyl CC stretch
v_{41}	1025.1	a′	CH in-plane bend (incl. methyl)
v_{42}	991.2	a″	CH out-of-plane bend
v_{43}	989.2	a″	CH out-of-plane bend
v_{44}	971.3	a″	CH out-of-plane bend
v_{45}	967.3	a″	CH out-of-plane bend
v_{46}	914.0	a′	CC in-plane bend
v_{47}	898.6	a″	CH out-of-plane bend
v_{48}	870.0	a′	CC in-plane bend
v_{49}	860.2	a″	CH out-of-plane bend
v_{50}	849.1	a″	CH out-of-plane bend
v_{51}	830.6	a′	ring breathe
v_{52}	785.8	a″	CC out-of-plane bend
<i>v</i> ₅₃	765.8	a″	CH out-of-plane bend
v_{54}	747.2	a″	CH out-of-plane bend
v_{55}	741.0	a″	CH out-of-plane bend
v_{56}	698.2	a′	CC in-plane bend
v_{58}	616.0	a′	CC in-plane bend
V59	600.8	a″	CC out-of-plane bend
v_{60}	559.5	a' "	CC in-plane bend
v_{61}	544.8	a''	CC out-of-plane bend
V ₆₂	528.7	a′ - ″	CC in-plane bend
<i>v</i> ₆₃	500.8	a'' o''	CC out-oi-piane Dend
V ₆₄	403.1	a''	CC out-of-plane bend
V66	405.2 200 ⊑	a 0//	CC out of plana band
V69	^{477.3}	a	oo out-oi-piane benu

Table 3 Harmonic mode descriptions and frequencies $[cm^{-1}]$ of the IR active modes and modes involved in IR active combination bands for the identifications given in tables 1 and 2 of 9–methylanthracene.

a′

body in-plane bend

248.3

 v_{70}

Fig. 3 Theoretical anharmonic IR spectrum of this work of 9,10– dimethylanthracene compared with the high–resolution gas–phase IR absorption spectrum of this work.

Table 4 Line positions [cm⁻¹], relative intensities, resonance components, and intensity origins for the bands of 9,10–dimethylanthracene determined from the high–resolution gas–phase IR absorption spectra and the theoretical anharmonic spectrum of this work (figure 3).

exp ¹	rel I ¹	anharm rel I	components	I source
3102.6	1	3101.2 0.55	$v_4, v_{16}+v_{25},$	v_4
			$v_{16} + v_{21}$	
3092.3	0.83	3093.7 0.77	$v_2, v_{19} + v_{20}$	<i>v</i> ₂
3078.3	0.92	3083.0 0.49	$v_{16} + v_{21}, v_4,$	v_4, v_2
			<i>v</i> ₂	
3063.7	0.47	3070.5 0.32	$v_{16} + v_{26}$,	<i>v</i> ₅
			$v_{16} + v_{21}, v_5$	
3057.3	0.55	3052.4 0.19	$v_{16} + v_{26}$,	<i>v</i> ₅
			$v_{19} + v_{20}, v_5$	
3031.7	0.64	3034.1 0.64	$v_9, v_{15}+v_{27},$	v_9, v_4
			$v_{18} + v_{21}$	
2963.5	0.44	2964.8 0.08	$v_{20} + v_{21}$	<i>v</i> ₁₄
2929.2	0.79	2932.8 1	$v_{14}, v_{21} + v_{24}$	<i>v</i> ₁₄
2885.2	0.54	2862.1 0.54	$v_{22}+v_{23}, v_{14},$	<i>v</i> ₁₄
			$v_{21} + v_{24}$	

Table 5 Harmonic mode descriptions and frequencies $[cm^{-1}]$ of the IR active modes and modes involved in IR active combination bands for the identifications given in table 4 of 9,10–dimethylanthracene.

mode	freq	symm	description
<i>v</i> ₂	3230.8	b	hindered quatro CH stretch
v_4	3224.2	Ь	unhindered quatro CH stretch
v_5	3196.9	Ь	CH stretch
V 9	3168.7	Ь	methyl hindered CH stretch
v_{14}	3038.3	Ь	methyl CH stretch
v_{15}	1669.4	b	CC stretch
v_{16}	1657.4	а	CC stretch
v_{18}	1592.1	а	CC stretch
v_{19}	1573.3	b	CC stretch
v_{20}	1536.1	а	CH in-plane bend
v_{21}	1507.1	b	methyl HCH bend
<i>v</i> ₂₂	1491.0	а	methyl HCH bend
v_{23}	1490.8	а	methyl HCH bend
v_{24}	1488.2	а	methyl HCH bend
<i>v</i> ₂₅	1482.5	b	CH in-plane bend
v_{26}	1474.6	Ь	CH in-plane bend
<i>v</i> ₂₇	1450.5	а	CC stretch

Fig. 4 No matrix–isolation data is available for 9,10–dimethylanthracene. Therefore, only the convolved (FWHM 2 cm⁻¹) theoretical anharmonic calculations of this work (blue, top each panel). Three spectral ranges are shown, with each range normalized to the local maximum to enhance details.

Fig. 5 Theoretical anharmonic IR spectrum of this work of 9,10– dihydroanthracene compared with the high–resolution gas–phase IR absorption spectrum of this work.

Table 6 Line positions $[cm^{-1}]$, relative intensities, resonance components, and intensity origins for the bands of 9,10–dihydroanthracene determined from the high–resolution gas–phase IR absorption spectra and the theoretical anharmonic spectrum of this work (figure 5).

exp ¹	rel I ¹	anharm rel I	components	I source
3118.1	0.10	3111.8 0.11	$v_{13} + v_{17}$	v ₇
3087.1	0.31	3090.7 0.11	$v_{14} + v_{18}$	v ₇
3075.9	0.52	3080.3 1	$v_4, v_{15}+v_{19},$	v_4
			$v_{16} + v_{20}$	
3070.3	0.22	3060.7 0.43	$v_{16} + v_{18}, v_5,$	<i>v</i> ₅
			$v_{14} + v_{19}$	
3054.0	0.60	3042.0 0.87	$v_5, v_{13}+v_{20},$	<i>v</i> ₅
			$v_{14} + v_{19}$	
3041.5	0.25	3030.6 0.33	$v_{13}+v_{21}, v_7,$	<i>v</i> ₇
			<i>v</i> ₃	
3031.7	1	3026.4 0.50	$v_8, v_4,$	v_4
			$v_{16} + v_{20}$	
3015.5	0.23	3008.7 0.51	$v_7, v_{16}+v_{19},$	v_7
			$v_{15} + v_{20}$	
2947.0	0.55	2950.8 0.69	$v_{10}, v_{14} + v_{23}$	<i>v</i> ₁₀
2934.2	0.12	2940.2 0.48	$v_{10}, v_{14} + v_{23},$	<i>v</i> ₁₀
			$v_{13} + v_{25}$	
2880.2	0.15	2887.1 0.06	$v_{13} + v_{26}$	<i>v</i> ₅
2873.8	0.31	2858.0 0.47	$v_{11}, v_{21} + v_{22}$	v_{11}, v_{10}
2868.0	0.24	2854.7 0.66	$v_{12}, v_{21} + v_{21}$	<i>v</i> ₁₂
2862.6	0.12			
2830.6	0.28	2801.1 0.16	$v_{15} + v_{29}$,	<i>v</i> ₁₂
			$v_{19} + v_{24}$	
2826.6	0.90	2788.2 0.30	$v_{19}+v_{24}, v_{12}$	<i>v</i> ₁₂

Fig. 6 The matrix-isolation infrared spectrum^{2,3} of 9,10– dihydroanthracene (green, bottom of each panel) compared to the convolved (FWHM 2 cm⁻¹) theoretical anharmonic calculations of this work (blue, top each panel). Three spectral ranges are shown, with each range normalized to the local maximum to enhance details.

Table 7 Line positions $[cm^{-1}]$, relative intensities, and vibrational mode identifications for the bands of 9,10–dihydroanthracene determined from the matrix isolation spectra and the theoretical anharmonic spectrum of this work (figure 6).

exp ^{2,3}	rel I	anharm	rel I	mode
1946.1	0.040	1954.7	0.074	$v_{42} + v_{41}$
1928.8	0.016	1929.5	0.030	$v_{44} + v_{41}$
1910.3	0.030	1912.7	0.042	$v_{45} + v_{42}$
1891.1	0.007	1888.3	0.011	$v_{45} + v_{44}$
1870.0	0.009	1866.8	0.016	$v_{46} + v_{41}$
1846.0	0.006	1840.5	0.021	$v_{49} + v_{41}$
1835.7	0.017	1837.0	0.013	$v_{47} + v_{44}$
1818.6	0.014	1825.8	0.018	$v_{46} + v_{45}$
1798.1	0.044	1818.7	0.033	$v_{45} + v_{48}$
1702.1	0.009	1709.1	0.008	$v_{41} + v_{55}$
1684.1	0.008	1684.7	0.009	$v_{45} + v_{52}$
1667.9	0.005	1660.5	0.006	$v_{45} + v_{54}$
1643.5	0.003	1643.0	0.004	$v_{47} + v_{52}$
1582.5	0.055	1581.7	0.058	<i>v</i> ₁₆
1507.5	0.025	1511.6	0.074	$v_{41} + v_{60}$
1499.7	0.069	1506.4	0.158	$v_{48} + v_{57}$
1489.5	0.228	1498.6	0.201	$v_{49} + v_{57}$
1480.6	0.418	1484.0	0.356	<i>v</i> ₁₈
1468.9	0.100	1478.0	0.148	$v_{53} + v_{54}$
1457.3	0.424	1465.8	0.189	$v_{43} + v_{61}$
1428.8	0.167	1412.6	0.074	<i>v</i> ₂₂
1402.5	0.006	1399.3	0.009	$v_{47} + v_{61}$
1358.4	0.006	1366.7	0.014	$v_{55} + v_{57}$
1331.8	0.009	1338.1	0.029	<i>v</i> ₂₃
1286.7	0.048	1282.9	0.037	<i>v</i> ₂₆
1269.8	0.031	1275.8	0.033	<i>v</i> ₂₇
1208.6	0.125	1202.3	0.196	<i>v</i> ₃₀
1184.2	0.089	1174.0	0.046	<i>v</i> ₃₃
1152.0	0.053	1151.3	0.041	<i>v</i> ₃₄
1122.4	0.129	1123.5	0.084	V37
1041.1	0.110	1046.9	0.101	V39
959.7	0.050	959.8	0.008	$v_{58} + v_{66}$
955.0	0.145	953.1	0.115	v_{44}
937.9	0.006	935.7	0.005	V45
896.6	0.035	890.8	0.028	<i>v</i> ₄₆
761.6	0.387	755.7	0.784	<i>v</i> ₅₂
747.0	0.382	745.0	0.231	<i>v</i> ₅₃
730.5	1	727.7	1	<i>v</i> ₅₄
633.6	0.011	638.1	0.013	V ₅₇
608.5	0.351	609.3	0.246	<i>v</i> ₅₈

Table 8 Harmonic mode descriptions and frequencies $[cm^{-1}]$ of the IR active modes and modes involved in IR active combination bands for the identifications given in tables 6 and 7 of 9,10–dihydroanthracene.

v_3 3202.6 b_2 quatro CH stretch v_4 3202.4 a_2 quatro CH stretch v_5 3188.3 a_1 quatro CH stretch v_7 3169.1 b_2 quatro CH stretch v_8 3168.8 a_2 dihydro CH in-plane stretch v_{10} 3077.3 b_2 dihydro CH out-of-plane stretch v_{11} 2984.6 b_2 dihydro CH out-of-plane stretch v_{12} 2979.9 a_1 dihydro CH out-of-plane stretch v_{12} 2979.9 a_1 dihydro CH out-of-plane stretch v_{13} 1654.8 b_2 CC stretch v_{14} 1647.5 a_2 CC stretch v_{15} 1633.8 a_1 CC stretch v_{16} 1620.0 b_1 CC stretch v_{17} 1528.6 a_1 CH in-plane bend v_{18} 1514.8 b_1 CH in-plane bend v_{19} 1491.9 a_2 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{24} 1367.2 b_2 CH in-plane bend v_{24} 1367.2 b_2 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend<	mode	freq	symm	description
v_4 3202.4 a_2 quatro CH stretch v_5 3188.3 a_1 quatro CH stretch v_7 3169.1 b_2 quatro CH stretch v_8 3168.8 a_2 dihydro CH in-plane stretch v_{10} 3077.3 b_2 dihydro CH out-of-plane stretch v_{11} 2984.6 b_2 dihydro CH out-of-plane stretch v_{12} 2979.9 a_1 dihydro CH out-of-plane stretch v_{12} 2979.9 a_1 dihydro CH out-of-plane stretch v_{13} 1654.8 b_2 CC stretch v_{14} 1647.5 a_2 CC stretch v_{15} 1633.8 a_1 CC stretch v_{16} 1620.0 b_1 CC stretch v_{17} 1528.6 a_1 CH in-plane bend v_{18} 1514.8 b_1 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{26} 1307.2 b_2 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{33} 1195.3 b_2 CC in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend<	<i>v</i> ₃	3202.6	b ₂	quatro CH stretch
v_5 3188.3 a_1 quatro CH stretch v_7 3169.1 b_2 quatro CH stretch v_8 3168.8 a_2 dihydro CH in-plane stretch v_{10} 3077.3 b_2 dihydro CH out-of-plane stretch v_{11} 2984.6 b_2 dihydro CH out-of-plane stretch v_{12} 2979.9 a_1 dihydro CH out-of-plane stretch v_{12} 2979.9 a_1 dihydro CH out-of-plane stretch v_{13} 1654.8 b_2 CC stretch v_{14} 1647.5 a_2 CC stretch v_{15} 1633.8 a_1 CC stretch v_{16} 1620.0 b_1 CC stretch v_{17} 1528.6 a_1 CH in-plane bend v_{18} 1514.8 b_1 CH in-plane bend v_{19} 1491.9 a_2 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{26} 1307.2 b_2 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend <td>v_4</td> <td>3202.4</td> <td>a₂</td> <td>quatro CH stretch</td>	v_4	3202.4	a ₂	quatro CH stretch
v_7 3169.1 b_2 quatro CH stretch v_8 3168.8 a_2 dihydro CH in-plane stretch v_{10} 3077.3 b_2 dihydro CH in-plane stretch v_{11} 2984.6 b_2 dihydro CH out-of-plane stretch v_{12} 2979.9 a_1 dihydro CH out-of-plane stretch v_{13} 1654.8 b_2 CC stretch v_{14} 1647.5 a_2 CC stretch v_{15} 1633.8 a_1 CC stretch v_{16} 1620.0 b_1 CC stretch v_{17} 1528.6 a_1 CH in-plane bend v_{18} 1514.8 b_1 CH in-plane bend v_{19} 1491.9 a_2 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{33} 1195.3 b_2 CC in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	v_5	3188.3	a1	quatro CH stretch
v_8 3168.8 a_2 dihydro CH in-plane stretch v_{10} 3077.3 b_2 dihydro CH in-plane stretch v_{11} 2984.6 b_2 dihydro CH out-of-plane stretch v_{12} 2979.9 a_1 dihydro CH out-of-plane stretch v_{13} 1654.8 b_2 CC stretch v_{14} 1647.5 a_2 CC stretch v_{15} 1633.8 a_1 CC stretch v_{16} 1620.0 b_1 CC stretch v_{17} 1528.6 a_1 CH in-plane bend v_{18} 1514.8 b_1 CH in-plane bend v_{19} 1491.9 a_2 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH stretch v_{26} 1307.2 b_2 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	v_7	3169.1	b ₂	quatro CH stretch
v_{10} 3077.3 b_2 dihydro CH in-plane stretch v_{11} 2984.6 b_2 dihydro CH out-of-plane stretch v_{12} 2979.9 a_1 dihydro CH out-of-plane stretch v_{13} 1654.8 b_2 CC stretch v_{14} 1647.5 a_2 CC stretch v_{15} 1633.8 a_1 CC stretch v_{16} 1620.0 b_1 CC stretch v_{17} 1528.6 a_1 CH in-plane bend v_{18} 1514.8 b_1 CH in-plane bend v_{19} 1491.9 a_2 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH stretch v_{26} 1307.2 b_2 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	v_8	3168.8	a ₂	dihydro CH in-plane stretch
v_{11} 2984.6 b_2 dihydro CH out-of-plane stretce v_{12} 2979.9 a_1 dihydro CH out-of-plane stretce v_{13} 1654.8 b_2 CC stretch v_{14} 1647.5 a_2 CC stretch v_{15} 1633.8 a_1 CC stretch v_{16} 1620.0 b_1 CC stretch v_{17} 1528.6 a_1 CH in-plane bend v_{18} 1514.8 b_1 CH in-plane bend v_{19} 1491.9 a_2 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH stretch v_{26} 1307.2 b_2 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{33} 1195.3 b_2 CC in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	v_{10}	3077.3	b ₂	dihydro CH in-plane stretch
v_{12} 2979.9 a_1 dihydro CH out-of-plane strete v_{13} 1654.8 b_2 CC stretch v_{14} 1647.5 a_2 CC stretch v_{15} 1633.8 a_1 CC stretch v_{16} 1620.0 b_1 CC stretch v_{17} 1528.6 a_1 CH in-plane bend v_{18} 1514.8 b_1 CH in-plane bend v_{19} 1491.9 a_2 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH stretch v_{26} 1307.2 b_2 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{33} 1195.3 b_2 CC in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	v_{11}	2984.6	b ₂	dihydro CH out-of-plane stretch
v_{13} 1654.8 b_2 CC stretch v_{14} 1647.5 a_2 CC stretch v_{15} 1633.8 a_1 CC stretch v_{16} 1620.0 b_1 CC stretch v_{17} 1528.6 a_1 CH in-plane bend v_{18} 1514.8 b_1 CH in-plane bend v_{19} 1491.9 a_2 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{25} 1351.8 a_1 CC stretch v_{26} 1307.2 b_2 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{33} 1195.3 b_2 CC in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	<i>v</i> ₁₂	2979.9	a ₁	dihydro CH out-of-plane stretch
v_{14} 1647.5 a_2 CC stretch v_{15} 1633.8 a_1 CC stretch v_{16} 1620.0 b_1 CC stretch v_{17} 1528.6 a_1 CH in-plane bend v_{18} 1514.8 b_1 CH in-plane bend v_{19} 1491.9 a_2 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{25} 1351.8 a_1 CC stretch v_{26} 1307.2 b_2 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{33} 1195.3 b_2 CC in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	<i>v</i> ₁₃	1654.8	b ₂	CC stretch
v_{15} 1633.8 a_1 CC stretch v_{16} 1620.0 b_1 CC stretch v_{17} 1528.6 a_1 CH in-plane bend v_{18} 1514.8 b_1 CH in-plane bend v_{19} 1491.9 a_2 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{25} 1351.8 a_1 CC stretch v_{26} 1307.2 b_2 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{33} 1195.3 b_2 CC in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	v_{14}	1647.5	a ₂	CC stretch
v_{16} 1620.0 b_1 CC stretch v_{17} 1528.6 a_1 CH in-plane bend v_{18} 1514.8 b_1 CH in-plane bend v_{19} 1491.9 a_2 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{25} 1351.8 a_1 CC stretch v_{26} 1307.2 b_2 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	v_{15}	1633.8	a1	CC stretch
v_{17} 1528.6 a_1 CH in-plane bend v_{18} 1514.8 b_1 CH in-plane bend v_{19} 1491.9 a_2 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{25} 1351.8 a_1 CC stretch v_{26} 1307.2 b_2 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	<i>v</i> ₁₆	1620.0	b1	CC stretch
v_{18} 1514.8 b_1 CH in-plane bend v_{19} 1491.9 a_2 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{25} 1351.8 a_1 CC stretch v_{26} 1307.2 b_2 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{37} 1141.1 b_2 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	v_{17}	1528.6	a1	CH in-plane bend
v_{19} 1491.9 a_2 CH in-plane bend v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{25} 1351.8 a_1 CC stretch v_{26} 1307.2 b_2 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{37} 1141.1 b_2 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	v_{18}	1514.8	b1	CH in-plane bend
v_{20} 1483.4 b_2 CH in-plane bend v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{25} 1351.8 a_1 CC stretch v_{26} 1307.2 b_2 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{33} 1195.3 b_2 CC in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	<i>v</i> ₁₉	1491.9	a ₂	CH in-plane bend
v_{21} 1471.1 a_1 dihydro HCH bend v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{25} 1351.8 a_1 CC stretch v_{26} 1307.2 b_2 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{33} 1195.3 b_2 CC in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{42} 988.3 a_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	v_{20}	1483.4	b ₂	CH in-plane bend
v_{22} 1466.1 b_2 dihydro HCH bend v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{25} 1351.8 a_1 CC stretch v_{26} 1307.2 b_2 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{33} 1195.3 b_2 CC in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{42} 988.3 a_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	v_{21}	1471.1	a ₁	dihydro HCH bend
v_{23} 1373.6 a_2 CH in-plane bend v_{24} 1367.2 b_1 CH in-plane bend v_{25} 1351.8 a_1 CC stretch v_{26} 1307.2 b_2 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{33} 1195.3 b_2 CC in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{42} 988.3 a_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	v_{22}	1466.1	b ₂	dihydro HCH bend
v_{24} 1367.2 b_1 CH in-plane bend v_{25} 1351.8 a_1 CC stretch v_{26} 1307.2 b_2 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{33} 1195.3 b_2 CC in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{42} 988.3 a_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	v_{23}	1373.6	a_2	CH in-plane bend
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v_{24}	1367.2	b1	CH in-plane bend
v_{26} 1307.2 b_2 CH in-plane bend v_{27} 1304.8 b_1 CH in-plane bend v_{29} 1234.1 a_1 CH in-plane bend v_{30} 1229.5 b_1 CH in-plane bend v_{33} 1195.3 b_2 CC in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{37} 1141.1 b_2 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{42} 988.3 a_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	V25	1351.8	a1	CC stretch
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	v_{26}	1307.2	b ₂	CH in-plane bend
$ \begin{array}{c ccccc} v_{29} & 1234.1 & a_1 & CH \text{ in-plane bend} \\ v_{30} & 1229.5 & b_1 & CH \text{ in-plane bend} \\ v_{33} & 1195.3 & b_2 & CC \text{ in-plane bend} \\ v_{34} & 1184.2 & b_1 & CH \text{ in-plane bend} \\ v_{37} & 1141.1 & b_2 & CH \text{ in-plane bend} \\ v_{39} & 1062.0 & b_1 & CC \text{ in-plane bend} \\ v_{41} & 988.4 & b_2 & CH \text{ out-of-plane bend} \\ v_{42} & 988.3 & a_2 & CH \text{ out-of-plane bend} \\ v_{43} & 975.1 & b_2 & dihydro \text{ out-of-plane twist} \\ \end{array} $	v_{27}	1304.8	b ₁	CH in-plane bend
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V29	1234.1	a1	CH in-plane bend
v_{33} 1195.3 b_2 CC in-plane bend v_{34} 1184.2 b_1 CH in-plane bend v_{37} 1141.1 b_2 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{42} 988.3 a_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	<i>v</i> ₃₀	1229.5	b1	CH in-plane bend
v_{34} 1184.2 b_1 CH in-plane bend v_{37} 1141.1 b_2 CH in-plane bend v_{39} 1062.0 b_1 CC in-plane bend v_{41} 988.4 b_2 CH out-of-plane bend v_{42} 988.3 a_2 CH out-of-plane bend v_{43} 975.1 b_2 dihydro out-of-plane twist	<i>v</i> ₃₃	1195.3	b ₂	CC in-plane bend
$ \begin{array}{c cccc} v_{37} & 1141.1 & b_2 & CH \text{ in-plane bend} \\ v_{39} & 1062.0 & b_1 & CC \text{ in-plane bend} \\ v_{41} & 988.4 & b_2 & CH \text{ out-of-plane bend} \\ v_{42} & 988.3 & a_2 & CH \text{ out-of-plane bend} \\ v_{43} & 975.1 & b_2 & dihydro \text{ out-of-plane twist} \\ \end{array} $	<i>v</i> ₃₄	1184.2	b ₁	CH in-plane bend
$ \begin{array}{c cccc} v_{39} & 1062.0 & b_1 & CC \text{ in-plane bend} \\ v_{41} & 988.4 & b_2 & CH \text{ out-of-plane bend} \\ v_{42} & 988.3 & a_2 & CH \text{ out-of-plane bend} \\ v_{43} & 975.1 & b_2 & dihydro \text{ out-of-plane twist} \end{array} $	V37	1141.1	b ₂	CH in-plane bend
$ \begin{array}{c cccc} v_{41} & 988.4 & b_2 & CH \mbox{ out-of-plane bend} \\ v_{42} & 988.3 & a_2 & CH \mbox{ out-of-plane bend} \\ v_{43} & 975.1 & b_2 & dihydro \mbox{ out-of-plane twist} \end{array} $	v_{39}	1062.0	b ₁	CC in-plane bend
$ \begin{array}{c cccc} v_{42} & 988.3 & a_2 & CH \mbox{ out-of-plane bend} \\ v_{43} & 975.1 & b_2 & dihydro \mbox{ out-of-plane twist} \end{array} $	v_{41}	988.4	b ₂	CH out-of-plane bend
v_{43} 975.1 b_2 dihydro out-of-plane twist	v_{42}	988.3	a ₂	CH out-of-plane bend
	<i>v</i> ₄₃	975.1	b ₂	dihydro out-of-plane twist
v_{44} 972.5 a_1 CH out-of-plane bend	v_{44}	972.5	a1	CH out-of-plane bend
v_{45} 951.9 b_1 CH out-of-plane bend	v_{45}	951.9	b1	CH out-of-plane bend
v_{46} 911.3 a_1 dihydro out-of-plane twist	v_{46}	911.3	a1	dihydro out-of-plane twist
v_{47} 896.2 b_2 CH out-of-plane bend	v_{47}	896.2	b ₂	CH out-of-plane bend
v_{48} 877.6 a_2 CH out-of-plane bend	v_{48}	877.6	a ₂	CH out-of-plane bend
v_{49} 870.0 a_2 CC in-plane bend	v_{49}	870.0	a ₂	CC in-plane bend
v_{52} 769.0 a_1 CC in-plane bend	v_{52}	769.0	a ₁	CC in-plane bend
v_{53} 756.9 b_1 CH out-of-plane bend	V ₅₃	756.9	b ₁	CH out-of-plane bend
v_{54} 739.1 a_1 ring breathe	v_{54}	739.1	a ₁	ring breathe
v_{55} 726.3 a_2 CC out-of-plane bend	<i>v</i> 55	726.3	a ₂	CC out-of-plane bend
v_{57} 641.9 b_2 CC out-of-plane bend	V57	641.9	b ₂	CC out-of-plane bend
v_{58} 618.8 a_1 CC in-plane bend	<i>v</i> ₅₈	618.8	a1	CC in-plane bend
v_{60} 530.9 a_2 CC in-plane bend	<i>v</i> ₆₀	530.9	a ₂	CC in-plane bend
v_{61} 521.2 a_2 CC out-of-plane bend	<i>v</i> ₆₁	521.2	a2	CC out-of-plane bend
v_{66} 359.0 a_1 body drum	<i>v</i> ₆₆	359.0	a1	body drum

Fig. 7 Theoretical anharmonic IR spectrum of this work of 9,10– dihydrophenanthrene compared with the high–resolution gas–phase IR absorption spectrum of this work.

Table 9 Line positions $[cm^{-1}]$, relative intensities, resonance components, and intensity origins for the bands of 9,10–dihydrophenanthrene determined from the high–resolution gas–phase IR absorption spectra and the theoretical anharmonic spectrum of this work (figure 7).

exp ¹	rel I ¹	anharm rel I	components	I source
3112.9	0.10	3113.0 0.11	$v_{13} + v_{18}$,	<i>v</i> ₁
			$v_{14} + v_{17}, v_1$	
		3113.6 0.10	$v_{13} + v_{17}$,	v_4
			$v_{14} + v_{18}, v_4$	
3079.2	0.76	3081.4 0.72	$v_2, v_{16} + v_{18},$	v_2, v_4
			v_4	
3064.7	0.18	3059.2 0.20	$v_{16} + v_{17}, v_1$	<i>v</i> ₁
3048.9	0.44	3048.5 0.20	$v_{16} + v_{18}, v_2$	<i>v</i> ₂
3040.1	0.25	3044.4 0.17	$v_{14} + v_{19}$,	v_4, v_2
			$v_{14} + v_{22}$	
3034.5	0.23	3033.9 0.12	$v_{15} + v_{19}$,	<i>v</i> ₅
			$v_{14} + v_{21}$,	
			$v_{16} + v_{21}, v_5$	
3026.2	0.52	3024.0 0.22	$v_7, v_{15}+v_{22},$	v_7
			$v_{14} + v_{21}$	
		3024.6 0.18	$v_8, v_{13}+v_{21},$	v_4, v_8
			<i>v</i> ₄	
2966.7	0.15	2964.4 0.14	$v_{13} + v_{23}$,	<i>v</i> ₉
0050 0	-	0051.0.1	$v_{18} + v_{18}$	
2950.2	1	2951.8 1	<i>V</i> 9	<i>v</i> ₉
2944.3	0.44	2942.6 0.43	$v_{10}, v_{13} + v_{24},$	v_{10}
0000 0	0.10	2041.0.0.14	$v_{14} + v_{23}$	
2938.3	0.18	2941.8 0.14	$v_{15} + v_{23}$,	<i>V</i> 9
2005 1	0 5 4		$v_{14} + v_{24}$	
2905.1	0.54	2904.5 0.04	$v_{11}, v_{20} + v_{22},$	v_{11}, v_{10}
2001.0	0.26	2002 0 0 46	<i>V</i> ₁₀	
2901.0	0.30	2093.0 0.40	$v_{20} + v_{20}, v_{12},$	v_9, v_{12}
2070 7	0.07	207E 4 0.06	<i>V</i> ₉	
20/9./	0.07	2075.4 0.00	$v_{22} + v_{22},$	<i>v</i> ₁₂
2824 E	0.12	28456 0.07	$v_{20} + v_{20}$	Nec
2034.3 2017 2	0.13	2043.0 0.0/	$v_{17} + v_{23}$	
2047.2	0.57	2033./ 0.03	$v_{11}, v_{20} + v_{22}, v_{11} + v_{20}$	v11
			$v_{17} + v_{23}$	

Table 10 Line positions $[cm^{-1}]$, relative intensities, and vibrational mode identifications for the bands of 9,10–dihydrophenanthrene determined from the matrix isolation spectra and the theoretical anharmonic spectrum of this work (figure 8).

exp ^{2,3}	rel I	anharm	rel I	mode
1946.6	0.022	1945.9	0.044	$v_{44} + v_{43}$
1912.1	0.029	1910.3	0.029	$v_{45} + v_{44}$
1879.4	0.010	1876.8	0.020	$v_{46} + v_{45}$
1837.7	0.015	1835.8	0.017	$v_{48} + v_{44}$
1802.9	0.019	1801.8	0.024	$v_{48} + v_{46}$
1730.5	0.004	1728.8	0.010	$v_{49} + v_{48}$
1721.0	0.010	1722.1	0.009	$v_{51} + v_{46}$
1687.4	0.006	1683.6	0.010	$v_{54} + v_{45}$
1645.1	0.008	1648.3	0.005	$v_{51} + v_{49}$
1593.0	0.007	1590.5	0.007	$v_{37} + v_{61}$
1589.6	0.008	1588.5	0.010	v_{15}
1569.9	0.007	1568.7	0.004	<i>v</i> ₁₆
1489.9	0.253	1488.2	0.154	v_{18}
1458.5	0.276	1457.1	0.118	<i>v</i> ₁₉
1448.0	0.190	1446.9	0.058	v_{21}
1443.1	0.030	1443.2	0.050	v_{20}
1433.3	0.025	1433.5	0.049	<i>v</i> ₂₂
1361.9	0.012	1362.9	0.012	$v_{49} + v_{61}$
1354.4	0.005	1352.8	0.014	<i>v</i> ₂₃
1315.6	0.008	1320.5	0.024	$v_{38} + v_{68}$
1306.9	0.034	1307.1	0.039	<i>v</i> ₂₆
1295.4	0.013	-		
1277.4	0.006	1272.2	0.025	$v_{52} + v_{61}$
1262.0	0.022	1261.2	0.043	<i>v</i> ₂₉
1239.5	0.002	1244.4	0.020	$v_{51} + v_{62}$
1216.8	0.006	1208.6	0.007	$v_{53} + v_{63}$
1208.5	0.020	1202.8	0.011	<i>v</i> ₃₀
1165.4	0.004	1168.5	0.006	<i>v</i> ₃₄
1161.0	0.007	1163.3	0.006	$v_{52} + v_{66}$
1156.4	0.010	1154.1	0.010	<i>v</i> ₃₅
1130.1	0.008	1133.1	0.005	<i>v</i> ₃₆
1093.7	0.042	1092.3	0.037	<i>v</i> ₃₇
1047.5	0.038	1051.1	0.053	<i>v</i> ₃₉
1005.5	0.075	1005.9	0.034	<i>v</i> ₄₁
940.7	0.049	938.7	0.028	<i>v</i> ₄₆
896.9	0.017	893.7	0.016	<i>v</i> ₄₇
779.7	0.032	783.5	0.024	<i>v</i> ₅₁
773.3	0.132	774.4	0.156	<i>v</i> ₅₂
746.9	1	745.3	1	<i>v</i> ₅₃
727.4	0.095	731.4	0.102	<i>v</i> ₅₅
622.5	0.203	626.7	0.080	V ₅₇
603.5	0.044	606.0	0.062	<i>v</i> ₅₈

Fig. 8 The matrix-isolation infrared spectrum^{2,3} of 9,10dihydrophenanthrene (green, bottom of each panel) compared to the convolved (FWHM 2 cm⁻¹) theoretical anharmonic calculations of this work (blue, top each panel). Three spectral ranges are shown, with each range normalized to the local maximum to enhance details.

mode	freq	symm	description
v_1	3208.4	а	quatro CH stretch
v_2	3204.5	Ъ	quatro CH stretch
v_4	3193.8	Ь	quatro CH stretch
v_5	3184.3	а	quatro CH stretch
v_8	3170.5	Ъ	quatro CH stretch
v_9	3078.5	Ь	dihydro CH in-plane stretch
v_{10}	3078.1	а	dihydro CH in-plane stretch
<i>v</i> ₁₁	3013.2	Ъ	dihydro CH out-of-plane stretch
v_{12}	3003.4	а	dihydro CH out-of-plane stretch
<i>v</i> ₁₃	1652.2	Ь	CC stretch
v_{14}	1643.8	а	CC stretch
v_{15}	1628.2	Ъ	CC stretch
<i>v</i> ₁₆	1607.2	а	CC stretch
v_{17}	1525.5	а	CH in-plane bend
v_{18}	1519.1	Ь	CH in-plane bend
<i>v</i> ₁₉	1486.2	Ъ	CH in-plane bend
v_{20}	1481.6	а	dihydro HCH bend
v_{21}	1472.8	Ъ	dihydro HCH bend
<i>v</i> ₂₂	1472.6	а	CH in-plane bend
<i>v</i> ₂₃	1380.9	Ъ	dihydro CH in-plane bend
v_{24}	1369.1	а	CH in-plane bend
<i>v</i> ₂₆	1339.0	а	dihydro CH in-plane bend
<i>v</i> ₂₉	1282.1	а	CH in-plane bend
<i>v</i> ₃₀	1224.5	а	CH in-plane bend
<i>v</i> ₃₄	1182.1	Ь	quatro CH in-plane bend
<i>v</i> ₃₅	1178.0	Ъ	dihydro CH in-plane bend
<i>v</i> ₃₆	1149.5	Ъ	CH in-plane bend
V 37	1110.2	а	CC in-plane bend
<i>v</i> ₃₈	1071.8	а	CC in-plane bend
V39	1068.8	b	CC in-plane bend
v_{41}	1020.3	b	CC in-plane bend
v_{43}	989.9	b	dihydro CC in-plane stretch
v_{44}	988.1	а	CH out-of-plane bend
v_{45}	955.7	а	CH out-of-plane bend
v_{46}	955.6	b	CH out-of-plane bend
v_{47}	908.0	b	dihydro out-of-plane twist
v_{48}	879.7	b	CH out-of-plane bend
v_{49}	878.8	а	CH out-of-plane bend
v_{51}	791.8	а	CH out-of-plane bend
v_{52}	782.7	b	CH out-of-plane bend
<i>v</i> ₅₃	757.1	b	CH out-of-plane bend
v_{54}	737.0	а	CH out-of-plane bend
<i>v</i> ₅₅	734.7	b	CC out-of-plane bend
v_{57}	633.1	b	CC in-plane bend
v_{58}	610.0	b	CC out-of-plane bend
v_{61}	503.7	b	CC out-of-plane bend
v_{62}	470.5	a 1	CC out-of-plane bend
v_{63}	466.6	b	CC out-of-plane bend
<i>v</i> ₆₆	392.1	а	body in-plane stretch
V ₆₈	268.2	а	body twist

Table 11 Harmonic mode descriptions and frequencies $[cm^{-1}]$ of the IR active modes and modes involved in IR active combination bands for the identifications given in tables 9 and 10 of 9,10–dihydrophenanthrene.

Fig. 9 Theoretical anharmonic IR spectrum of this work of 1,2,3,4– tetrahydronaphthalene compared with the high–resolution gas–phase IR absorption spectrum of this work.

Table 12 Line positions $[cm^{-1}]$, relative intensities, resonance components, and intensity origins for the bands of 1,2,3,4-tetrahydronaphthalene determined from the high-resolution gas-phase IR absorption spectra and the theoretical anharmonic spectrum of this work (figure 9).

exp ¹	rel I ¹	anharm rel	I components	I source
3111.0	0.07	3111.6 0.0	5 $v_{13}+v_{15}, v_4$	v_4
3087.6	0.10	3087.3 0.1	6 $v_1, v_{14}+v_{15},$	<i>v</i> ₁
			$v_{13} + v_{18}$	
3082.5	0.07			
3073.6	0.15	3073.2 0.2	2 $v_2, v_{14} + v_{18}$	<i>v</i> ₂
3070.8	0.17			
3051.2	0.18	3053.1 0.1	2 $v_3, v_1,$	<i>v</i> ₁
			$v_{13} + v_{18}$	
3033.6	0.17	3034.4 0.0	6 $v_3, v_{13}+v_{18},$	<i>v</i> ₁
			<i>v</i> ₁	
3026.6	0.39	3022.5 0.1	6 $v_{14} + v_{18}, v_4,$	<i>v</i> ₄ , <i>v</i> ₂
			<i>v</i> ₂	
3009.5	0.12	3003.2 0.1	6 $v_4, v_{14}+v_{18},$	v_4, v_2
			<i>v</i> ₂	
2949.8	1	2951.5 0.4	2 $v_6, v_{16}+v_{16},$	v_6, v_{10}
			$v_{17} + v_{17}, v_{10}$	
2942.9	0.66	2946.1 0.3	$v_{15} + v_{17}$,	v_9, v_8
			$v_{16} + v_{17}, v_9$	
2934.7	0.99	2929.0 1	v_5	v_5
2927.9	0.64	2919.1 0.4	4 $v_{16} + v_{16}, v_6$	<i>v</i> ₆
2909.2	0.19	2910.8 0.3	1 $v_{17} + v_{17}, v_6,$	v_6, v_{10}
			<i>v</i> ₁₀	
2898.8	0.20	2899.1 0.3	4 $v_{16} + v_{19}, v_8$	v_8, v_{12}
2894.2	0.36	2887.1 0.4	1 $v_{19} + v_{20}, v_{12},$	v_{12}, v_8
			$v_8, v_{16} + v_{19}$	
2879.3	0.09	2871.1 0.0	$v_{20} + v_{20}$,	v_{10}, v_{11}
			$v_{19} + v_{19}$	
2868.9	0.60	2855.4 0.5	1 $v_{10}, v_{17} + v_{17},$	<i>v</i> ₁₀
			$v_{16} + v_{20}$	
2851.3	0.60	2834.6 0.2	8 $v_{12}, v_{19} + v_{20}$	$\overline{v_{12}}$

Table 13 Line positions $[cm^{-1}]$, relative intensities, and vibrational mode identifications for the bands of 1,2,3,4–tetrahydronaphthalene determined from the matrix isolation spectra and the theoretical anharmonic spectrum of this work (figure 10).

exp ^{2,3}	rel I	anharm	rel I	mode
1944.2	0.024	1944.4	0.034	$v_{39} + v_{39}$
1916.6	0.030	1916.6	0.039	$v_{40} + v_{39}$
1896.5	0.005	1890.5	0.009	$v_{40} + v_{40}$
1836.4	0.015	1837.4	0.011	$v_{27} + v_{30}$
1810.7	0.021	1821.3	0.023	$v_{40} + v_{43}$
1692.0	0.012	1693.5	0.006	$v_{43} + v_{45}$
1589.4	0.012	1588.0	0.026	<i>v</i> ₁₄
1585.2	0.043	1583.6	0.022	$v_{35} + v_{52}$
1498.9	0.624	1495.8	0.272	<i>v</i> ₁₅
1475.3	0.046	1475.6	0.071	$v_{39} + v_{52}$
1457.2	0.186	1452.6	0.146	<i>v</i> ₁₇
1441.4	0.196	1440.0	0.046	v_{19}
1357.9	0.086	1355.3	0.100	v_{21}
1338.1	0.036	1341.7	0.013	<i>v</i> ₂₂
1287.3	0.090	1282.3	0.052	<i>v</i> ₂₆
1251.9	0.034	1247.3	0.068	<i>v</i> ₂₇
1114.5	0.088	1114.7	0.057	<i>v</i> ₃₄
1040.1	0.048	1037.4	0.030	V 37
988.0	0.063	979.7	0.023	<i>v</i> ₃₈
946.8	0.072	945.3	0.035	v_{40}
860.7	0.019	856.2	0.013	v_{44}
818.5	0.047	817.6	0.030	<i>v</i> ₄₅
806.3	0.174	802.1	0.065	<i>v</i> ₄₆
743.7	1	741.0	1	<i>v</i> ₄₇

Fig. 10 The matrix–isolation infrared spectrum^{2,3} of 1,2,3,4– tetrahydronaphthalene (green, bottom of each panel) compared to the convolved (FWHM 2 cm⁻¹) theoretical anharmonic calculations of this work (blue, top each panel). Three spectral ranges are shown, with each range normalized to the local maximum to enhance details.

Table 14 Harmonic mode descriptions and frequencies $[cm^{-1}]$ of the IR active modes and modes involved in IR active combination bands for the identifications given in tables 12 and 13 of 1,2,3,4-tetrahydronaphthalene.

mode	freq	symm	description
<i>v</i> ₁	3200.2	а	quatro CH stretch
v_2	3185.1	Ъ	quatro CH stretch
<i>v</i> ₃	3165.7	а	quatro CH stretch
v_4	3162.4	b	quatro CH stretch
v_5	3073.0	Ъ	dihydro CH stretch
v_6	3070.0	а	dihydro CH stretch
v_8	3057.9	Ъ	dihydro CH stretch
v 9	3025.4	Ъ	dihydro CH stretch
<i>v</i> ₁₀	3020.3	а	dihydro CH stretch
<i>v</i> ₁₁	3006.9	а	dihydro CH stretch
<i>v</i> ₁₂	3006.4	Ь	dihydro CH stretch
<i>v</i> ₁₃	1649.3	b	aromatic CC stretch
v_{14}	1622.1	а	aromatic CC stretch
<i>v</i> ¹⁵	1525.4	а	aromatic CH in-plane bend
<i>v</i> ₁₆	1502.0	а	dihydro HCH bend
<i>v</i> ₁₇	1492.5	Ь	dihydro HCH bend
<i>v</i> ₁₈	1482.2	Ь	aromatic CH in-plane bend/dihydro HCH bend
<i>v</i> ₁₉	1478.8	Ь	aromatic CH in-plane bend/dihydro HCH bend
v_{20}	1473.8	а	dihydro HCH bend
<i>v</i> ₂₁	1387.2	а	dihydro CH in-plane bend
<i>v</i> ₂₂	1373.8	а	dihydro CH in-plane bend
<i>v</i> ₂₆	1310.2	b	CH in-plane bend
<i>v</i> ₂₇	1272.9	а	dihydro CH in-plane bend
<i>v</i> ₃₀	1200.8	Ъ	aromatic CC in-plane bend
<i>v</i> ₃₄	1134.3	Ь	quatro CH in-plane bend
<i>v</i> ₃₅	1100.5	а	alaphatic CC out-of-plane bend
<i>v</i> ₃₇	1056.1	а	ring breathe
<i>v</i> ₃₈	995.3	Ь	CC in-plane bend
<i>v</i> ₃₉	988.3	а	quatro CH out-of-plane bend
v_{40}	961.5	Ь	quatro CH out-of-plane bend
<i>v</i> ₄₃	880.5	а	CH out-of-plane bend
v_{44}	872.7	а	alaphatic CC in-plane stretch
v_{45}	829.4	а	alaphatic CC out-of-plane bend
<i>v</i> ₄₆	811.9	Ь	CC in-plane bend
v_{47}	753.6	Ь	quatro CH out-of-plane bend
<i>v</i> ₅₂	512.6	а	CH out-of-plane bend

Fig. 11 Theoretical anharmonic IR spectrum of this work of 1,2,3,6,7,8– hexahydropyrene compared with the high–resolution gas–phase IR absorption spectrum of this work.

Table 15 Line positions $[cm^{-1}]$, relative intensities, resonance components, and intensity origins for the bands of 1,2,3,6,7,8–hexahydropyrene determined from the high–resolution gas–phase IR absorption spectra and the theoretical anharmonic spectrum of this work (figure 11).

exp ¹	rel I ¹	anharm rel I	components	I source
3128.0	0.04	3124.6 0.05	$v_{17} + v_{29}$	<i>v</i> ₂
3079.2	0.07			
3075.5	0.06	3072.4 0.12	$v_{19}+v_{23}, v_2$	<i>v</i> ₂
3033.6	0.44	3037.1 0.29	$v_{17} + v_{26}, v_2$	<i>v</i> ₂
3020.6	0.12	3029.8 0.23	$v_{19}+v_{27}, v_2$	<i>v</i> ₂
2982.3	0.05	3001.2 0.07	$v_{18} + v_{29}$	<i>v</i> ₂
2954.8	0.22			
2947.5	1	2952.4 0.54	$v_{21} + v_{22}, v_8,$	$v_8, v_{12},$
			<i>v</i> ₁₂	<i>v</i> ₆
2938.3	0.70	2935.1 0.47	$v_9, v_{19} + v_{33}$	<i>V</i> 9
		2935.8 0.40	v_8, v_6	v_8, v_6
		2936.0 0.13	$v_{18}+v_{35}, v_7,$	$v_7, v_5,$
			$v_{19} + v_{32}$	v ₁₁
2934.7	0.56	2931.0 0.96	<i>v</i> ₅	v_5, v_{11}
2930.1	0.34	2930.7 -	<i>v</i> ₆	<i>v</i> ₆
2910.1	0.15	2904.6 0.10	$v_{21} + v_{24}$,	v_8
			$v_{21} + v_{22}$,	
			$v_{22} + v_{25}$	
2896.0	0.10	2890.0 0.41	$v_{21} + v_{26}, v_9$	<i>V</i> 9
2884.3	0.20	2884.2 0.21	$v_{24} + v_{27}$,	v_9, v_{16}
			$v_{25} + v_{26}$,	
			<i>v</i> ₁₆ , <i>v</i> ₉	
2876.1	0.26	2875.4 0.27	$v_{26} + v_{26}$,	<i>v</i> ₁₃
			$v_{27} + v_{27}, v_{13}$	
			$v_{26} + v_{27}, v_{14}$	<i>v</i> ₁₄
2852.7	0.17	2853.8 0.16	$v_{22} + v_{29}$,	v_{11}
			$v_{20} + v_{34}, v_{11}$	
2843.7	0.40	2825.1 0.51	$v_{14}, v_{26} + v_{27}$	v_{14}
			$v_{13}, v_{18} + v_{42}$	<i>v</i> ₁₃

Table 16 Line positions [cm⁻¹], relative intensities, and vibrational mode identifications for the bands of 1,2,3,6,7,8-hexahydropyrene determined from the matrix isolation spectra and the theoretical anharmonic spectrum of this work (figure 12).

.

exp ^{2,3}	rel I	anharm	rel I	mode
1862.1	0.110	1861.8	0.106	$v_{57} + v_{56}$
1706.4	0.018	1703.1	0.003	$v_{57} + v_{66}$
1698.2	0.015	1696.7	0.022	$v_{62} + v_{64}$
1660.7	0.019	1662.1	0.004	$v_{64} + v_{67}$
1636.0	0.060	1637.1	0.006	$v_{56} + v_{69}$
1521.8	0.078	1520.7	0.013	v_{20}
1482.9	0.032	-		
1457.5	0.260	1459.0	0.064	<i>v</i> ₂₂
1446.4	0.249	1444.6	0.096	$v_{31} + v_{89}$
1437.3	0.310	1434.6	0.071	<i>v</i> ₂₆
1411.8	0.446	1406.6	0.150	<i>v</i> ₂₉
1399.9	0.123	1391.9	0.080	$v_{65} + v_{72}$
1362.7	0.076	1363.0	0.026	<i>v</i> ₃₀
1348.9	0.105	1345.6	0.054	<i>v</i> ₃₂
1322.2	0.015	1318.1	0.016	$v_{58} + v_{81}$
1311.6	0.024	1307.3	0.022	$v_{55} + v_{83}$
1300.1	0.246	1300.1	0.084	v ₃₇
1265.8	0.517	1261.3	0.315	<i>v</i> ₃₈
1250.9	0.020	1254.6	0.047	$v_{49} + v_{88}$
1240.3	0.015	1249.8	0.036	$v_{44} + v_{90}$
1229.9	0.021	-		
1135.0	0.419	1135.6	0.074	v_{48}
1060.2	0.077	1055.4	0.066	<i>v</i> ₅₂
984.8	0.157	979.1	0.026	<i>v</i> ₅₅
920.8	0.406	920.9	0.103	v_{58}
909.4	0.044	-		
877.0	0.052	872.4	0.051	<i>v</i> ₆₁
830.1	1	824.1	0.671	<i>v</i> ₆₄
780.5	0.058	-		
731.1	0.068	722.2	0.027	v_{68}
672.1	0.104	677.7	0.080	v_{70}
653.1	0.114	658.3	0.006	$v_{74} + v_{88}$

Fig. 12 The matrix-isolation infrared spectrum^{2,3} of 1,2,3,6,7,8hexahydropyrene (green, bottom of each panel) compared to the convolved (FWHM 2 cm⁻¹) theoretical anharmonic calculations of this work (blue, top each panel). Three spectral ranges are shown, with each range normalized to the local maximum to enhance details.

Table 17 Harmonic mode descriptions and frequencies $[cm^{-1}]$ of the IRactive modes and modes involved in IR active combination bands for theidentifications given in tables 15 and 16 of 1,2,3,6,7,8-hexahydropyrene.

mode	freq	symm	description
<i>v</i> ₂	3177.8	b ₁	duo CH stretch
v_4	3161.5	b_2	duo CH stretch
v_5	3077.5	a_1	dihydro CH stretch
V6	3077.3	b ₂	dihydro CH stretch
v ₇	3068.3	b_2	dihydro CH stretch
v_8	3067.9	$\tilde{b_2}$	dihvdro CH stretch
Vo	3065.9	$\tilde{b_1}$	dihvdro CH stretch
V11	3032.8	a1	dihvdro CH stretch
V12	3032.7	b ₂	dihvdro CH stretch
V13	3000.9	a1	dihvdro CH stretch
V14	3000.8	b ₂	dihvdro CH stretch
V14	2998.9	b_1	dihvdro CH stretch
V17	1644.0	82 82	aromatic CC stretch
V10	1643 7	a ₂	aromatic CC stretch
V10	1638.8	b ₂	aromatic CC stretch
Vao	1557.0	b_2	aromatic CC stretch
V20	1406.4	21	dihydro HCH bend
V21 V22	1406 3	ha la	dihydro HCH bend
V22	1405.6	D2 24	CH in plane bend
V23	1495.0	a2 ba	dihydro HCH bend
V24	1403.0	D ₂	dihydro HCH bond
V ₂₅	1404./	a] b	dihydro HCH bond
V ₂₆	14/3.4	D1	dihydro UCU bond
V ₂₇	14/1.5	a2	diliyato nen bena
V ₂₉	1430.2	D2	dinydro CH in-plane bend
V ₃₀	1392.4	D1	duo CH in-piane bend
v_{31}	1386.4	a ₁	CC in-plane stretch
v_{32}	1376.7	b ₂	CH in-plane bend
v_{33}	1372.3	a_2	dihydro CH in-plane bend
v_{37}	1331.3	D1	dihydro CH in-plane bend
v_{38}	1288.2	D ₂	CH in-plane bend
v_{42}	1249.1	D ₂	CH in-plane bend
v_{44}	1195.4	D1	dihydro CH in-plane bend
v_{48}	1156.2	D ₁	CH in-plane bend
v_{49}	1150.0	a ₂	CC in-plane bend
<i>v</i> ₅₂	1076.1	b ₂	alaphatic CC out-of-plane bend
<i>v</i> ₅₅	995.4	b ₂	alaphatic CC in-plane bend
v ₅₆	949.6	b ₂	duo CH out-of-plane bend
V57	947.5	a ₂	duo CH out-of-plane bend
v_{58}	935.4	b ₁	CC in-plane bend
v_{61}	886.6	a ₁	dihydro CH out-of-plane bend
v_{62}	883.4	b ₁	CH out-of-plane bend
v_{64}	841.0	a ₁	dihydro CH out-of-plane bend
v_{65}	832.3	b ₂	CC in-plane bend
v ₆₆	812.4	Ъ ₁	CH out-of-plane bend
v_{67}	808.5	b ₂	CC out-of-plane bend
<i>v</i> ₆₈	730.6	b ₂	CC in-plane bend
v_{69}	714.5	a ₂	CC in-plane bend
v_{70}	686.4	a1	CC out-of-plane bend
v_{72}	586.4	a ₁	body breathe
v_{74}	543.3	b1	CC in-plane bend
v_{81}	399.7	a1	body stretch
<i>v</i> ₈₃	332.9	a ₂	CC out-of-plane bend
v_{88}	131.2	b1	body twist
v_{89}	97.7	a ₁	out-of plane body bend
<u>v₉₀</u>	86.9	a ₂	body twist

References

- 1 E. Maltseva, A. Petrignani, A. Candian, C. J. Mackie, X. Huang, T. J. Lee, A. G. Tielens, J. Oomens and W. J. Buma, *Submitted*, 2017.
- 2 D. M. Hudgins and S. A. Sandford, J. Phys. Chem. A, 1998, 102,

329–343.

3 C. Boersma, C. W. Bauschlicher, Jr., A. Ricca, A. L. Mattioda, J. Cami, E. Peeters, F. Sánchez de Armas, G. Puerta Saborido, D. M. Hudgins and L. J. Allamandola, *Astrophys. J.*, 2014, 211, 8.