Supporting Information

for

Photodissociation of EtPhCbl Antivitamin B₁₂

Piotr Lodowski, ¹ Karolina Ciura, ¹ Megan J. Toda, ² Maria Jaworska, ¹ and Pawel M. Kozlowski* ^{2,3}

¹ Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice,

Szkolna 9, PL-40 006 Katowice, Poland

² Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States

³ Visiting professor, Department of Food Sciences, Medical University of Gdansk,

Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland

*Phone: (502) 852-6609. Fax: (502) 852-8149. E-mail: pawel@louisville.edu

	E(eV)	λ(nm)	f	Λ	%	character		
S_1	2.24	552.8	0.001	0.541	51	$140 \rightarrow 142$	$\text{H-1} \rightarrow \text{L}$	$\pi + d_{xz} \rightarrow \pi^*$
					47	$139 \rightarrow 142$	$\text{H-2} \rightarrow \text{L}$	$d_{xz} + \pi_{Ph} {\rightarrow} \pi^*$
S_2	2.44	508.2	0.048	0.712	75	$141 \rightarrow 142$	$\mathrm{H} \rightarrow \mathrm{L}$	$d_{yz}^{} + \pi \rightarrow \pi^{*}$
					11	$140 \rightarrow 142$	$\text{H-1} \rightarrow \text{L}$	$\pi + d_{xz} \to \pi^*$
S_3	2.47	501.6	0.072	0.550	47	$139 \rightarrow 142$	$\text{H-2} \rightarrow \text{L}$	$d_{xz} + \pi_{Ph} \rightarrow \pi^*$
					36	$140 \rightarrow 142$	$\text{H-1} \rightarrow \text{L}$	$\pi + d_{xz} \to \pi^*$
					11	$141 \rightarrow 142$	$\mathrm{H} \rightarrow \mathrm{L}$	$d_{yz}^{} + \pi \rightarrow \pi^*$
S_4	2.66	466.2	0.001	0.302	97	$138 \rightarrow 142$	$\text{H-3} \rightarrow \text{L}$	$d_x^2 - y^2 \rightarrow \pi^*$
S_5	2.91	426.4	0.001	0.581	57	$141 \rightarrow 143$	$\mathrm{H} \rightarrow \mathrm{L+1}$	$d_{yz} + \pi \rightarrow d_{xy}$ - n
					17	$137 \rightarrow 142$	$\text{H-4} \rightarrow \text{L}$	$\pi_{\mathrm{Ph}} + d_{\mathrm{xz}} \rightarrow \pi^*$
					12	$139 \rightarrow 143$	$\text{H-2} \rightarrow \text{L+1}$	$d_{xz} + \pi_{Ph} \rightarrow d_{xy}$ - n
					12	$141 \rightarrow 144$	$\mathrm{H} \rightarrow \mathrm{L+2}$	$d_{yz}^{}+\pi \rightarrow d_{xy}^{}$ - n + π^*
S_6	2.94	422.5	0.005	0.607	77	$140 \rightarrow 143$	$\text{H-1} \rightarrow \text{L+1}$	$\pi + d_{xz} \rightarrow d_{xy}$ - n
					13	$140 \rightarrow 144$	$\text{H-1} \rightarrow \text{L+2}$	$\pi + d_{xz} \rightarrow d_{xy}$ - $n + \pi^*$
S_7	2.99	414.7	0.009	0.515	51	$137 \rightarrow 142$	$\text{H-4} \rightarrow \text{L}$	$\pi_{\mathrm{Ph}} + d_{\mathrm{xz}} \rightarrow \pi^*$
					16	$139 \rightarrow 143$	$\text{H-2} \rightarrow \text{L+1}$	$d_{xz} + \pi_{Ph} \rightarrow d_{xy}$ - n
					10	$141 \rightarrow 144$	$\mathrm{H} \rightarrow \mathrm{L+2}$	$d_{yz}^{}+\pi \rightarrow d_{xy}^{}$ - n + π^*
S_8	3.05	407.0	0.005	0.610	35	$141 \rightarrow 144$	$\mathrm{H} \rightarrow \mathrm{L+2}$	d_{yz} + π \rightarrow d_{xy} - n + π^*
					32	$141 \rightarrow 145$	$\mathrm{H} \rightarrow \mathrm{L+3}$	$d_{yz} + \pi \rightarrow \sigma^* (d_z^2)$ - n
S ₉	3.07	404.2	0.001	0.314	76	$136 \rightarrow 142$	$\text{H-5} \rightarrow \text{L}$	$\pi_{\mathrm{Ph}} + \pi_{\mathrm{Im}} \rightarrow \pi^*$
					10	$141 \rightarrow 145$	$\mathrm{H} \rightarrow \mathrm{L+3}$	$d_{yz} + \pi \rightarrow \sigma^* (d_z^2)$ - n
S ₁₀	3.11	398.2	0.007	0.248	69	$135 \rightarrow 142$	$\text{H-6} \rightarrow \text{L}$	$\pi_{\mathrm{Ph}} + \pi_{\mathrm{Im}} \! ightarrow \pi^{*}$

Table S1. TD-DFT excitation energies, oscillator strengths, Λ parameters, composition and characters of ten low-lying, singlet electronic transitions for the Im-[Co^{III}(corrin)]-EtPh⁺ model complex based on the BP86/TZVPP calculations with use PCM solvent model.

Table S2. TD-DFT excitation energies, oscillator strengths, Λ parameters, composition and characters of ten low-lying, singlet electronic transitions for the [Co^{III}(corrin)]-EtPh⁺ model complex (*base-off* form of Im-[Co^{III}(corrin)]-EtPh⁺) based on the BP86/TZVPP calculations with use PCM solvent model.

	E(eV)	λ(nm)	f	Λ	%	character		
S_1	2.19	565.7	0.000	0.506	50	$122 \rightarrow 124$	$\text{H-1} \rightarrow \text{L}$	$\pi_{Ph} + d_{xz} \rightarrow \pi^*$
					42	$123 \rightarrow 125$	$\mathrm{H} \rightarrow \mathrm{L}{+1}$	$d_{yz} + \pi \rightarrow \sigma^* (d_z^2) - n$
S_2	2.22	559.8	0.011	0.532	46	$122 \rightarrow 124$	$\text{H-1} \rightarrow \text{L}$	$\pi_{Ph} + d_{xz} \rightarrow \pi^*$
					36	$123 \rightarrow 125$	$\mathrm{H} \rightarrow \mathrm{L}{+1}$	$d_{yz} + \pi \rightarrow \sigma^* (d_z^2)$ - n
					12	$123 \rightarrow 124$	$\mathrm{H} \rightarrow \mathrm{L}$	$d_{yz} + \pi \rightarrow \pi^*$
S_3	2.33	531.5	0.007	0.567	85	$122 \rightarrow 125$	$\text{H-1} \rightarrow \text{L+1}$	$\pi_{Ph} + d_{xz} \rightarrow \sigma^*(d_z^2) - n$
S_4	2.41	515.2	0.045	0.698	68	$123 \rightarrow 124$	$\mathrm{H} \rightarrow \mathrm{L}$	$d_{yz} + \pi \rightarrow \pi^*$
					13	$123 \rightarrow 125$	$\mathrm{H} \rightarrow \mathrm{L+1}$	$d_{yz} + \pi \rightarrow \sigma^* (d_z^2) - n$
S_5	2.69	461.3	0.001	0.428	88	$121 \rightarrow 124$	$H-2 \rightarrow L$	$d_x^2 - y^2 \rightarrow \pi^*$
S_6	2.93	423.2	0.013	0.571	37	$121 \rightarrow 125$	$\text{H-2} \rightarrow \text{L+1}$	$d_x^2 - y^2 \rightarrow \sigma^* (d_z^2) - n$
					27	$120 \rightarrow 125$	$\text{H-3} \rightarrow \text{L+1}$	$\pi + d_{yz} \rightarrow \sigma^* (d_z^2) - n$
					15	$122 \rightarrow 127$	$\text{H-1} \rightarrow \text{L+3}$	$\pi_{Ph} + d_{xz} \rightarrow \pi^* + d_{xz}$
S_7	2.97	416.9	0.012	0.620	27	$123 \rightarrow 126$	$\mathrm{H} \rightarrow \mathrm{L+2}$	$d_{yz} + \pi \rightarrow d_{xy} - n$
					23	$123 \rightarrow 127$	$H \rightarrow L+3$	$d_{yz} + \pi \rightarrow \pi^* + d_{xz}$
					23	$120 \rightarrow 124$	$H-3 \rightarrow L$	$\pi + d_{yz} \rightarrow \pi^*$
					11	$122 \rightarrow 126$	$\text{H-1} \rightarrow \text{L+2}$	$\pi_{Ph} + d_{xz} \rightarrow d_{xy} - n$
S_8	3.01	412.2	0.051	0.611	40	$120 \rightarrow 124$	$H-3 \rightarrow L$	$\pi + d_{yz} \rightarrow \pi^*$
					16	$119 \rightarrow 124$	$H-4 \rightarrow L$	$\pi_{Ph} + d_{xz} \to \pi^*$
					13	$121 \rightarrow 125$	$\text{H-2} \rightarrow \text{L+1}$	$d_x^2 - y^2 \rightarrow \sigma^* (d_z^2) - n$
					10	$123 \rightarrow 127$	$H \rightarrow L+3$	$d_{yz} + \pi \rightarrow \pi^* + d_{xz}$
S ₉	3.03	408.8	0.019	0.603	23	$123 \rightarrow 127$	$H \rightarrow L+3$	$d_{yz} + \pi \rightarrow \pi^* + d_{xz}$
					21	$120 \rightarrow 125$	$\text{H-3} \rightarrow \text{L+1}$	$\pi + d_{yz} \rightarrow \sigma^* (d_z^2) - n$
					15	$123 \rightarrow 126$	$\mathrm{H} \rightarrow \mathrm{L+2}$	$d_{yz} + \pi \rightarrow d_{xy} - n$
					14	$121 \rightarrow 125$	$\text{H-2} \rightarrow \text{L+1}$	$d_x^2 - y^2 \rightarrow \sigma^* (d_z^2) - n$
\mathbf{S}_{10}	3.10	400.3	0.009	0.399	45	$118 \rightarrow 124$	$\text{H-5} \rightarrow \text{L}$	$\pi_{ m Ph} ightarrow \pi^*$
					19	$119 \rightarrow 124$	$H-4 \rightarrow L$	$\pi_{Ph} + d_{xz} \to \pi^*$
					10	$123 \rightarrow 126$	$\mathrm{H} \rightarrow \mathrm{L+2}$	$d_{yz} + \pi \rightarrow d_{xy} - n$

Table S3. TD-DFT excitation energies, oscillator strengths, Λ parameters, composition and characters of transitions for optimized geometry of the S₁ singlet excited state of Im-[Co^{III}(corrin)]-EtPh⁺ model complex at selected points on the S₁ PES. Location of selected points on the S₁ surface shown below table. Results based on the BP86/TZVPP calculations with use PCM solvent model.

	R _{Co-C} (Å)	R _{Co-N} (Å)	E(eV)	λ(nm)	f	Λ	%	character	
I S ₁	1.927	2.107	1.74	714.3	0.0026	0.490	97	$\mathrm{H} \rightarrow \mathrm{L}$	$d_{xz} + \pi + \pi_{Ph} \rightarrow \pi^*$
IVB S _{1(min1)}	1.852		1.66	748.4	0.0039	0.482	91	$\mathrm{H} \rightarrow \mathrm{L}$	$(d_{xz}+d_{yz}) + \pi_{Ph} \rightarrow \pi^*$
IIIB $S_{1(min2)}$	2.016		1.39	891.7	0.0020	0.612	99	$\mathrm{H} \rightarrow \mathrm{L}$	$(d_{xz}+d_{yz}) + \pi_{Ph} \rightarrow \sigma^*(d_{z2})$ - $n + \pi^*$
P_1	2.100	2.100	1.74	711.1	0.0060	0.547	97	$\mathrm{H} \rightarrow \mathrm{L}$	$d_{xz} + \pi + \pi_{Ph} {\rightarrow} \pi^*$
P ₂	2.000	2.400	1.88	659.8	0.0013	0.581	81	$\mathrm{H} \rightarrow \mathrm{L}$	$(d_{xz}+d_{yz})+\pi+\pi_{Ph}\rightarrow\pi^*$
							15	$\text{H-1} \rightarrow \text{L}$	$(d_{xz}-d_{yz}) + \pi \rightarrow \pi^*$
P ₃	1.850	2.800	1.86	671.9	0.0007	0.443	85	$\mathrm{H} \rightarrow \mathrm{L}$	$(d_{xz}+d_{yz})$ - $n + \pi_{Ph} \rightarrow \pi^*$
							11	$\text{H-1} \rightarrow \text{L}$	$(d_{xz}-d_{yz}) + \pi + \pi_{Ph} \rightarrow \pi^*$
P_4	1.850	3.100	1.83	677.9	0.0016	0.499	82	$\mathrm{H} \rightarrow \mathrm{L}$	$(d_{xz}+d_{yz})$ - $n + \pi_{Ph} \rightarrow \pi^*$
P ₅	1.900	3.300	1.85	670.6	0.0026	0.578	64	$\mathrm{H} \rightarrow \mathrm{L}$	$(d_{xz}+d_{yz})$ - $n + \pi_{Ph} \rightarrow \pi^*$
							35	$\text{H-1} \rightarrow \text{L}$	$(d_{xz}-d_{yz}) + \pi + \pi_{Ph} \rightarrow \pi^*$
P_6	2.000	3.300	1.57	787.9	0.0023	0.635	99	$\mathrm{H} \rightarrow \mathrm{L}$	$(d_{xz}+d_{yz})$ - $n + \pi_{Ph} \rightarrow \sigma^*(d_{z2})$ - $n + \pi^*$
P ₇	2.050	3.400	1.57	790.0	0.0025	0.662	99	$\mathrm{H} \rightarrow \mathrm{L}$	$(d_{xz}+d_{yz})$ - $n + \pi_{Ph} \rightarrow \sigma^*(d_{z2})$ -n

Figure S1. (a) Molecular structure of antivitamin B_{12} , 4-ethylphenylcobalamin (EtPhCbl) and (b) structure of model complex used in calculations. The full structure of EtPhCbl is drawn based on the crystallographic structure from M. Ruetz, C. Gherasim, K. Gruber, S. Fedosov, R. Banerjee, B. Kräutler, Access to Organometallic Arylcobaltcorrins through Radical Synthesis: 4-Ethylphenylcobalamin, a Potential "Antivitamin B_{12} ", *Angew. Chem. Int. Ed.* 2013, **52**, 2606 – 2610, and CCDC 848663 data obtained from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S2. Potential energy surfaces (PESs) for ground state and two lowest excited states of Im-[Co^{III}(corrin)]-EtPh⁺ model complex together with vertical projections of PES for S₀, S₁ and S₂ electronic states, plotted as a function of axial bond lengths calculated in water solution (COSMO) at BP86/TZVPP level of theory. The vertical projections plots have separate color scales.

Figure S3. Energy diagram of molecular orbitals involved in electronic excitations to S_1 and S_2 excited states for optimized S_1 geometries of Im-[Co^{III}(corrin)]-EtPh⁺ model complex at minimum energy and two points of S_1 PES located near the S_1/S_2 intersection. P_5 and P_6 refer to selected points on S_1 PES shown in Table S3.

Figure S4. Selected molecular orbitals involved in vertical electronic excitations for the $Im-[Co^{III}corr]-EtPh^+$ model complex in the ground state S_0 , obtained from DFT/BP86 level of theory.

Figure S5. Selected molecular orbitals involved in vertical electronic excitations for the $[Co^{III}(corrin)]$ -EtPh⁺ model complex (*base-off* form of Im- $[Co^{III}(corrin)]$ -EtPh⁺) in the ground state S₀, obtained from DFT/BP86 level of theory.