Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supporting Information for

Photoelectron Spectroscopy and Density Functional Theory Studies of $(fructose+(H_2O)_n)^-$ (n = 1-5) Anionic Clusters

Zhen Zeng, Elliot R. Bernstein*

Department of Chemistry, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State
University, Fort Collins, CO 80523, USA

AUTHOR INFORMATION

Corresponding Author

*Elliot R. Bernstein, E-mail: erb@lamar.colostate.edu.

More low lying isomers of $(fructose+(H_2O)_n)^-$, n=1-5 anions, as well as their corresponding neutrals, are summarized in Figures S4, S6 to S9 as well as Figures S11 to S15 in the Supporting Information. Note that the figure numbers in the S.I. document are related to those of the text figures, as for example Figure S4 \Leftrightarrow Figure 4.

	I				T
Optimized Anionic structure		P. Company	y y y		
Structural Polymorphism	Open chain (A) +(1)(2)H ₂ O	Open chain (A) +(2)H ₂ O	Open chain (A) +(3)H ₂ O	Open chain (A) +(4)(6)H ₂ O	Open chain (B) +(1)(2)H ₂ O
ΔE (eV)	0.00	0.06	0.13	0.24	0.34
VDE (eV)	2.24	2.36	2.17	1.99	1.98
,					
Optimized Anionic structure				7	
Structural Polymorphism	Open chain (C) +(1)(2)H ₂ O	Open chain (C) +(3)(5)H ₂ O	Open chain (C) +(5)(6)H ₂ O	Open chain (B) +(5)(6)H ₂ O	β-pyranose (² C ₅ -chair) +(1)(3)H ₂ O
ΔE (eV)	0.34	0.44	0.45	0.55	0.79
VDE (eV)	1.86	1.76	1.83	1.76	0.40
Optimized		- 4 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5			- 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3
Anionic structure	19	∂ € €			90, 30,
Structural Polymorphism	α- furanose (C ₄ - endo) +(3)(4)H ₂ O	β-pyranose (² C ₅ -chair) +(3)(4)H ₂ O	β-pyranose (² C ₅ -chair) +(1)(2)H ₂ O	β-pyranose (² C ₅ -chair) +(4)(5)H ₂ O	β-pyranose (² C ₅ -chair) +(1)(3)H ₂ O
ΔE (eV)	0.92	0.97	0.97	0.97	1.01
VDE (eV)	0.47	0.34	0.40	0.31	0.45
Optimized Anionic structure					
Structural	α - furanose (C ₄ -	α - furanose (C ₄ -			
Polymorphism	endo) +(1)(3)H ₂ O 1.17	endo) +(1)(2)H ₂ O 1.20			
ΔE (eV)	0.31	0.21			
VDE (eV)	U.31	U. 41			

Figure S4 Optimized geometries of the typical low lying anionic isomers of (fructose+ H_2O)⁻ based on B3LYP/6-311++G(d,p) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose⁻ parent anions. For open chain structures (1)C to (6)C is ordered from left to right. For both furanose and pyranose structures (1)C to (6)C is ordered from right to left in a clockwise direction.

Optimized Anionic structure Open chain (A) Open chain (A) (1)(2)H-O+(2)(in (1)(2)H-O+(2)(in (1)(2)H-O+(2)(in (1)(2)H-O+(3)(in (1)			7			
Structural Polymorphism Open chain (A)	Optimized	<u>•</u>	Q	9 .,		
Structural Polymorphism				· • • •		100 mg 100 mg
Structural Polymorphism		63			• • • • • • • • • • • • • • • • • • •	3
Structural Polymorphism					•	
Polymorphism	Ctm1atuma1	open chain (A)		open chain (A)		
AE 0.00 0.00 0.01 0.01 0.02		$+(1)(intra)H_2O+(2$	$+(1)(2)H_2O+(2)$	$+(1)(2)H_2O+(2)(in$	$+(1)(2)H_2O+(1)(3)H$	$+(1)(2)H_2O+(1)(3$
Optimized Anionic structure	Forymorphism)(intra)H ₂ O	H_2O	tra)H ₂ O	$_2$ O)H ₂ O
Optimized Anionic structure	ΔΕ	0.00	0.00	0.01	0.01	0.02
Optimized Anionic structural Polymorphism Open chain (A) Open chain (A) (1)(2)H ₂ O+(intra (1)(2)H ₂ O+(i)(4) (1)(3)H ₂ O+(i)(5)(6) (1)(4)(5)(6) (1)(4)(5)(6) (1)(4)(5)(6) (1)(4)(5)(6) (1)(4)(6)(6)(6) (1)(4)(6)(6)(6) (1)(4)(6)(6)(6) (1)(4)(6)(6)(6) (1)(4)(6)(6)(6) (1)(4)(6)(6)(6) (1)(4)(6)(6)(6) (1)(4)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)	VDE	2.76		2.54	2.48	2.14
Structural Polymorphism Open chain (A) +(1)(2)H-O+(4)(+(3)H-O+(4)(5)(6) +(3)H-O+(4)(1)(1)(1) +(3)H-O+(4)(1)(1) +(3)H-O+(4)(1) +(3)H-O+(,		_,,,		_,,,	
Structural Polymorphism Open chain (A) +(1)(2)H-O+(4)(+(3)H-O+(4)(5)(6) +(3)H-O+(4)(1)(1)(1) +(3)H-O+(4)(1)(1) +(3)H-O+(4)(1) +(3)H-O+(J-	9 🔏	4
Structural Polymorphism Open chain (A) +(1)(2)H-O+(4)(+(3)H-O+(4)(5)(6) +(3)H-O+(4)(1)(1)(1) +(3)H-O+(4)(1)(1) +(3)H-O+(4)(1) +(3)H-O+(Optimized					7
Structural Polymorphism Open chain (A)						
Structural Polymorphism H(1)(2)H-0+(intra H(2)			2000	4 3 -	-30-39-35	3
Structural Polymorphism H(1)(2)H-0+(intra H(2)		2 7 2 3	• 3• 3		٠ 🛵	,
Structural Polymorphism H(1)(2)H-0+(intra H(2)	~ .	open chain (A)	open chain (A)	open chain (A)	open chain (A)	open chain (A)
Optimized Anionic structural Polymorphism Open chain (C) +(3)(5)H ₂ O+(1)(2) H ₂ O H ₂ O Open chain (C) +(1)(2)H ₂ O+(2)(i H ₂ O H ₂ O			. ,			
ΔΕ 0.02 0.08 0.19 0.24 0.28 VDE 2.59 2.36 2.47 2.42 2.31 Optimized Anionic structural Polymorphism open chain (B) +(1)(2)H ₂ O+(2)(i) ntra)H ₂ O open chain (C) +(1)(2)H ₂ O+(2)(i) tra)H ₂ O open chain (A) +(1)(2)H ₂ O+(1)(2) intra)H ₂ O open chain (C) +(1)(2)H ₂ O+(2)(in tra)H ₂ O open chain (C) +(1)(2)H ₂ O+(1)(2) intra)H ₂ O open chain (C) +(1)(2)H ₂ O+(2)(i) +(1)(2)H ₂ O+(3)(i) open chain (C) +(3)(5)H ₂ O+(6)(i) open chain (C) +(1)(2)H ₂ O+(3)(i) open chain (C) +(1)(2)H ₂ O+(3)(i) open chain (C) +(3)(5)H ₂ O+(6)H ₂ O open chain (C) +(1)(3)H ₂ O+(3)(4) open chain (C) +(1)(3)H ₂ O+(3)H ₂ O open chain (C) +(3)(5)H ₂ O+(6)H ₂ O ope	Polymorphism				. , . ,	
VDE 2.59 2.36 2.47 2.42 2.31 Optimized Anionic structure Open chain (B) +(1)(2)H ₂ O+(1)(3 +(1)(2)H ₂ O+(2)(i ntra)H ₂ O open chain (C) +(1)(2)H ₂ O+(2)(i ntra)H ₂ O open chain (A) +(1)(2)H ₂ O+(1)(2 h ₂ O+(1)(2) (i ntra)H ₂ O open chain (A) +(1)(2)H ₂ O+(1)(2 h ₂ O+(1)(2) (i ntra)H ₂ O open chain (C) +(1)(2)H ₂ O+(1)(2 h ₂ O+(2)(i ntra)H ₂ O open chain (C) h ₂ O open chain	ΔΕ					
Optimized Anionic structural Polymorphism open chain (B) +(1)(2)H ₂ O+(1)(3) +(1)(2)H ₃ O+(2)(i) +(1)(2)H ₂ O+(5)(6) +(1)(2)H ₂ O+(3)(3)H ₂ O+(4)(5) +(1)(2)H ₂ O+(3)(4) +(1)(3)H ₂ O+(3)						
Anionic structural roll open chain (B) +(1)(2)H ₂ O+(1)(3 +(1)(2)H ₂ O+(2)(i tra)H ₂ O +(1)(2)H ₂ O+(1)(1 tra)H ₂ O O Open chain (C) +(1)(2)H ₂ O+(1)(1 O O Open chain (C)	·			<u> </u>	*	
Anionic structural roll open chain (B) +(1)(2)H ₂ O+(1)(3 +(1)(2)H ₂ O+(2)(i tra)H ₂ O +(1)(2)H ₂ O+(1)(1 tra)H ₂ O O Open chain (C) +(1)(2)H ₂ O+(1)(1 O O Open chain (C)					3 4 3 3	
Anionic structural roll open chain (B) +(1)(2)H ₂ O+(1)(3 +(1)(2)H ₂ O+(2)(i tra)H ₂ O +(1)(2)H ₂ O+(1)(1 tra)H ₂ O O Open chain (C) +(1)(2)H ₂ O+(1)(1 O O Open chain (C)	Optimized	• • • • • • • • • • • • • • • • • • •		9.		
Structural Polymorphism open chain (B) +(1)(2)H ₂ O+(1)(3 +(1)(2)H ₂ O+(2)(i ntra)H ₂ O open chain (C) +(1)(2)H ₂ O+(2)(intra)H ₂ O open chain (A) +(3)H ₂ O+(intra)H ₂ +(1)(2)H ₂ O+(1)(2)H ₂ O+(1)(3)H ₂ O+(1)(2)H ₂ O+(1)(2)H ₂ O+(1)(2)H ₂ O+(1)(2)H ₂ O+(1)(3)H ₂ O+(1)(2)H ₂ O+(Balana	9 9		7 7 7 7	• • •
Polymorphism Pol	structure			5 6 5 5		Contraction of the contraction o
Polymorphism Pol		3	8 3 3 °		~	2 2 2 2
Polymorphism Pol	~ .	open chain (B)	open chain (B)	open chain (C)	open chain (A)	open chain (C)
Optimized Anionic structural Polymorphism Optimized Anionic structure Optimized Anionic Structural Polymorphism Optimized Optimized Anionic Structural Polymorphism Optimized Optimized Optimized Structural Polymorphism Optimized O		. ,				
ΔΕ 0.32 0.33 0.35 0.35 0.36 VDE 1.97 2.27 2.24 2.33 2.39 Optimized Anionic structure Polymorphism Polymorphism open chain (C) +(3)(5)H ₂ O+(1)(2) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Polymorphism					
VDE 1.97 2.27 2.24 2.33 2.39 Optimized Anionic structure Open chain (C) +(3)(5)H ₂ O+(1)(2) +(1)(2)H ₂ O+(2)(i) ntra)H ₂ O open chain (B) +(1)(2)H ₂ O+(5)(6) +(1)(2)H ₂ O+(1)(3)H +(3)(5)H ₂ O+(4)(5) +(1)(2)H ₂ O+(4)(5) open chain (C) +(3)(5)H ₂ O+(4)(5) +(3)(5)H ₂ O+(4)(5) +(3)(5)H ₂ O+(4)(5) VDE 2.12 2.39 2.23 1.80 2.10 Optimized Anionic structure Open chain (B) +(1)(2)H ₂ O+(5)(6) +(3)(5)H ₂ O+(6)H +(3)(5)H ₂ O+(6)H +(1)(3)H ₂ O+(3)(4) +(1)(3)H ₂ O+(1)(2)(10) +(3)(4)H ₂ O+(3)H ₂ O +(4)(5)H ₂ O+(3)(4) +(1)(3)H ₂ O+(1)(2)(10) +(3)(4)H ₂ O+(3)H ₂ O +(3)(4) +(1)(3)H ₂ O+(1)(2)(10) +(3)(4)H ₂ O+(3)H ₂ O +(3)(4) +(3)(4)H ₂ O+(3)(4)	ΔΕ				0.35	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Anionic structure Anionic structural Polymorphism open chain (C) +(3)(5)H ₂ O+(1)(2) (2) (2) (2) (2) (2) (3) (2) (2) (3) (3) (2) (3)	·		·	·		
Anionic structure Anionic structural Polymorphism open chain (C) +(3)(5)H ₂ O+(1)(2) (2) (2) (2) (2) (2) (3) (2) (2) (3) (3) (2) (3)		•,				2 32
Anionic structure Anionic structural Polymorphism open chain (C) +(3)(5)H ₂ O+(1)(2) (2) (2) (2) (2) (2) (3) (2) (2) (3) (3) (2) (3)	Optimized	3 39 32	3 I a			
Structural Polymorphism open chain (C) +(3)(5)H ₂ O+(1)(2)(2) +(1)(2)H ₂ O+(2)(i)(i)(1)(2)H ₂ O+(5)(6) open chain (C) +(1)(2)H ₂ O+(1)(3)H +(3)(5)H ₂ O+(4)(5) (6) (6) +(1)(2)H ₂ O+(1)(3)H +(3)(5)H ₂ O+(4)(5) (6) (6) (6) (7)(2)H ₂ O ΔΕ 0.36 0.37 0.38 0.38 0.42 VDE 2.12 2.39 2.23 1.80 2.10 Optimized Anionic structure Polymorphism open chain (B) +(1)(2)H ₂ O+(5)(6) (6) (7)(6) (7)(6) (7)(6) (7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(3. 4. 4. 4. 4.	و فر فر فر د	
Structural Polymorphism	structure	2200				•
Structural Polymorphism		Page 1	2 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
Structural Polymorphism		open chain (C)	open chain (B)	open chain (C)	open chain (C)	open chain (C)
Optimized Anionic structure						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Polymorphism					
VDE 2.12 2.39 2.23 1.80 2.10 Optimized Anionic structure Structural Polymorphism open chain (B) +(1)(2)H ₂ O+(5)(6)H ₂ O open chain (C) +(3)(5)H ₂ O+(6)H +(1)(3)H ₂ O+(3)(4) +(1)(3)H ₂ O+(1)(2)(+(3)(4)H ₂ O+(3)H ₂ O β-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(1)(2)(+(3)(4)H ₂ O+(3)H ₂ O β-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(1)(2)(+(3)(4)H ₂ O+(3)H ₂ O γ-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(1)(2)(+(3)(4)H ₂ O+(3)H ₂ O γ-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(1)(2)(+(3)(4)H ₂ O+(3)H ₂ O γ-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(1)(2)(+(3)(4)H ₂ O+(3)H ₂ O γ-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(1)(2)(+(3)(4)H ₂ O+(3)H ₂ O γ-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(1)(2)(+(3)(4)H ₂ O+(3)H ₂ O γ-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(1)(2)(+(3)(4)H ₂ O+(3)H ₂ O γ-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(1)(2)(+(3)(4)H ₂ O+(3)H ₂ O γ-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(1)(2)(+(3)(4)H ₂ O+(3)H ₂ O γ-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(1)(2)(+(3)(4)H ₂ O+(3)H ₂ O γ-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(1)(2)(+(3)(4)H ₂ O+(3)H ₂ O γ-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(1)(2)(+(3)(4)H ₂ O+(3)H ₂ O γ-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(3)(4) +(3)(4)H ₂ O+(3)(4) +(3)(4	ΔΕ	·				
Optimized Anionic structure Applymorphism β-pyranose (²C ₅ -chair) β-pyranose (²C						
Anionic structure Anionic structure Anionic structure Anionic structure	<u> </u>				1	
Anionic structure Anionic structure Anionic structure Anionic structure			- 4-			
Anionic structure Anionic structure Anionic structure Anionic structure	Optimized	6. 40 5	🛂 🤰 💢 🚅 🚂	3 63	پ 😜 🥦	
structure β-pyranose (2 C ₅ -chair) γ-pyranose ($^$		22000	35 00	200	• •	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-3 1 1 T				A)10 33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			~	2-1-5		7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				β-pyranose (² C ₅ -	β-pyranose (² C ₅ -	β-pyranose (² C ₅ -
Polymorphism $+(1)(2)H_2O+(5)(6)$ $+(3)(5)H_2O+(6)H$ $+(1)(3)H_2O+(3)(4)$ $+(1)(3)H_2O+(1)(2)($ $+(3)(4)H_2O+(3)H_2$ ΔΕ 0.47 0.64 0.79 0.82 0.82	Structural	open chain (B)	open chain (C)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Polymorphism					
ΔE 0.47 0.64 0.79 0.82 0.82						
	ΔΕ					0.82
	VDE	2.03			0.58	
		•			•	

					I
Optimized Anionic structure					
Structural Polymorphism	β-pyranose (² C ₅ - chair) +(1)(3)H ₂ O+(intra)H ₂ O	β-pyranose (² C ₅ -chair) +(4)(5)H ₂ O+(4)H ₂ O	β-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(4)(5) H ₂ O	α- furanose (C ₄ - endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O	β-pyranose (² C ₅ - chair) +(2)(3)H ₂ O+(1)(in tra)H ₂ O
ΔΕ	0.83	0.88	0.89	0.97	0.97
VDE	0.53	0.58	0.60	0.77	0.63
Optimized Anionic structure					
Structural Polymorphism	α- furanose (C ₄ - endo) +(3)(4)H ₂ O+ (1)(3)H ₂ O	β-pyranose (² C ₅ -chair) +(1)(2)(3)H ₂ O+(3)(4)H ₂ O	α- furanose (C ₄ - endo) +(1)(2)H ₂ O+ (3)(4)H ₂ O	α - furanose (C ₄ - endo) +(1)(3)H ₂ O+ (intra)H ₂ O	β-pyranose (² C ₅ -chair) +(1)(2)(3)H ₂ O+(4)(5)H ₂ O
ΔΕ	0.97	1.00	1.02	1.06	1.07
VDE	0.60	0.64	0.50	0.70	0.54
Optimized Anionic structure					
Structural Polymorphism	α- furanose (C ₄ - endo) +(1)(2)H ₂ O+ (1)(3)H ₂ O				
ΔΕ	1.29				
VDE	0.35				

Figure S6 Optimized geometries of the typical low lying anionic isomers of (fructose+ $(H_2O)_2$) based on B3LYP/6-311++G(d,p) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose parent anions. For open chain structures (1)C to (6)C is ordered from left to right. For both furanose and pyranose structures (1)C to (6)C is ordered from right to left in a clockwise direction.

Optimized Anionic structure					
Structural Polymorphism	open chain (A)+(1)(2)H ₂ O+(2)(intra)H ₂ O +(intra)H ₂ O	open chain (A)+(1)(2)H ₂ O +(2)(intra)H ₂ O +(intra)H ₂ O	open chain (A)+(1)(2)H ₂ O+(1)(3)H ₂ O+(intra)H ₂ O	open chain (A)+(1)(intra)H ₂ O +(2)(intra)H ₂ O+(i ntra)H ₂ O	open chain (A)+(1)(2)H ₂ O+(2)(intra)H ₂ O+(intr a)H ₂ O
ΔΕ	0.00	0.03	0.05	0.08	0.08
VDE	2.64	2.94	2.39	3.00	3.00
Optimized Anionic structure					
Structural Polymorphism	open chain (A)+(1)(2)H ₂ O+(1)(3)H ₂ O+(2)(int ra)H ₂ O	open chain (A)+(1)(2)H ₂ 2O+(2)(intra)H ₂ O+(4)(5)(6)H ₂ O	open chain (A)+(1)(2)H ₂ O+(1)(3)H ₂ O+(4)(5)H ₂ O	open chain (A)+(1)(intra)H ₂ O +(2)(intra)H ₂ O+(i ntra)H ₂ O	open chain (A)+(1)(2)H ₂ O+(1)(3)H ₂ O+(4)(5)(6)H ₂ O
ΔΕ	0.09	0.11	0.13	0.13	0.13
VDE	2.86	2.75	2.41	3.09	2.75
Optimized Anionic structure					4 4 9 9 9 9
Structural Polymorphism	open chain (A)+(1)(intra)H ₂	open chain $(A)+(4)(5)(6)H_2O$	open chain $(A)+(4)(5)(6)H_2O+(6)(6)(6)H_2O+(6)(6)(6)H_2O+(6)(6)(6)H_2O+(6)(6)(6)(6)H_2O+(6)(6)(6)(6)H_2O+(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)($	open chain (A)+(4)(6)(intra)H ₂ O+(2)(intra)H ₂ O+	open chain (A)+(4)(6)(intra)
	O+(2)(intra)H ₂ O +(4)(5)H ₂ O	+(4)(6)(intra)H ₂ O +(2)(intra)H ₂ O	6)(intra) $H_2O+(2)$ (int ra) H_2O	$_2$ O+(2)(Intra)H ₂ O+ (1)(intra)H ₂ O	H ₂ O+(4)(intra)H ₂ O+(intra)H ₂ O
ΔΕ	+(4)(5)H ₂ O 0.17	+(2)(intra)H ₂ O 0.21	ra)H ₂ O 0.23	(1)(intra)H ₂ O 0.26	O+(intra)H ₂ O 0.32
ΔE VDE	$+(4)(5)H_2O$	+(2)(intra)H ₂ O	ra)H ₂ O	(1)(intra)H ₂ O	O+(intra)H ₂ O
	+(4)(5)H ₂ O 0.17	+(2)(intra)H ₂ O 0.21	ra)H ₂ O 0.23	(1)(intra)H ₂ O 0.26	O+(intra)H ₂ O 0.32
Optimized Anionic structure Structural Polymorphism	+(4)(5)H ₂ O 0.17 3.08 open chain (A)+(1)(intra)H ₂ O+ (3)(intra)H ₂ O+(i ntra)H ₂ O	+(2)(intra)H ₂ O 0.21 2.84 open chain (A)+(4)(5)(6)(intr a)H ₂ O+(3)H ₂ O+(i ntra)H ₂ O	ra)H ₂ O 0.23 2.64 open chain (C)+(1)(2)(intra)H ₂ O+(intra)H ₂ O	(1)(intra)H ₂ O 0.26 2.78 open chain (B)+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+ (intra)H ₂ O	O+(intra)H ₂ O 0.32 2.40 open chain (B)+(1)(2)(intra) H ₂ O+(1)(intra)H ₂ O+(2)(3)(intra)H ₂ O
Optimized Anionic structure	+(4)(5)H ₂ O 0.17 3.08 open chain (A)+(1)(intra)H ₂ O+ (3)(intra)H ₂ O+(i	+(2)(intra)H ₂ O 0.21 2.84 open chain (A)+(4)(5)(6)(intr a)H ₂ O+(3)H ₂ O+(i	ra)H ₂ O 0.23 2.64 open chain (C)+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(in	(1)(intra)H ₂ O 0.26 2.78 open chain (B)+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+	O+(intra)H ₂ O 0.32 2.40 open chain (B)+(1)(2)(intra) H ₂ O+(1)(intra)H ₂ O+(2)(3)(intra)H ₂

Polymorphism H ₂	3)+(1)(2)(intra)	open chain	open chain	open chain	open chain
ΔΕ	2O+(2)(intra)H 2O+(1)(3)H ₂ O	(C)+(1)(2)(intra)H 2O+(2)(intra)H ₂ O+ (intra)H ₂ O	(C)+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5)H ₂ O	(C)+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+ (1)(3)H ₂ O	(B)+(1)(2)H ₂ O+(1)(2)H ₂ O+(3)(intra)H ₂ O
	0.38	0.38	0.39	0.41	0.42
VDE	2.36	2.36	2.51	2.58	2.18
1	1	•			
Optimized Anionic structure					
	open chain C)+(1)(2)H ₂ O+()(5)H ₂ O+(4)(5) H ₂ O	open chain (C)+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+ (5)(6)H ₂ O	open chain (B)+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(1)(intra)H ₂ O	open chain (C)+(1)(2)(intra)H ₂ O+(1)(2)(intra)H ₂ O+(intra)H ₂ O	open chain (A)+(4)(5)(6)H ₂ O +(3)(intra)H ₂ O+(i ntra)H ₂ O
ΔΕ	0.42	0.44	0.45	0.45	0.49
VDE	2.38	2.48	2.56	2.63	2.65
<u>.</u>					
Optimized Anionic structure					
	open chain 3)+(1)(2)H ₂ O+()(3)H ₂ O+(5)(6) H ₂ O	open chain (C)+(1)(2)H ₂ O+(5)(6)(intra)H ₂ O+(in tra)H ₂ O	open chain (B)+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(5)(6)H ₂ O	open chain (B)+(1)(2)H ₂ O+(5)(6)(intra)H ₂ O+(in tra)H ₂ O	β-pyranose (² C ₅ - chair) + +(1)(3)H ₂ O+(2)(3)(intra)H ₂ O+(1)(i ntra)H ₂ O
$\Delta \mathrm{E}$	0.52	0.52	0.53	0.72	0.73
VDE	2.02	2.38	2.34	2.14	0.87
Optimized Anionic structure	3				
Structural Polymorphism +(3)	-pyranose (² C ₅ - chair) + (3)(4)H ₂ O+(1)()H ₂ O+(1)(2)(3) H ₂ O	β-pyranose (² C ₅ - chair) + +(3)(4)(intra)H ₂ O +(3)(intra)H ₂ O+(1)H ₂ O	β-pyranose (² C ₅ - chair) + +(3)(4)H ₂ O+(4)(intr a)H ₂ O+(intra)H ₂ O	β-pyranose (² C ₅ - chair) + +(1)(2)(3)(intra)H ₂ O+(1)(3)H ₂ O+(int ra)H ₂ O	β-pyranose (² C ₅ - chair) + +(3)(4)H ₂ O+(4)(i ntra)H ₂ O+(5)(intr a)H ₂ O
ΔΕ	0.79	0.82	0.82	0.84	0.85
VDE	0.87	1.10	1.25	0.86	0.84

Optimized Anionic structure					
Structural Polymorphism	β-pyranose (² C ₅ - chair) + +(1)(intra)H ₂ O+(3)(intra)H ₂ O+(4) (5)H ₂ O	β-pyranose (² C ₅ - chair) + +(1)(2)(3)H ₂ O+(1) (3)H ₂ O+(4)(5)H ₂ O	β-pyranose (² C ₅ - chair) + +(3)(4)H ₂ O+(1)(3)H ₂ O+(4)(intra)H ₂ O	β-pyranose (² C ₅ - chair) + +(3)(4)H ₂ O+(1)(3) H ₂ O+(4)(5)H ₂ O	β-pyranose (² C ₅ - chair) + +(4)(5)(intra)H ₂ O +(1)(3)H ₂ O+(5)(i ntra)H ₂ O
ΔΕ	0.85	0.85	0.87	0.89	0.95
VDE	0.89	0.84	0.82	0.65	0.94
Optimized Anionic structure					
Structural Polymorphism	α-furanose (C ₄ - endo) +(3)(intra)H ₂ O+(4)(intra)H ₂ O+(in tra)H ₂ O	α-furanose (C ₄ - endo) +(3)(intra)H ₂ O+(4)(intra)H ₂ O+(1)(2) H ₂ O	α-furanose (C ₄ - endo) +(1)(3)(intra)H ₂ O+(3)(intra)H ₂ O+(intra) H ₂ O	α-furanose (C ₄ - endo) +(3)(intra)H ₂ O+(3)(intra)H ₂ O+(4)(in tra)H ₂ O	α-furanose (C ₄ - endo) +(1)(3)(intra)H ₂ O +(intra)H ₂ O+(3)(4)H ₂ O
ΔΕ	0.96	0.97	0.97	1.01	1.06
VDE	1.23	0.98	1.07	0.97	0.86
Optimized Anionic structure					
Structural Polymorphism	α-furanose (C ₄ - endo) +(1)(2)H ₂ O+(1)(3)H ₂ O+(3)(4)H ₂ O	α-furanose (C ₄ - endo) +(1)(2)(intra)H ₂ O +(2)(intra)H ₂ O+(3)(intra)H ₂ O			
ΔΕ	1.07	1.17			
VDE	0.64	0.78			

Figure S7 Optimized geometries of the typical low lying anionic isomers of (fructose+ $(H_2O)_3$) based on B3LYP/6-31++G(d) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose parent anions. For open chain structures (1)C to (6)C is ordered from left to right. For both furanose and pyranose structures (1)C to (6)C is ordered from right to left in a clockwise direction.

Optimized Anionic structure					
Structural Polymorphism	open chain (A) + (1)(2)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O	open chain (A) + (1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O	open chain (A) + (1)(2)(intra)H ₂ O + (1)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O +	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O
ΔE	0.00	0.12	0.19	0.21	0.21
VDE	2.88	2.74	2.87	3.18	3.10
Optimized Anionic structure	open chain (A) +	open chain (A) +	open chain (A) +	open chain (A) +	open chain (A) +
Structural Polymorphism	(1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (4)(5)(6)H ₂ O	(1)(2)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	(1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	(1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	(1)(2)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O
ΔΕ	0.21	0.22	0.23	0.23	0.25
VDE	2.86	2.67	2.83	3.20	3.14
Optimized Anionic structure					
Structural Polymorphism	open chain (A) + (1)(2)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O + (4)(5)(6)H ₂ O 0.26	open chain (A) + (1)(2)(intra)H ₂ O + (1)(3)H ₂ O + (2)(intra)H ₂ O + (4)(5)(6)H ₂ O 0.26	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O 0.27	open chain (A) + (1)(2)H ₂ O + (1)(3)H ₂ O + (4)(5)(intra)H ₂ O + (6)(intra)H ₂ O	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O 0.27
VDE	2.62	2.70	3.45	2.60	2.85
Optimized Anionic structure					
Structural Polymorphism	open chain (A) + (1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (3)(intra)H ₂ O + (intra)H ₂ O 0.28	open chain (A) + (1)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (3)(intra)H ₂ O + (intra)H ₂ O 0.28	open chain (C) + (1)(2)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O 0.29	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(5)(6)H ₂ O + (intra)H ₂ O 0.30	open chain (B) + (1)(2)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O 0.30

VDE	2.87	2.39	2.68	3.25	2.64
Optimized Anionic structure					
Structural Polymorphism	open chain (A) + (1)(2)H ₂ O + (1)(3)(intra)H ₂ O + (4)(5)(intra)H ₂ O + (5)(intra)H ₂ O	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (4)(5)(6)H ₂ O	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (1)(3)H ₂ O + (4)(5)(6)H ₂ O	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(5)(intra)H ₂ O + (6)(intra)H ₂ O	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(5)H ₂ O + (intra)H ₂ O
ΔΕ	0.30	0.32	0.32	0.33	0.34
VDE	2.41	3.22	3.09	3.28	3.29
Optimized Anionic structure Structural Polymorphism	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(5)(6)H ₂ O +	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(6)H ₂ O +	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(6)(intra)H ₂ O	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (1)(3)(intra)H ₂ O +	open chain (A) + (2)(intra)H ₂ O + (4)(6)(intra)H ₂ O + (intra)H ₂ O +
	(intra)H ₂ O	$(4)(5)(6)H_2O$	$+(4)(5)(6)H_2O$	$(4)(5)H_2O$	$(4)(5)(6)H_2O$
ΔΕ	0.36	0.37	0.38	0.40	0.41
VDE	2.89	3.03	2.91	2.83	3.09
Optimized Anionic structure					
Structural Polymorphism	open chain (A) + (1)(3)(intra)H ₂ O + (3)(intra)H ₂ O + (intra)H ₂ O + (4)(5)(6)H ₂ O	open chain (B) + $(1)(2)(intra)H_2O + (1)(intra)H_2O + (2)(intra)H_2O + (intra)H_2O$	open chain (A) + (1)(intra)H ₂ O + (3)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(6)(intra)H ₂ O + (4)(5)H ₂ O	open chain (C) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (1)(3)H ₂ O
ΔΕ	0.44	0.46	0.48	0.49	0.51
VDE	2.24	2.59	2.77	3.06	2.36
Optimized Anionic structure			GP.		
Structural Polymorphism	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O +	open chain (C) + (1)(intra)H ₂ O + (2)(intra)H ₂ O +	open chain (C) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O +	open chain (C) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O +	open chain (B) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O +

	(4)(6)(intra)H ₂ O	(2)(intra)H ₂ O +	(5)(6)H ₂ O +	(3)(5)(intra)H ₂ O +	(intra)H ₂ O +
	+ (intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O	(6)(intra)H ₂ O	(intra)H ₂ O
ΔΕ	0.51	0.52	0.53	0.59	0.59
VDE	2.85	2.27	2.61	2.69	2.84
Optimized Anionic structure					
Structural Polymorphism	open chain (C) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (3)(5)H ₂ O + (4)(6)H ₂ O	open chain (A) + (3)H ₂ O + (4)(5)(6)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (C) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (A) + (3)H ₂ O + (4)(5)(6)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (B) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (5)(6)H ₂ O
ΔΕ	0.60	0.60	0.61	0.61	0.65
VDE	2.78	2.83	2.57	2.88	2.55
Optimized Anionic structure					9
Structural Polymorphism	open chain (C) + (1)(2)H ₂ O + (3)(5)H ₂ O + (5)(6)(intra)H ₂ O + (4)(intra)H ₂ O	open chain (B) + (1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (5)(6)H ₂ O	β-pyranose (² C ₅ - chair) + (1)(3)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(intra)H ₂ O + (intra)H ₂ O	β-pyranose (² C ₅ - chair) + (3)(4)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3H ₂ O + (1)(intra)H ₂ O	β-pyranose (² C ₅ - chair) + (1)(2)(3)H ₂ O + (1)(intra)H ₂ O + (3)(intra)H ₂ O + (3)(4)H ₂ O
ΔΕ	0.66	0.66	0.87	0.96	0.98
VDE	2.41	2.36	0.92	1.07	1.08
Optimized Anionic structure					
Structural Polymorphism	β-pyranose (² C ₅ - chair) + (1)(3)H ₂ O + (3)(4)(intra)H ₂ O + (4)(5)H ₂ O + (intra)H ₂ O	β-pyranose (² C ₅ - chair) + (1)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)H ₂ O + (intra)H ₂ O	β-pyranose (² C ₅ - chair) + (1)(2)H ₂ O + (1)(3)H ₂ O + (3)(4)H ₂ O + (4)(5)H ₂ O	β-pyranose (² C ₅ - chair) + (1)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)H ₂ O + (4)(5)H ₂ O	α-furanose (C ₄ - endo) + (3)(intra)H ₂ O + (4)(intra)H ₂ O + (6)(intra)H ₂ O + (intra)H ₂ O
ΔΕ	0.99	1.00	1.03	1.05	1.05
VDE	1.18	1.03	1.00	0.87	1.45
1					

Optimized Anionic structure					
Structural Polymorphism	α-furanose (C ₄ - endo) + (3)(intra)H ₂ O + (4)(intra)H ₂ O + (6)(intra)H ₂ O + (intra)H ₂ O 1.07	β-pyranose (² C ₅ - chair) + (1)(2)(3)H ₂ O + (1)(3)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	α-furanose (C ₄ - endo) + (1)(3)H ₂ O + (3)(intra)H ₂ O + (intra)H ₂ O + (4)(6)H ₂ O 1.07	α-furanose (C ₄ - endo) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (3)(intra)H ₂ O + (3)(4)H ₂ O	β-pyranose (² C ₅ - chair) + (1)(3)H ₂ O + (3)(4)H ₂ O + (4)(5)H ₂ O + (intra)H ₂ O
VDE	1.35	1.28	1.37	0.98	0.86
Optimized Anionic structure					
WStructural Polymorphism	α-furanose (C ₄ - endo) + (1)(3)H ₂ O + (3)(intra)H ₂ O + (4)(intra)H ₂ O + (intra)H ₂ O	α-furanose (C ₄ - endo) + (1)(3)(intra)H ₂ O + (1)(intra)H ₂ O + (3)(intra)H ₂ O + (intra)H ₂ O	$\begin{array}{c} \alpha\text{-furanose} \ (C_4\text{-}\\ \text{endo}) \ + \\ (3)(\text{intra})H_2O \ + \\ (3)(\text{intra})H_2O \ + \\ (4)(\text{intra})H_2O \ + \\ (\text{intra})H_2O \end{array}$	$\begin{array}{c} \alpha\text{-furanose} \ (C_4\text{-}\\ \text{endo}) \ +\\ (1)(3)(\text{intra})H_2O \ +\\ (3)(\text{intra})H_2O \ +\\ (\text{intra})H_2O \ +\\ (\text{intra})H_2O \end{array}$	$\begin{array}{c} \alpha\text{-furanose} \ (C_4\text{-}\\ \text{endo}) \ + \\ (1)(\text{intra})H_2O \ + \\ (2)(\text{intra})H_2O \ + \\ (3)(\text{intra})H_2O \ + \\ (\text{intra})H_2O \end{array}$
ΔE VDE	1.20 1.23	1.22 1.16	1.22 1.08	1.22 1.23	1.45 0.98

Figure S8 Optimized geometries of the typical low lying anionic isomers of (fructose+ $(H_2O)_4$) based on B3LYP/6-31++G(d) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose parent anions. For open chain structures (1)C to (6)C is ordered from left to right. For both furanose and pyranose structures (1)C to (6)C is ordered from right to left in a clockwise direction.

Optimized Anionic structure					
Structural Polymorphism <u>AE</u>	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (3)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (A) + (1)(2)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (A) + (1)(2)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O + (2)H ₂ O 0.08	open chain (A) + (1)(2)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O + (4)(5)(6)H ₂ O 0.10	open chain (A) + (1)(2)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O + (3)(intra)H ₂ O
VDE	2.97	3.09	3.22	3.12	3.14
Optimized Anionic structure					
Structural Polymorphism	open chain (A) + (1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (A) + (1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (1)(3)H ₂ O	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (1)(2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (1)(2)(3)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (1)(2)(intra)H ₂ O + (intra)H ₂ O + (4)(5)(6)H ₂ O
ΔΕ	0.15	0.15	0.17	0.18	0.20
VDE	2.77	3.16	2.93	3.17	2.95
Optimized Anionic structure					
Structural Polymorphism	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (1)(2)(intra)H ₂ O + (intra)H ₂ O +	open chain (A) + (1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O +	open chain (A) + (1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (3)(intra)H ₂ O +	open chain (A) + (1)(2)(intra)H ₂ O + (3)(intra)H ₂ O + (5)(intra)H ₂ O + (4)(intra)H ₂ O + (intra)H ₂ O	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O +
Polymorphism	(1)(intra)H ₂ O + (2)(intra)H ₂ O + (1)(2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	(1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	(1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (3)(intra)H ₂ O + (intra)H ₂ O	+ (1)(2)(intra)H ₂ O + (3)(intra)H ₂ O + (5)(intra)H ₂ O + (4)(intra)H ₂ O + (intra)H ₂ O	(1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O
Polymorphism	(1)(intra)H ₂ O + (2)(intra)H ₂ O + (1)(2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	$(1)(2)(intra)H_2O + (1)(intra)H_2O + (2)(intra)H_2O + (intra)H_2O + (intra)H_2O$	(1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (3)(intra)H ₂ O + (intra)H ₂ O	+ (1)(2)(intra)H ₂ O + (3)(intra)H ₂ O + (5)(intra)H ₂ O + (4)(intra)H ₂ O + (intra)H ₂ O	(1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O
Polymorphism ΔE	(1)(intra)H ₂ O + (2)(intra)H ₂ O + (1)(2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	(1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	(1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (3)(intra)H ₂ O + (intra)H ₂ O	+ (1)(2)(intra)H ₂ O + (3)(intra)H ₂ O + (5)(intra)H ₂ O + (4)(intra)H ₂ O + (intra)H ₂ O	(1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O

	(1)(intra)H ₂ O + (2)(intra)H ₂ O + (2)H ₂ O + (intra)H ₂ O	(1)(intra)H ₂ O + (2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O	$(2)(intra)H_2O + (intra)H_2O + (1)(3)H_2O + (4)(5)(6)H_2O$	(1)(2)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O +	$(2)(intra)H_2O + (1)(2)(3)H_2O + (intra)H_2O + (intra)H_2O$
				(intra)H ₂ O	
ΔΕ	0.25	0.25	0.26	0.26	0.26
VDE	2.93	3.03	2.80	2.67	2.94
Optimized Anionic structure					
Structural Polymorphism	open chain (A) + $(1)(intra)H_2O + (2)(intra)H_2O + (2)(intra)H_2O + (intra)H_2O + (intra)H_2O$	open chain (A) + (1)(2)(intra)H ₂ O + (1)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (4)(5)(6)H ₂ O	open chain (A) + $(1)(intra)H_2O + (2)(intra)H_2O + (2)(intra)H_2O + (4)(intra)H_2O + (intra)H_2O$	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (A) + (1)(intra) H_2O + (2)(intra) H_2O + (4)(intra) H_2O + (intra) H_2O + (intra) H_2O
ΔΕ	0.27	0.27	0.29	0.29	0.30
VDE	3.06	3.07	3.32	3.60	3.14
Optimized Anionic structure Structural Polymorphism	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(intra)H ₂ O +	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O +	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O +	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (2)(intra)H ₂ O	open chain (A) + (1)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(3)(intra)H ₂ O
	(intra)H ₂ O + (intra)H ₂ O	$(intra)H_2O + (4)(5)(6)H_2O$	$(4)(5)(6)H_2O + (intra)H_2O$	+ (intra)H ₂ O + (intra)H ₂ O	+ (intra)H ₂ O + (intra)H ₂ O
ΔΕ	0.31	0.31	0.32	0.32	0.32
VDE	2.98	3.24	2.98	3.26	2.58
Optimized Anionic structure					
Structural Polymorphism ΔE	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (4)(5)(6)H ₂ O + (4)(6)H ₂ O 0.32	open chain (A) + (1)(2)H ₂ O + (1)(intra)H ₂ O + (3)(intra)H ₂ O + (4)(5)(intra)H ₂ O + (6)(intra)H ₂ O 0.33	open chain (A) + (1)(2)(intra)H ₂ O + (1)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O 0.33	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (4)(5)H ₂ O 0.33	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O 0.33
ΔE VDE	3.15	2.78	3.09	3.36	3.35
VDE	3.13	4.10	3.03	3.30	3.33

Optimized Anionic structure					
Structural Polymorphism	open chain (A) + (1)(2)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (1)(3)H ₂ O + (4)(5)(6)H ₂ O	open chain (C) + (1)(2)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (B) + (1)(2)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (B) + (1)(2)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (A) + (1)(2)H ₂ O + (1)(3)H ₂ O + (4)(intra)H ₂ O + (5)(6)(intra)H ₂ O + (intra)H ₂ O
ΔΕ	0.33	0.34	0.34	0.35	0.35
VDE	2.97	2.91	2.85	2.86	2.72
Optimized Anionic structure					
Structural Polymorphism	open chain (A) + (1)(2)H ₂ O + (1)(3)H ₂ O + (2)(intra)H ₂ O + (4)(5)(intra)H ₂ O + (6)(intra)H ₂ O	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (B) + (1)(2)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (intra)H ₂ O + (2)H ₂ O	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (4)(5)(intra)H ₂ O + (6)(intra)H ₂ O	open chain (C) + (1)(2)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O + (3)(intra)H ₂ O
ΔΕ	0.35	0.36	037	0.37	0.37
VDE	2.97	3.50	2.99	3.48	2.94
Optimized Anionic structure					
Structural Polymorphism	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (4)(5)(6)H ₂ O	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (1)(2)(3)H ₂ O + (intra)H ₂ O + (4)(5)H ₂ O	open chain (A) + (1)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O + (4)(5)H ₂ O	open chain (B) + (1)(2)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (intra)H ₂ O + (3)(intra)H ₂ O	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (1)(3)H ₂ O + (4)(5)(intra)H ₂ O + (6)(intra)H ₂ O
ΔΕ	0.38	0.38	0.38	0.39	0.40
	0.50	0.50	0.50	0.37	U. TU
VDE	3.67	3.38	2.67	2.91	2.99

Optimized Anionic structure					
Structural Polymorphism	open chain (C) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O 0.39	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(5)(intra)H ₂ O + (5)(6)(intra)H ₂ O + (intra)H ₂ O 0.40	open chain (A) + (1)(3)(intra)H ₂ O + (1)(intra)H ₂ O + (3)(intra)H ₂ O + (intra)H ₂ O + (4)(5)(6)H ₂ O 0.42	open chain (A) + (2)(intra)H ₂ O + (4)(6)(intra)H ₂ O + (4)(5)(6)(intra)H 2O + (intra)H ₂ O + (intra)H ₂ O 0.43	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(6)(intra)H ₂ O + (4)(5)(6)(intra)H ₂ O O + (intra)H ₂ O 0.44
VDE	2.71	3.50	2.44	3.21	3.14
				<u>,</u>	
Optimized Anionic structure				2 0 0 0 0 0 0 0 0 0 0	E=-1069.105750
Structural Polymorphism	open chain (A) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(5)(6)(intra)H ₂ O + (4)(6)(intra)H ₂ O + (intra)H ₂ O	open chain (A) + $(1)(intra)H_2O + (2)(3)(intra)H_2O + (intra)H_2O + (intra)H_2O + (intra)H_2O$	open chain (B) + (1)(2)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (intra)H ₂ O + (5)(6)H ₂ O	open chain (B) + (1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	open chain (C) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(intra)H ₂ O + (intra)H ₂ O + (1)(3)H ₂ O
ΔΕ	0.45	0.46	0.48	0.51	0.52
VDE	3.22	2.66	2.68	2.76	2.72
				•	
Optimized Anionic structure					
Structural Polymorphism	open chain (B) + (1)(2)(intra)H ₂ O + (1)(3)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O 0.53	open chain (A) + (1)(3)(intra)H ₂ O + (3)(intra)H ₂ O + (intra)H ₂ O + (4)(5)(6)(intra)H ₂ O O + (intra)H ₂ O 0.53	open chain (C) + (1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (1)(3)H ₂ O 0.55	open chain (C) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (1)(3)H ₂ O 0.55	open chain (C) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (1)(3)(intra)H ₂ O 0.55
VDE	2.56	2.42	2.61	2.73	2.45
Optimized Anionic structure					

Structural Polymorphism <u>AE</u> VDE	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (4)(6)(intra)H ₂ O + (4)(5)(6)H ₂ O 0.56 3.11	open chain (C) + (1)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O 0.56 2.54	open chain (C) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (3)(5)(intra)H ₂ O + (6)(intra)H ₂ O + (intra)H ₂ O 0.57 2.84	open chain (C) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (1)(3)H ₂ O + (5)(6)H ₂ O 0.59 2.51	open chain (C) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (5)(6)H ₂ O 0.61 2.44
Optimized Anionic structure					
Structural Polymorphism	open chain (C) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O + (1)(3)H ₂ O	open chain (B) + (1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (5)(6)H ₂ O	open chain (C) + (1)(2)(intra)H ₂ O +(2)(intra)H ₂ O + (3)(5)(intra)H ₂ O + (6)(intra)H ₂ O +	β-pyranose (² C ₅ - chair) + (1)(3)(intra)H ₂ O + (2)(3)(intra)H ₂ O + (1)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	β-pyranose (² C ₅ - chair) + (3)(4)H ₂ O + (2)(3)(intra)H ₂ O + (1)(3)(intra)(intra)H ₂ O + (1)(intra)H ₂ O + (intra)H ₂ O
ΔΕ	0.62	0.64	0.65	0.95	0.96
VDE	2.51	2.64	2.94	1.09	1.08
Optimized Anionic structure	β-pyranose (² C ₅ -chair) + (2)(3)(intra)H ₂ O +	β-pyranose (² C ₅ -chair) + (2)(3)(intra)H ₂ O +	α-furanose (C ₄ - endo) + (3)(intra)H ₂ O +	-pyranose (² C ₅ -chair) + (1)(2)(3)H ₂ O +	β-pyranose (² C ₅ -chair) + (2)(3)(intra)H ₂ O
Polymorphism ΔE	(1)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	(1)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (3)(4)(intra)H ₂ O + (intra)H ₂ O	(4)(intra)H ₂ O + (6)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	(1)(intra)H ₂ O + (3)(intra)H ₂ O + (3)(4)(intra)H ₂ O + (intra)H ₂ O	+ (1)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O + (free)H ₂ O
VDE	1.04	1.49	1.38	1.05	1.39
Optimized Anionic					
Structure Structural Polymorphism	β-pyranose (² C ₅ - chair) + (1)(3)(intra)H ₂ O + (3)(4)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O + (4)(5)H ₂ O	α-furanose (C ₄ - endo) + (3)(intra)H ₂ O + (4)(intra)H ₂ O + (6)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	α-furanose (C ₄ - endo) + (1)(3)(intra)H ₂ O + (3)(intra)H ₂ O + (4)(6)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O	α-furanose (C ₄ - endo) + (3)(intra)H ₂ O + (4)(intra)H ₂ O + (6)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O +	β-pyranose (² C ₅ - chair) + (1)(2)(3)(intra)H ₂ O + (1)(intra)H ₂ O + (3)(intra)H ₂ O +

					(intra)H ₂ O + (3)(4)H ₂ O
ΔΕ	1.02	1.04	1.04	1.04	1.08
VDE	1.38	1.43	1.24	1.33	1.24
Optimized Anionic structure					
	α-furanose (C ₄ -	β-pyranose (² C ₅ -		α-furanose (C ₄ -	α-furanose (C ₄ -
	endo) +	chair) +	β -pyranose (${}^{2}C_{5}$ -	endo) +	endo) +
Structural	$(1)(3)(intra)H_2O +$	$(1)(2)(3)H_2O +$	chair) + $(2)(3)H_2O$	$(3)(intra)H_2O +$	$(3)(intra)H_2O +$
Polymorphism	$(3)(intra)H_2O +$	$(1)(intra)H_2O +$	$+(1)(intra)H_2O +$	$(3)(intra)H_2O +$	$(3)(intra)H_2O +$
Torymorphism	(intra)H ₂ O +	$(3)(intra)H_2O +$	$(1)(3)H_2O +$	$(4)(intra)H_2O +$	$(4)(intra)H_2O +$
	(intra)H ₂ O +	$(intra)H_2O +$	$(3)(4)H_2O +$	$(6)(intra)H_2O +$	$(6)(intra)H_2O +$
	$(4)(6)H_2O$	$(3)(4)H_2O$	$(4)(5)H_2O$	(intra)H ₂ O	(intra)H ₂ O
ΔΕ	1.11	1.11	1.12	1.13	1.15
VDE	1.54	1.32	1.06	1.48	1.56
Optimized Anionic structure	W				
	α-furanose (C ₄ -	α-furanose (C ₄ -	α -furanose (C ₄ -		
	endo) +	endo) +	endo) +		
Structural	$(3)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$		
Polymorphism	$(4)(intra)H_2O +$	$(1)(3)(intra)H_2O +$	$(1)(3)(intra)H_2O +$		
	$(6)(intra)H_2O +$	$(3)(intra)H_2O +$	$(3)(intra)H_2O +$		
	(intra)H ₂ O +	$(intra)H_2O +$	$(intra)H_2O +$		
	(intra)H ₂ O	$(4)(6)H_2O$	$(4)(6)H_2O$		
ΔΕ	1.18	1.18	1.19		
VDE	1.64	1.50	1.48		

Figure S9 Optimized geometries of the typical low lying anionic isomers of (fructose+ $(H_2O)_5$) based on B3LYP/6-31++G(d) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose parent anions. For open chain structures (1)C to (6)C is ordered from left to right. For both furanose and pyranose structures (1)C to (6)C is ordered from right to left in a clockwise direction.

	•				
Optimized Neutral structure					
Structural	β-pyranose (² C ₅ -	α- furanose (C ₄ -			
Polymorphism	chair) $+(2)(3)H_2O$	chair) $+(3)(4)H_2O$	chair) $+(4)(5)H_2O$	chair) $+(1)(3)H_2O$	endo) $+(1)(3)H_2O$
ΔE (eV)	0.00	0.01	0.05	0.08	0.12
Optimized Neutral structure					
Structural	Open chain (A)	Open chain (C)	Open chain (A)	Open chain (A)	Open chain (A)
Polymorphism	$+(1)(2)H_2O$	$+(5)(6)H_2O$	$+(4)(6)H_2O$	$+(1)(2)H_2O$	$+(3)H_2O$
$\Delta E (eV)$	0.15	0.16	0.18	0.20	0.21
Optimized Neutral structure					
Structural	α- furanose (C ₄ -	Open chain (B)	Open chain (C)	α- furanose (C ₄ -	Open chain (C)
Polymorphism	endo) $+(1)(2)H_2O$	$+(5)(6)H_2O$	$+(3)(5)H_2O$	endo) $+(3)(4)H_2O$	$+(1)(2)H_2O$
ΔE (eV)	0.22	0.23	0.24	0.25	0.25
Optimized Neutral structure					
Structural Polymorphism	Open chain (B) +(1)(2)H ₂ O				
$\Delta E \text{ (eV)}$	0.30				
\ /	1				

Figure S11 Optimized geometries of the typical low lying neutral isomers of (fructose+ H_2O) based on B3LYP/6-311++G(d,p) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose⁻ parent anions. For open chain structures (1)C to (6)C is ordered from left to right. For both furanose and pyranose structures (1)C to (6)C is ordered from right to left in a clockwise direction.

	Т				T- 1
Optimized Neutral structure	5		9.33		
Structural Polymorphis m	β-pyranose (² C ₅ - chair) +(1)(3)(intra)H ₂ O +(3)(intra)H ₂ O	open chain (A) +(2)(intra)H ₂ O+(1)(4)(intra)H ₂ O	open chain (B) +(1)(intra)H ₂ O+(2)(int ra)H ₂ O	open chain (C) +(2)(intra)H ₂ O+(1)(4)(intra)H ₂ O	β-pyranose (² C ₅ - chair) +(2)(3)(intra)H ₂ O +(1)(intra)H ₂ O
ΔE (eV)	0.00	0.05	0.06	0.07	0.08
Optimized Neutral structure					96 (E)
Structural Polymorphis m ΔE (eV)	open chain (A) +(1)(intra)H ₂ O+(2)(intra)H ₂ O 0.11	β-pyranose (² C ₅ -chair) +(4)(5)H ₂ O+(3)(4)H ₂ O 0.12	β-pyranose (² C ₅ -chair) +(1)(2)H ₂ O+(4)(5)H ₂ O 0.14	open chain (A) +(1)(2)H ₂ O+(1)(3)H ₂ O 0.16	β-pyranose (² C ₅ - chair) +(1)(2)H ₂ O+(3)(4) H ₂ O 0.18
ΔE (ev)	0.11	0.12	0.14	0.10	0.16
Optimized Neutral structure				<u> </u>	
Structural Polymorphis m	β-pyranose (² C ₅ - chair) +(1)(3)H ₂ O+(3)(4)H ₂ O	open chain (A) +(6)(intra)H ₂ O+(4)(intra)H ₂ O	β-pyranose (2C_5 -chair) +(1)(3)H $_2$ O+(4)(5)H $_2$ O	α - furanose (C ₄ - endo) +(1)(2)H ₂ O+ (1)(3)H ₂ O	open chain (C) +(1)(2)H ₂ O+(1)(3) H ₂ O
ΔE (eV)	0.21	0.21	0.21	0.21	0.23
Optimized Neutral structure	<u>ڡ</u> ۿ؞؞ۣڎٷٷٷٷ؞؞				
Structural Polymorphis m ΔE (eV)	open chain (C) +(1)(intra)H ₂ O+(2)(intra)H ₂ O 0.23	β-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(1)(2)(3)H ₂ O 0.24	open chain (B) +(1)(intra)H ₂ O+(2)(int ra)H ₂ O 0.25	open chain (A) +(4)(6)(intra)H ₂ O+(i ntra)H ₂ O 0.27	open chain (B) +(1)(2)H ₂ O+(1)(3) H ₂ O 0.29
(CV)	1 0.20	··		0.27	
Optimized Neutral structure					
Structural Polymorphis m	α- furanose (C ₄ - endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O	open chain (A) +(1)(2)H ₂ O+(5)(6)H ₂ O	α- furanose (C ₄ -endo) +(1)(2)H ₂ O+ (3)(4)H ₂ O	open chain (C) +(3)(5)H ₂ O+(5)(6)H ₂ O	open chain (C) +(5)(intra)H ₂ O+(4)(intra)H ₂ O

ΔE (eV)	0.30	0.31	0.32	0.33	0.34
Optimized					
Neutral structure	3 9		<u>•</u>	6	
Structural Polymorphis m	open chain (A) +(3)H ₂ O+(5)(6)H ₂ O	open chain (A) +(3)(intra)H ₂ O+(i ntra)H ₂ O	open chain (A) +(1)(2)H ₂ O+(1)H ₂ O	open chain (C) +(3)(5)H ₂ O+(1)(2)H ₂ O	α- furanose (C ₄ - endo) +(3)(4)H ₂ O+ (1)(3)H ₂ O
ΔE (eV)	0.35	0.38	0.39	0.39	0.40
Optimized Neutral structure					
Structural Polymorphis m	open chain (A) +(1)(intra)H ₂ O+(i ntra)H ₂ O	open chain (B) +(1)(2)H ₂ O+(5)(6)H ₂ O	open chain (C) +(1)(2)H ₂ O+(5)(6)H ₂		
$\Delta E (eV)$	0.43	0.43	0.47		

Figure S12 Optimized geometries of the typical low lying neutral isomers of (fructose+ $(H_2O)_2$) based on B3LYP/6-311++G(d,p) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose⁻ parent anions. For open chain structures (1)C to (6)C is ordered from left to right. For both furanose and pyranose structures (1)C to (6)C is ordered from right to left in a clockwise direction.

					<u> </u>
Ontimizad				3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s 4 🚰 🚁
Optimized Neutral				33 3 9 3 9 3	
structure	3 0	3		3	902.2.5
	β-pyranose (² C ₅ -				β-pyranose (² C ₅ -
	chair) +	open chain	open chain	open chain	chair) +
	$+(1)(3)(intra)H_2O+($	$(A)+(1)(2)(intra)H_2$	(C)+(1)(4)(intra)H	$(C)+(1)(4)(intra)H_2$	+(2)(3)(intra)H2O
Structural	$1)(3)(intra)H_2O+(in$	$O+(1)(intra)H_2O+(4$	$_2O+(2)(intra)H_2O$	$O+(2)(intra)H_2O+(i$	+(1)(intra)H ₂ O+(
Polymorphism	tra)H ₂ O)(intra)H ₂ O	+(intra)H ₂ O	ntra)H ₂ O	1)(3)(intra)H ₂ O
ΔE (eV)	0.00	0.05	0.08	0.08	0.09
	1				
	9 9	ě.	3. P 10		4
Optimized		∞ • • • • • • • • • • • • • • • • • • •			3000
Neutral	9 🔨 🚱	3 76 30 32	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
structure		300		6	3 3 30
			'		
	β-pyranose (² C ₅ -		β-pyranose (² C ₅ -		
	chair) +	open chain	chair) +	open chain	open chain
	$+(1)(3)(intra)H_2O+($	$(A)+(1)(intra)H_2O+$	$+(1)(3)(intra)H_2O$	$(A)+(1)(intra)H_2O+($	$(A)+(1)(intra)H_2$
Structural	$3)(intra)H_2O+(4)(in$	$(2)(intra)H_2O+(intr$	+(3)(4)(intra)H2O	$2)(intra)H_2O+(3)(int$	$O+(2)(intra)H_2O$
Polymorphism	tra)H ₂ O	a)H ₂ O	$+(1)H_2O$	ra)H ₂ O	$+(1)(4)H_2O$
ΔE (eV)	0.14	0.14	0.14	0.15	0.16
				3- 3	
	•				•
Optimized		79			
Neutral		• • •			9 9 36
structure			6	<u>ه م</u>	• •
			α-furanose (C ₄ -	open chain	
	open chain	α -furanose (C ₄ -	endo)	$(A)+(1)(3)(intra)H_2$	open chain
	$(C)+(1)(2)H_2O+(1)($	endo)	$+(4)(intra)H_2O+(4$	O+	$(A)+(1)(intra)H_2$
Structural	intra) $H_2O+(4)$ (intra	$+(3)(4)H_2O+(4)(6H$	$)(6)(intra)H_2O+(in$	$(3)(intra)H_2O+(intra)$	$O+(1)(intra)H_2O$
Polymorphism)H ₂ O	₂ O+(3)(6)H ₂ O	tra)H ₂ O)H ₂ O	+(intra)H ₂ O
ΔE (eV)	0.16	0.17	0.21	0.23	0.24
		-			T
		\$ 330	P	<u>.</u>	
Optimized		3 × 🚅			
Neutral			1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10	3
structure		To francisco (C			0,
	oman ahain	α -furanose (C ₄ -	onan ahain	onan ahain	β-pyranose (² C ₅ -
	open chain (B)+(1)(2)(intra)H ₂	endo) +(1)(3)(intra)H ₂ O+(open chain (A)+(1)(intra)H ₂ O	open chain (B)+(1)(intra)H2O+	chair) + +(3)(4)H ₂ O+(1)(
CA	$O+(1)(2)(1ntra)H_2$ O+(1)(intra)H ₂ O+($+(1)(3)(intra)H_2O+(intra)(3)(4)(intra)H_2O+(intra)(3)(4)(intra)(4)(4)(intra)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)$	$+(2)(intra)H_2O+(5)$	(B)+(1)(Intra)H2O+ (2)(intra)H ₂ O+(intra	+(3)(4)H2O+(1)(3)H2O+(4)(5)H2
Structural Polymorphism	3)(intra) $H_2O+($	tra)H ₂ O+(III	$+(2)(IIIIa)H_2O+(3)$ $)(6)H_2O$	$(2)(\text{intra})H_2O+(\text{intra})H_2O$	0
$\Delta E (eV)$	0.26	0.26	0.29	0.30	0.30
<u> </u>	0.20	0.20	0.27	0.50	0.50
	2	•		<u> </u>	
	***************************************		🕶 👵 🤏 🍎	.	
Optimized				2 1 1 1 5 T	
Neutral	1	9	3	3 39 39	
structure	open chain	· [6]	open chain	open chain	
	open chain $(B)+(1)(2)H_2O+(1)($	α-furanose (C ₄ -	open chain $(A)+(1)(2)H_2O+(1)$	open chain $(A)+(4)(6)(intra)H_2$	β-pyranose (² C ₅ -
Structural	$(B)+(1)(2)H_2O+(1)(1)$ intra)H ₂ O+(3)(intra	endo)	$(A)+(1)(2)H_2O+(1)$ $)(3)H_2O+(4)(5)(6)$	$O+(4)(intra)H_2O+(i$	chair) +
Polymorphism)H ₂ O	$+(1)(3)(intra)H_2O+($	H_2O	$0+(4)(IIIIa)H_2O+(IIIIa)H_2O$	$+(1)(2)(3)H_2O+($
1 orymorphism	<i>)</i> 112O	- (1)(5)(IIIIa)H2O+(1120	111111111111111111111111111111111111111	+(1)(2)(3)112O+(

		3)(6)(intra)H ₂ O+(in			1)(3)H ₂ O+(4)(5)
ΔE (eV)	0.31	tra)H ₂ O 0.32	0.34	0.35	H ₂ O 0.35
, ,	1		T		
Optimized Neutral structure					
Structural Polymorphism	open chain (B)+(1)(intra)H ₂ O+ (2)(intra)H ₂ O+(1)(3)H ₂ O 0.37	β-pyranose (² C ₅ -chair) + +(3)(4)H ₂ O+(1)(3) H ₂ O+(1)(2)(3)H ₂ O 0.37	β-pyranose (² C ₅ - chair) + +(1)(intra)H ₂ O+(3)(intra)H ₂ O+(4)(5) H ₂ O 0.39	open chain (C)+(1)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) H ₂ O 0.39	α-furanose (C ₄ - endo) +(1)(2)(intra)H ₂ O +(1)(3)(intra)H ₂ O +(3)(intra)H ₂ O 0.39
ΔE (eV)	0.57	0.57	0.39	0.39	0.39
Optimized Neutral structure					
Structural Polymorphism	open chain (C)+(1)(intra)H ₂ O+ (2)(intra)H ₂ O+(1)(3)H ₂ O	open chain (A)+(1)(2)(intra)H ₂ O+(1)(3)(intra)H ₂ O +(intra)H ₂ O	β-pyranose (² C ₅ - chair) + +(3)(4)H ₂ O+(4)(in tra)H ₂ O+(5)(intra) H ₂ O	β-pyranose (² C ₅ - chair) + +(4)(5)(intra)H ₂ O+(1)(3)H ₂ O+(intra)H ₂ O	open chain (B)+(1)(intra)H ₂ O+(2)(intra)H ₂ O +(5)(6)H ₂ O
ΔE (eV)	0.40	0.42	0.42	0.42	0.42
Optimized Neutral structure			?		
Structural Polymorphism ΔE (eV)	open chain (A)+(5)(6)H ₂ O+(6) (intra)H ₂ O+(2)(intr a)H ₂ O 0.45	open chain (A)+(1)(2)H ₂ O+(1)(3)H ₂ O+(4)(5)H ₂ O 0.45	α-furanose (C ₄ - endo) +(1)(2)H ₂ O+(1)(3) H ₂ O+(3)(4)H ₂ O 0.46	open chain (C)+(1)(intra)H ₂ O+(2)(intra)H ₂ O+(5)(6) H ₂ O 0.47	open chain (B)+(1)(2)H ₂ O+(1)(3)H ₂ O+(5)(6) H ₂ O 0.47
Optimized Neutral structure					
Structural Polymorphism ΔE (eV)	open chain (B)+(1)(2)H ₂ O+(5)(6)(intra)H ₂ O+(5)(6) (intra)H ₂ O 0.47	open chain (B)+(1)(intra)H ₂ O+ (2)(intra)H ₂ O+(1)(i ntra)H ₂ O 0.53	open chain (A)+(5)(6)(intra)H ₂ O+(5)(intra)H ₂ O +(3)H ₂ O 0.57	open chain (A)+(5)(6)(intra)H ₂ O+(4)(6)(intra)H ₂ O +(2)(intra)H ₂ O 0.58	open chain (A)+(4)(6)H ₂ O+(3)H ₂ O+(intra)H ₂ O 0.60
Optimized Neutral structure					

		open chain	open chain	
	open chain	$(A)+(1)(2)(intra)H_2$	$(C)+(1)(2)H_2O+(5)$	
Structural	$(C)+(1)(2)H_2O+(4)$	$O+(intra)H_2O+(4)(5)$)(6)H2O+(intra)H2	
Polymorphism	$H_2O+(5)H_2O$)H ₂ O	0	
ΔE (eV)	0.61	0.61	0.66	

Figure S13 Optimized geometries of the typical low lying neutral isomers of (fructose+ $(H_2O)_3$) based on B3LYP/6-31++G(d) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose⁻ parent anions. For open chain structures (1)C to (6)C is ordered from left to right. For both furanose and pyranose structures (1)C to (6)C is ordered from right to left in a clockwise direction.

	1		T		T
			34	و 🔞 🐧 م	2 • ° 0
0	•				
Optimized Neutral		9 0	300	<u>♦</u> • • • • • • • • • • • • • • • • • • •	300
structure	9 c 2 c 6	<u>•</u>			9
5414404410	β-pyranose (² C ₅ -	β-pyranose (² C ₅ -			
	chair) +	chair) +	open chain (C) +	open chain (A) +	open chain (A) +
	$(1)(3)(intra)H_2O +$	$(1)(3)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$
	$(3)(intra)H_2O +$	$(3)(4)H_2O +$	$(2)(intra)H_2O +$	$(3)(intra)H_2O +$	$(3)(intra)H_2O +$
Structural	(intra)H ₂ O +	$(4)(intra)H_2O +$	$(4)(intra)H_2O +$	$(3)(intra)H_2O +$	$(3)(intra)H_2O +$
Polymorphism	$(1)(2)(intra)H_2O$	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O
ΔE (eV)	0.00	0.14	0.19	0.25	0.25
	T		T		
	• *				₃ 🍠 💣
			•	△ ~ △	
Optimized		3 6 6			
Neutral		3		90.30	
structure		<u> </u>	<u> </u>		
	β-pyranose (² C ₅ -			β-pyranose (² C ₅ -	α-furanose (C ₄ -
	chair) +	open chain (C) +	open chain (A) +	chair) +	endo) +
	$(1)(intra)H_2O +$	$(1)(4)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(2)(3)(intra)H_2O$	$(3)(4)H_2O +$
	$(3)(4)(intra)H_2O +$	$(2)(intra)H_2O +$	$(2)(intra)H_2O +$	$+ (1)(3)(intra)H_2O +$	$(4)(intra)H_2O +$
Structural	(4)(intra)H ₂ O + (intra)H ₂ O	$(intra)H_2O +$	(3)(intra)H ₂ O + (intra)H ₂ O	(intra)H ₂ O + (intra)H ₂ O	(6)(intra)H ₂ O + (intra)(intra)H ₂ O
Polymorphism ΔE (eV)	0.26	(1)(3)H ₂ O 0.27	0.31	0.31	0.32
ΔΕ (ΕΥ)	0.20	0.27	0.31	0.31	0.32
			₹		
	A 4 19 1				
Optimized					
Neutral					
structure	> 6	9 3 2	5 5	3 2	95 6 565
	β-pyranose (² C ₅ -	β-pyranose (² C ₅ -		α-furanose (C ₄ -	
	chair) +	chair) +	open chain (C) +	endo) +	open chain (A) +
	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(4)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(2)(intra)H_2O$
	$(2)(3)(intra)H_2O +$	$(1)(3)(intra)H_2O +$	$(2)(intra)H_2O +$	$(2)(intra)H_2O +$	$+(1)(intra)H_2O +$
Structural	$(1)(3)(intra)H_2O +$	$(2)(intra)H_2O +$	(intra)H ₂ O +	$(3)(intra)H_2O +$	$(3)(intra)H_2O +$
Polymorphism	$(4)(5)H_2O$	$(3)(4)(intra)H_2O$	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O
ΔE (eV)	0.36	0.37	0.39	0.40	0.42
			<u> </u>	•	
		• • • • • • • • • • • • • • • • • • •			
			6		9 9 7
Optimized		3			9
Neutral				3 € 3 €	9 6 3 3
structure	1 2 2	I		-	** 9 • 9
				α-furanose (C ₄ -	β-pyranose (² C ₅ -
	open chain (A) +	open chain (A) +	open chain (A) +	endo) +	chair) +
	$(1)(intra)H_2O +$	$(3)(6)H_2O +$	$(1)(intra)H_2O +$	$(3)(intra)H_2O +$	$(1)(2)H_2O +$
	$(1)H_2O +$	$(4)(5)H_2O +$	$(1)(intra)H_2O +$	$(3)(intra)H_2O +$	$(1)(intra)H_2O +$
Structural	$(2)(intra)H_2O +$	$(4)(intra)H_2O +$	$(2)(intra)H_2O +$	$(4)(intra)H_2O +$	$(4)(intra)H_2O +$
Polymorphism	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O	$(3)(4)H_2O$
$\Delta E (eV)$	0.42	0.42	0.42	0.43	0.43
i					

	1		<u> </u>		
Optimized Neutral structure		<u> </u>			
	α-furanose (C ₄ -				
	endo) +	open chain (A) +	open chain (A) +	open chain (A) +	open chain (A) +
	$(3)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(2)(intra)H_2O$
	$(4)(6)(intra)H_2O +$	$(2)(intra)H_2O +$	$(2)(intra)H_2O +$	$(2)(intra)H_2O +$	$+(1)(intra)H_2O +$
Structural	$(6)(intra)H_2O +$	(intra)H ₂ O +	(intra)H ₂ O +	(intra)H ₂ O +	$(3)(intra)H_2O +$
Polymorphism	(intra)H ₂ O	$(5)(6)H_2O$	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O
ΔE (eV)	0.44	0.44	0.45	0.46	0.48
	1				
Optimized Neutral structure					
	open chain (A) +	open chain (B) +	open chain (C) +	open chain (A) +	open chain (A) +
	$(1)(2)(intra)H_2O +$	$(1)(2)(intra)H_2O +$	$(1)(2)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$
	$(1)(intra)H_2O +$	$(3)(intra)H_2O +$	$(3)(intra)H_2O +$	$(2)(4)(intra)H_2O +$	$(2)(intra)H_2O +$
Structural	$(3)(intra)H_2O +$	$(1)(3)(intra)H_2O +$	$(1)(3)(intra)H_2O +$	$(1)(5)(intra)H_2O +$	$(1)(3)H_2O +$
Polymorphism	$(5)(6)H_2O$	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O	$(5)(6)H_2O$
ΔE (eV)	0.49	0.49	0.50	0.51	0.53
Optimized Neutral structure					
				β-pyranose (² C ₅ -	
	open chain (A) +	open chain (B) +	open chain (A) +	chair) +	open chain (B) +
	$(1)(3)(intra)H_2O +$	$(1)(2)(intra)H_2O +$	$(3)(5)H_2O +$	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$
	$(3)(intra)H_2O +$	$(1)(intra)H_2O +$	$(4)(6)(intra)H_2O +$	$(2)(3)(intra)H_2O +$	$(2)(intra)H_2O +$
Structural	$(intra)H_2O +$	$(3)(intra)H_2O + (5)(6)H_2O$	(intra)H ₂ O +	$(1)(3)H_2O +$	$(intra)H_2O +$
Polymorphism	(5)(6)H ₂ O	(5)(6)H ₂ O	(intra)H ₂ O	(2)(intra)H ₂ O	(5)(6)H ₂ O
ΔE (eV)	0.54	0.54	0.56	0.56	0.57
	<u> </u>		1		2
Optimized Neutral structure					
	open chain (A) +	open chain (B) +	open chain (A) +		open chain (A) +
	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(2)(intra)H_2O +$	open chain (A) +	$(1)(intra)H_2O +$
	(intra)H ₂ O +	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	$(4)(6)(intra)H_2O$
Structural	$(4)(6)(intra)H_2O +$	$(2)(intra)H_2O +$	$(3)(intra)H_2O +$	$(2)(intra)H_2O +$	+ (intra)H ₂ O +
Polymorphism	$(5)(6)H_2O$	(intra)H ₂ O	(intra)H ₂ O	$(3)H_2O + (5)(6)H_2O$	(intra)H ₂ O
ΔE (eV)	0.57	0.58	0.59	0.61	0.63

	Г				
Optimized Neutral structure					
Structural Polymorphism ΔE (eV)	β-pyranose (² C ₅ - chair) + (1)(2)H ₂ O + (1)(3)H ₂ O + (3)(4)H ₂ O + (4)(5)H ₂ O 0.64	α-furanose (C ₄ - endo) + (1)(3)(intra)H ₂ O + (3)(6)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O 0.65	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(6)H ₂ O + (4)(5)(6)H ₂ O 0.65	open chain (A) + (3)H ₂ O + (5)(6)H ₂ O + (intra)H ₂ O + (5)(intra)H ₂ O 0.65	open chain (A) + (1)(intra)H ₂ O + (1)(intra)H ₂ O + (4)(5)H ₂ O + (intra)H ₂ O 0.66
Optimized Neutral structure					
Structural Polymorphism ΔE (eV)	α-furanose (C ₄ - endo) + (1)(3)H ₂ O + (3)(6)(intra)H ₂ O + (intra)H ₂ O + (4)(6)H ₂ O 0.67	open chain (A) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (4)(5)(6)H ₂ O + (intra)H ₂ O 0.67	open chain (A) + (1)(2)H ₂ O + (1)(3)(intra)H ₂ O + (4)(5)(intra)H ₂ O + (5)(intra)H ₂ O 0.70	open chain (C) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (5)(intra)H ₂ O + (6)(intra)H ₂ O	open chain (A) + (1)(2)H ₂ O + (1)(3)H ₂ O + (4)(5)(intra)H ₂ O + (6)(intra)H ₂ O 0.72
Optimized Neutral structure					
Structural Polymorphism ΔE (eV)	open chain (A) + (1)(2)(intra)H ₂ O + (1)(intra)H ₂ O + (5)(6)H ₂ O + (intra)H ₂ O 0.72	α-furanose (C ₄ - endo) + (1)(2)(intra)H ₂ O + (2)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (3)(4)H ₂ O 0.72	open chain (A) + (1)(2)(intra)H ₂ O + (1)(3)(intra)H ₂ O + (intra)H ₂ O + (5)(6)H ₂ O 0.73	open chain (B) + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O + (intra)H ₂ O 0.73	open chain (A) + (1)(2)(intra)H ₂ O + (intra)H ₂ O + (1)(3)H ₂ O + (4)(5)H ₂ O 0.78
Optimized Neutral structure					
Structural Polymorphism ΔE (eV)	open chain (A) + (1)(3)(intra)H ₂ O + (1)(intra)H ₂ O + (2)(intra)H ₂ O + (intra)H ₂ O 0.81	open chain (C) + (1)(2)H ₂ O + (3)(5)H ₂ O + (5)(6)(intra)H ₂ O + (4)(intra)H ₂ O 0.82	α-furanose (C ₄ - endo) + (1)(3)H ₂ O + (3)(intra)H ₂ O + (4)(intra)H ₂ O + (intra)H ₂ O 0.82	open chain (A) + (1)(2)(intra)H ₂ O + (intra)H ₂ O + (4)(5)(intra)H ₂ O + (6)(intra)H ₂ O 0.88	open chain (C) + (1)(2)(intra)H ₂ O + (intra)H ₂ O + (3)(5)H ₂ O + (4)H ₂ O 0.95

Figure S14 Optimized geometries of the typical low lying neutral isomers of (fructose+ $(H_2O)_4$) based on B3LYP/6-31++G(d) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose⁻ parent anions. For open chain structures (1)C to (6)C

is ordered from left to right.	. For both furanose a	nd pyranose structure	s (1)C to (6)C is ordere	d from right to left in a
clockwise direction.				

	T				
Optimized Neutral structure					
	β-pyranose (² C ₅ -				
	chair) +	β-pyranose (² C ₅ -	β-pyranose (² C ₅ -	α-furanose (C ₄ -	β-pyranose (² C ₅ -
	$(1)(3)(intra)H_2O +$	chair) +	chair) +	endo) +	chair) +
	$(intra)H_2O +$	$(1)(2)(intra)H_2O +$	$(1)(3)(intra)H_2O +$	$(4)(intra)H_2O +$	$(1)(intra)H_2O +$
	$(intra)H_2O +$ $(intra)H_2O +$	$(3)(intra)H_2O +$	$(1)(3)(11114)H_2O + (1)(11114)H_2O + (1)(11114)H_2O + (1)(1114)H_2O + (1)(114)H_2O + (1)(114)H$	$(4)(intra)H_2O + (4)(intra)H_2O +$	$(1)(intra)H_2O + (1)(intra)H_2O +$
		` ' ` '	` / ` /	, , , ,	` ' ' '
	$(1)(2)(intra)H_2O +$	$(1)(3)(intra)H_2O +$	$(3)(intra)H_2O +$	$(6)(intra)H_2O +$	$(3)(intra)H_2O +$
Structural	$(3)(4)H_2O$	(intra)H ₂ O +	(intra)H ₂ O +	$(3)(6)(intra)H_2O +$	(intra)H ₂ O +
Polymorphism		(4)(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O	$(3)(4)H_2O$
ΔE (eV)	0.00	0.02	0.02	0.05	0.09
	T		T		Γ
Optimized Neutral structure					
	α-furanose (C ₄ -				
	endo) +	pyranose (² C ₅ -	open chain (C) +	open chain (A) +	open chain (A) +
	$(3)(intra)H_2O +$	chair) + $(1)(2)$ H ₂ O	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(3)(intra)H_2O$
	$(4)(intra)H_2O +$	$+ (1)(intra)H_2O +$	$(2)(intra)H_2O +$	$(3)(intra)H_2O +$	$+ (1)(intra)H_2O +$
	$(6)(intra)H_2O +$	$(4)(intra)H_2O +$	$(4)(intra)H_2O +$	$(intra)H_2O +$	$(4)(intra)H_2O +$
Structural	$(intra)H_2O +$	$(3)(4)H_2O +$	$(intra)H_2O +$	$(intra)H_2O + (intra)H_2O +$	$(5)(intra)H_2O +$
				, ,	
Polymorphism	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O
ΔE (eV)	0.10	0.10	0.11	0.12	0.12
	1		_		
Optimized Neutral structure					
			β-pyranose (² C ₅ -		α-furanose (C ₄ -
	open chain (A) +	open chain (A) +	chair) +	open chain (A) +	endo) +
	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	$(2)(3)(intra)H_2O +$	$(1)(2)(intra)H_2O +$	$(3)(intra)H_2O +$
	$(4)(intra)H_2O +$	$(2)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(4)(intra)H_2O +$	$(3)(intra)H_2O +$
	(intra)H ₂ O +	$(3)(intra)H_2O +$	$(3)(4)(intra)H_2O +$	$(intra)H_2O +$	$(4)(intra)H_2O +$
Structural	$(intra)H_2O +$	$(intra)H_2O +$	$(4)(intra)H_2O +$	$(intra)H_2O +$	$(6)(intra)H_2O +$
Polymorphism	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O	$(intra)H_2O$	(intra)H ₂ O
$\Delta E \text{ (eV)}$	0.14	0.15	0.19	0.20	0.23
ΔΕ (ΕΥ)	0.14	0.13	0.17	0.20	0.23
				40 2	
Optimized Neutral structure					
	β-pyranose (² C ₅ -				
	chair) +	open chain (C) +	open chain (A) +	open chain (C) +	open chain (A) +
	$(1)(3)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(4)(intra)H_2O +$	$(1)(intra)H_2O +$
	$(1)(intra)H_2O +$	$(2)(intra)H_2O +$	$(1)(2)(intra)H_2O +$	$(2)(intra)H_2O +$	$(2)(intra)H_2O +$
1			, , , , = , , , , , , , , , , , , , , ,	(=)(u,ı.12O	(2)(11111111111111111111111111111111111
				$(intra)H_2O +$	(intra)H₂O +
Stemature 1	$(2)(3)(intra)H_2O +$	$(3)H_2O +$	$(3)(intra)H_2O +$	$(intra)H_2O + (intra)H_2O +$	(intra)H ₂ O + (intra)H ₂ O +
Structural Polymorphism				$(intra)H_2O + (intra)H_2O + (1)(3)H_2O$	$(intra)H_2O + (intra)H_2O + (intra)H_2O$

ΔE (eV)	0.23	0.23	0.26	0.26	0.26
	<u>.</u>				
		3. a.			
Optimized					
Neutral structure					
Structure		α-furanose (C ₄ -	α-furanose (C ₄ -		
	open chain (C) +	endo) +	endo) +	open chain (A) +	open chain (B) +
	$(1)(4)(intra)H_2O + (1)(3)(intra)H_2O$	$(1)(3)(intra)H_2O + (3)(intra)H_2O +$	$(3)(intra)H_2O + (4)(intra)H_2O +$	$(1)(intra)H_2O + (1)(intra)H_2O +$	(1)(intra)H ₂ O + (2)(intra)H ₂ O +
	$+(2)(intra)H_2O +$	$(3)(6)(intra)H_2O +$	$(6)(intra)H_2O +$	(2)(intra)H2O +	$(1)(3)(intra)H_2O$
Structural	$(3)(intra)H_2O +$	$(6)(intra)H_2O +$	$(6)(intra)H_2O +$	(intra)H ₂ O +	$+(3)(intra)H_2O +$
Polymorphism	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O
ΔE (eV)	0.27	0.27	0.29	0.31	0.33
			2	3 P. 3	Part of
		7 0 3			
Optimized Neutral				1 1 1 1 1 1 1 1 1 1	3 3 3 3
structure		3 7 300	10 (a)	•	*
	α-furanose (C ₄ -		α-furanose (C ₄ -	β-pyranose (² C ₅ -	
	endo) +	open chain (A) +	endo) +	chair) +	open chain (A) +
	$(3)(intra)H_2O + (4)(intra)H_2O +$	$(1)(intra)H_2O + (1)(intra)H_2O +$	$(3)(intra)H_2O + (4)(intra)H_2O +$	$(2)(3)(intra)H_2O + (1)(intra)H_2O +$	$(1)(intra)H_2O + (2)(intra)H_2O +$
	$(4)(6)(intra)H_2O +$	(1)(IIIIa)H2O + (intra)H2O +	$(4)(\ln(a)H_2O + (6)(intra)H_2O +$	$(1)(111113)H_2O + (1)(3)(11113)H_2O +$	$(2)(\text{intra})H_2O +$ $(\text{intra})H_2O +$
Structural	$(4)(0)(Intra)H_2O +$ $(intra)H_2O +$	$(intra)H_2O +$	$(6)(intra)H_2O +$	$(3)(4)(intra)H_2O +$	$(3)(intra)H_2O +$
Polymorphism	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O	$(4)(5)H_2O$	(intra)H ₂ O
ΔE (eV)	0.33	0.34	0.34	0.35	0.37
		6.	<u>ه</u> پ		· 📸 »
Optimized			30 2 2 3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Neutral structure		The state of the s			
			β-pyranose (² C ₅ -		open chain (B) +
	open chain (A) +	open chain (A) +	chair) +	open chain (B) +	$(1)(intra)H_2O +$
	$(1)(intra)H_2O + (2)(intra)H_2O +$	$(1)(2)(intra)H_2O + (1)(intra)H_2O +$	$(2)(3)(intra)H_2O + (1)(intra)H_2O +$	$(1)(intra)H_2O + (1)(3)(intra)H_2O +$	(1)(3)(intra)H ₂ O +
	$(1)(3)(intra)H_2O +$	$(3)(intra)H_2O +$	$(1)(3)H_2O +$	$(3)(intra)H_2O +$	$(2)(3)(intra)H_2O$
Structural	$(3)(intra)H_2O +$	(intra)H ₂ O +	$(3)(4)(intra)H_2O +$	$(intra)H_2O +$	$+ (intra)H_2O +$
Polymorphism	(intra)H ₂ O	$(5)(6)H_2O$	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O
ΔE (eV)	0.37	0.39	0.40	0.40	0.40
	3.				
		5	<u>.</u>		
Optimized					I
Neutral	3				
structure	or francisco (C	open shain (A)	onen chain (A)	onen shein (A)	onen chein (A)
	α -furanose (C ₄ -endo) +	open chain (A) + $(1)(2)(intra)H_2O$ +	open chain (A) + (1)(intra)H ₂ O +	open chain (A) + (1)(intra)H ₂ O +	open chain (A) + (1)(intra)H ₂ O +
Structural	$(1)(3)(intra)H_2O +$	$(1)(2)(11112)H_2O + (1)(1112)H_2O + (1)(112)H_2O + ($	$(1)(\text{intra})H_2O + (2)(\text{intra})H_2O +$	$(1)(\ln(a)H_2O + (2)(intra)H_2O +$	$(1)(intra)H_2O + (1)(intra)H_2O +$
Polymorphism	$(3)(4)(intra)H_2O +$	$(2)(intra)H_2O +$	$(intra)H_2O +$	$(intra)H_2O +$	$(2)(intra)H_2O +$

	(4)(6)(intro)II () :	(2)(intro)[I] O +	(intro)II O	(intro)II O	(intro)II O
	$(4)(6)(intra)H_2O +$	$(3)(intra)H_2O +$	$(intra)H_2O +$	$(intra)H_2O +$	(intra)H ₂ O +
	(intra)H ₂ O + (intra)H ₂ O	(intra)H ₂ O	$(5)(6)H_2O$	$(5)(6)H_2O$	(intra)H ₂ O
ΔE (eV)	0.42	0.43	0.43	0.43	0.43
ΔΕ (ΕΥ)	0.42	0.43	0.43	0.43	0.43
			Ż		
	5.00 P	- 2		P 5.	
		Name of the last o			
Optimized					
Neutral structure	7 353	6	•	<u> </u>	
structure					open chain (B) +
	open chain (C) +	open chain (A) +	open chain (A) +	open chain (A) +	$(1)(2)(intra)H_2O$
	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	+
	$(1)(intra)H_2O +$	$(3)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(3)(intra)H_2O$
	$(2)(intra)H_2O +$	$(1)(3)(intra)H_2O +$	$(2)(intra)H_2O +$	$(2)(intra)H_2O +$	+ (3)(intra)H ₂ O +
Structural	$(3)(intra)H_2O +$	(intra)H ₂ O +	(intra)H ₂ O +	(intra)H ₂ O +	(intra)H ₂ O +
Polymorphism	(intra)H ₂ O	(intra)H ₂ O	$(3)H_2O$	(intra)H ₂ O	$(3)(6)(intra)H_2O$
ΔE (eV)	0.44	0.45	0.45	0.45	0.45
,					
		_	i i	3 4	4
	3 5 3 3	3 3 3 3 X	9 30 34 3	****	6
				300	
Optimized			3		
Neutral structure			•	6	
structure	open chain (A) +	open chain (A) +	open chain (A) +	β-pyranose (² C ₅ -	open chain (A) +
	$(1)(3)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	chair) + $(1)(3)H_2O$ +	$(1)(2)H_2O +$
	$(2)(intra)H_2O +$	$(2)(intra)H_2O +$	$(2)(intra)H_2O +$	$(3)(4)(intra)H_2O +$	$(1)(intra)H_2O +$
	$(intra)H_2O +$	$(intra)H_2O +$	$(intra)H_2O +$	$(intra)H_2O +$	$(3)(intra)H_2O +$
Structural	$(intra)H_2O +$	$(1)(3)H_2O +$	$(1)(3)H_2O +$	$(intra)H_2O +$	$(4)(5)(intra)H_2O$
Polymorphism	(intra)H ₂ O	$(5)(6)H_2O$	$(5)(6)H_2O$	$(4)(5)H_2O$	+ (6)(intra)H ₂ O
ΔE (eV)	0.46	0.47	0.47	0.48	0.52
			•		,
		<u>•</u>	7		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.			
0 4 1		→ • • •	3 3 3	<u> </u>	9 6b
Optimized Neutral		3 78 39 2	36		
structure	<u> </u>		•		
					α-furanose (C ₄ -
	open chain (C) +	open chain (A) +	open chain (C) +	open chain (C) +	endo) +
	$(1)(2)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(intra)H_2O +$	$(1)(2)(intra)H_2O +$	$(1)(intra)H_2O +$
	$((3)(intra)H_2O +$	$(2)(intra)H_2O +$	$(2)(intra)H_2O +$	$(3)(intra)H_2O +$	$(1)(intra)H_2O +$
	$(1)(3)(intra)H_2O +$	(intra)H ₂ O +	$(3)(5)(intra)H_2O +$	$(1)(3)(intra)H_2O +$	$(3)(intra)H_2O +$
Structural	(intra)H ₂ O +	$(5)(6)H_2O +$	$(6)(intra)H_2O +$	(intra)H ₂ O +	(intra)H ₂ O +
Polymorphism	(3)(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O	(intra)H ₂ O	$(4)(6)H_2O$
ΔE (eV)	0.52	0.52	0.55	0.56	0.59
	<u> </u>			T	
	• • • ·				
Optimized					
Neutral		35			
structure		• • •		% >	
Structural	open chain (B) +	open chain (A) +	α-furanose (C ₄ -	open chain (A) +	
Polymorphism	$(1)(intra)H_2O +$	$(2)(intra)H_2O +$	endo) +	$(1)(intra)H_2O +$	

	(1)(intra)H ₂ O +	$(4)(intra)H_2O +$	$(1)(intra)H_2O +$	(2)(intra)H ₂ O +	
	$(2)(intra)H_2O +$	$(4)(5)(6)(intra)H_2O$	$(1)(3)(intra)H_2O +$	$(2)(3)(intra)H_2O +$	
	(intra)H ₂ O +	$+ (6)(intra)H_2O +$	$(3)(intra)H_2O +$	$(intra)H_2O +$	
	$(1)(3)H_2O$	(intra)H ₂ O	$(6)(intra)H_2O +$	(intra)H ₂ O	
			$(4)(6)H_2O$		
ΔE (eV)	0.61	0.63	0.70	0.76	

Figure S15 Optimized geometries of the typical low lying neutral isomers of (fructose+ $(H_2O)_5$) based on B3LYP/6-31++G(d) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose⁻ parent anions. For open chain structures (1)C to (6)C is ordered from left to right. For both furanose and pyranose structures (1)C to (6)C is ordered from right to left in a clockwise direction.

	ı		l I		1
Optimized Anionic structure					
Structural Polymorphism	Open chain (A)+(1)(2)H ₂ O	Open chain (A) +(1)(2)H ₂ O	Open chain (A) +(3)H ₂ O	Open chain (A) +(2)(4)(6)H ₂ O	Open chain (B) +(1)(2)H ₂ O
$\Delta E (eV)$	0.00	0.06	0.17	0.19	0.39
VDE (eV)	2.24	2.33	2.16	2.30	1.90
(22 (61)					245 0
Optimized Anionic structure					
Structural Polymorphism	Open chain (C) +(1)(2)H ₂ O	Open chain (C) +(3)(5)H ₂ O	Open chain (C) +(5)(6)H ₂ O	β -pyranose (2 C ₅ -chair) +(1)(3)H ₂ O	Open chain (B) +(5)(6)H ₂ O
ΔE (eV)	0.42	0.48	0.48	0.53	0.61
VDE (eV)	1.82	1.70	1.77	0.20	1.70
				*	
Optimized Anionic structure			ă.		
Structural Polymorphism	β-pyranose (² C ₅ - chair) +(1)(2)(3)H ₂ O	$β$ -pyranose (2 C ₅ -chair) +(3)(4)H ₂ O	$β$ -pyranose (2 C ₅ -chair) +(4)(5)H $_2$ O	α - furanose (C ₄ - endo) +(3)(4)H ₂ O	α - furanose (C ₄ - endo) +(1)H ₂ O
ΔE (eV)	0.63	0.69	0.69	0.76	0.89
VDE (eV)	0.26	0.19	0.29	0.36	0.39
Optimized Anionic structure					
Structural	α - furanose (C ₄ -				
Polymorphism	endo) +(1)(2)H ₂ O 1.04				
ΔE (eV)					
VDE (eV)	0.10				

Figure S16 Optimized geometries of the typical low lying anionic isomers of (fructose+ H_2O) based on M062X/6-311++G(d,p) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose parent anions. For open chain structures (1)C to (6)C is ordered from left to right. For both furanose and pyranose structures (1)C to (6)C is ordered from right to left in a clockwise direction.

	1		T		
Optimized Anionic structure					
Structural	open chain (A) +(1)(2)(intra)H ₂ O+	open chain (A) $+(1)(2)H_2O+(1)(3)$	open chain (A) $+(1)(2)H_2O+(4)(5)$	open chain (A) $+(1)(intra)H_2O+(2)($	open chain (A) +(1)(2)(intra)H ₂ O
Polymorphism	(2)(intra)H ₂ O	H ₂ O	(6)H ₂ O	intra)H ₂ O	+(intra)H ₂ O
$\Delta E (eV)$	0.00	0.03	0.07	0.08	0.13
VDE (eV)	2.40	2.22	2.28	2.56	2.62
Optimized Anionic structure					
Structural Polymorphism	open chain (A) +(4)(6)H ₂ O+(2)(int ra)H ₂ O	open chain (A) +(3)H ₂ O+(4)(5)(6) H ₂ O	open chain (C) +(3)(5)H ₂ O+(4)(6) H ₂ O	open chain (C) +(1)(2)(intra)H ₂ O+(1)(2)(intra)H ₂ O	open chain (B) +(1)(2)H ₂ O+(1)(3)H ₂ O
ΔE (eV)	0.14	0.23	0.33	0.35	0.37
VDE (eV)	2.53	2.50	2.18	2.32	2.22
(3.7)					<u> </u>
Optimized Anionic structure		35			
	open chain (B)	open chain (C)	open chain (C)	open chain (B)	open chain (C)
Structural	$+(1)(2)(intra)H_2O+$	$+(1)(2)H_2O+(2)(intr$	$+(3)(5)H_2O+(1)(2)$	$+(1)(2)H_2O+(5)(6)H$	$+(1)(2)H_2O+(5)($
Polymorphism	(2)(intra)H ₂ O	$a)H_2O$	H_2O	$_{2}\mathrm{O}$	$6)H_2O$
$\Delta E (eV)$	0.37	0.40	0.41	0.43	0.46
VDE (eV)	2.18	2.16	2.04	2.31	2.17
Optimized Anionic structure		9			<u> </u>
Structural Polymorphism	open chain (C) +(1)(2)H ₂ O+(1)(3) H ₂ O	β-pyranose (² C ₅ -chair) +(1)(2)(3)H ₂ O+(1)(3)H ₂ O	β-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(3)(4) H ₂ O	open chain (B) +(1)(2)H ₂ O+(5)(6)H ₂ O	β-pyranose (² C ₅ -chair) +(1)(3)H ₂ O+(4)(5)H ₂ O
$\Delta E (eV)$	0.46	0.54	0.56	0.57	0.61
VDE (eV)	1.84	0.39	0.60	1.98	0.59
Optimized Anionic					
structure	R nyranasa (2C	a furances (C	a furances (C		
	β-pyranose (² C ₅ -	α- furanose (C ₄ -	α- furanose (C ₄ -		
	chair)	endo)	endo)		
a -	1 (1)(2)II O (')	(2)(!\TT A			1
Structural	$+(1)(3)H_2O+(intra)$	$+(3)(intra)H_2O+$	$+(1)(3)H_2O+(3)(4)$		
Polymorphism	H_2O	$(4)(intra)H_2O$	H_2O		

Figure S17 Optimized geometries of the typical low lying anionic isomers of (fructose+ $(H_2O)_2$) based on M062X/6-311++G(d,p) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose parent anions. For open chain structures (1)C to (6)C is ordered from left to right. For both furanose and pyranose structures (1)C to (6)C is ordered from right to left in a clockwise direction.

			<u> </u>	<u> </u>	
Optimized Anionic structure					
Structural Polymorphism	open chain (A) +(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O 0.00	open chain (A) +(1)(2)H ₂ O+(1)(3) H ₂ O+(intra)H ₂ O 0.03	open chain (A) +(1)(2)H ₂ O+(2)(in tra)H ₂ O+(4)(5)(6) H ₂ O 0.04	open chain (A) +(1)(2)H ₂ O+(1)(3) H ₂ O+(2)(intra)H ₂ O 0.05	open chain (A) +(4)(5)(6)H ₂ O+(4)(6)(intra)H ₂ O+(2)(intra)H ₂ O 0.08
ΔE (eV)			2.57		
VDE (eV)	2.61	2.50	2.57	2.67	2.76
Optimized Anionic structure					
Structural Polymorphism ΔE (eV)	open chain (A) +(1)(2)H ₂ O+(1)(3) H ₂ O+(4)(5)H ₂ O 0.12	open chain (A) +(1)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O	open chain (A) +(1)(intra)H ₂ O+(2)(intra)H ₂ O+(4)(5) H ₂ O 0.22	open chain (A) +(4)(6)(intra)H ₂ O+(2)(intra)H ₂ O+(1)(int ra)H ₂ O 0.23	open chain (A) +(4)(6)(intra)H ₂ O +(4)(5)(intra)H ₂ O +(intra)H ₂ O 0.25
	2.41	2.76	3.00	2.76	2.39
VDE (eV)	2,41	2.70	3.00	2.10	2.39
Optimized Anionic structure					E=-915.871697
Structural Polymorphism ΔE (eV)	open chain (C) +(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) H ₂ O 0.36	open chain (B) +(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O 0.38	open chain (C) +(1)(2)(intra)H ₂ O +(2)(intra)H ₂ O+(i ntra)H ₂ O 0.43	β-pyranose (² C ₅ - chair) +(1)(3)H ₂ O+(2)(3)(i ntra)H ₂ O+(1)(intra) H ₂ O 0.47	β-pyranose (² C ₅ - chair) +(3)(4)H ₂ O+(3)(3)(intra)H ₂ O+(1) H ₂ O 0.53
VDE (eV)	2.44	2.49	2.38	0.71	0.95
Optimized Anionic structure					
Structural Polymorphism ΔE (eV) VDE (eV)	α- furanose (C ₄ - endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(intr a)H ₂ O 0.80 1.26	α- furanose (C ₄ - endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(1)(2)H ₂ O 0.84 0.85			
	1 76	11 84	Ť		İ

Figure S18 Optimized geometries of the typical low lying anionic isomers of $(fructose+(H_2O)_3)^-$ based on M062X/6-31++G(d) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose- parent anions. For open chain structures

(1)C to (6)C is ordered from left to rigleft in a clockwise direction.	ght. For both furanose a	nd pyranose structures	(1)C to (6)C is ordered	from right to

Optimized Optimized	
Anionic	
structure	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
open chain (A) open chain (A) open chain (C) open chain (A)
$+(1)(2)(intra)H_2O+($ open chain (A) $+(1)(2)(intra)H_2O$ $+(1)(2)(intra)H$	$_{2}O+(+(1)(2)(intra)H_{2}O$
$2)(3)(intra)H_2O+(1) + (1)(2)(intra)H_2O+(1) + (1)(intra)H_2O+(2) + (2)(3)(intra)H_2O+(2)$	
Structural $(3)(intra)H_2O+(intr 1)(3)H_2O+(2)(intra))(intra)H_2O+(intra (3)(intra)H_2O+(2)(intra (3)(intra)H_2O+(2)(intra)H_2O+(2)(intra (3)(intra)H_2O+(2)(intra)H_2O+(2)(intra (3)(intra)H_2O+(2)(intra)H_2O+(2)(intra (3)(intra)H_2O+(2)(intra)H_2O+(2)(intra)H_2O+(2)(intra)H_2O+(2)(intra)H_2O+(2)(intra)H_2O+(2)(intra)H_2O+(2)(intra)H_2O+(2)(intra)H_2O+(2)(intra)H_2O+(2)(intra)H_2O+(2)(intra)H_2O+(2)(intra)H_2O+(2)(intra)H_2O+(2)(intra)H_2O+(2)(intra)H_2O+(2)(intr$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \text{(max)} & \text{(a)} & \text{(b)} & \text{(b)} & \text{(c)} & \text$
$\Delta E (eV)$ 0.00 0.23 0.26 0.28	0.29
VDE (eV) 2.89 3.09 2.60 2.67	2.81
100 2101	
Optimized Optimized	
Anionic	
structure	, <u> </u>
open chain (A) open chain (B) open chain (A) open chain (A)	A) open chain (A)
$+(1)(2)(intra)H_2O+(+(1)(2)(intra)H_2O+(+(1)(2)(intra)H_2O +(1)(intra)H_2O	$+(2)(+(1)(intra)H_2O+($
$1)(3)(intra)H_2O+(in 2)(3)(intra)H_2O+(1) +(2)(intra)H_2O+(i intra)H_2O+(4)(6)$	
Structural $tra)H_2O+(4)(5)(6)H$ $(3)(intra)H_2O+(intra)H_2O+(intra)H$ $ra)H_2O+(4)(5)(6)H$	
Polymorphism 2O a)H ₂ O 2O O	H_2O
$\Delta E (eV)$ 0.32 0.32 0.37 0.40	0.40
VDE (eV) 2.68 2.67 3.07 2.85	3.07
9 9 .	
Optimized	
Anionic	200
structure	
β -pyranose (${}^{2}C_{5}$ - β -pyranose (2	-
open chain (C) chair) chair)	endo)
open chain (A) $+(1)(2)(intra)H_2O+(+(3)(4)H_2O+(2)(3) +(1)(3)(intra)H_2O+(4)(3) +(1)(3)(intra)H_2O+(4)(3)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)$	$I_2O+(+(3)(intra)H_2O+$
$+(1)(2)(intra)H_2O+(2)(intra)H_2O+(3)(5)$ (intra) $H_2O+(1)(3)(2)(3)(intra)H_2O$	$O+(1)$ (4)(intra) $H_2O+(6)$
Structural 2)(intra) $H_2O+(4)(5)$ (intra) $H_2O+(6)$ (intr intra) $H_2O+(1)$ (intr (intra) H_2O+ (intra)	tra)H (intra)H ₂ O+(intra
Polymorphism $(6)H_2O+(intra)H_2O$ $a)H_2O$ $a)H_2O$ $2O$	$)\mathrm{H}_{2}\mathrm{O}$
$\Delta E (eV)$ 0.47 0.54 0.77 0.82	1.00
VDE (eV) 2.71 2.59 1.12 0.73	1.10
	·
Optimized	
Anionic	
structure	
α- furanose (C ₄ -	
endo)	
+(3)(intra)H ₂ O+	
$(4)(intra)H_2O+(6)(i$	
Structural ntra)H ₂ O+(intra)H ₂	
Polymorphism O	
Polymorphism O $\Delta E (eV)$ 1.05	

Figure S19 Optimized geometries of the typical low lying anionic isomers of $(fructose+(H_2O)_4)^-$ based on M062X/6-31++G(d) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose⁻ parent anions. For open chain structures (1)C to (6)C is ordered from left to right. For both furanose and pyranose structures (1)C to (6)C is ordered from right to left in a clockwise direction.

	7	P			
Optimized			🍻 🔅 😘		
Anionic	33 33				
structure		11. (1)			
	aman ahain (A)	open chain (A)	open chain (A)	aman ahain (A)	open chain (A)
	open chain (A) +(1)(2)(intra)H ₂ O+(+(1)(2)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1)	+(1)(2)(intra)H ₂ O +(2)(3)(intra)H ₂ O	open chain (A) $+(1)(2)(intra)H_2O+($	+(1)(2)(intra)H ₂ O +(2)(3)(intra)H ₂ O
	$+(1)(2)(\ln(a)H_2O+(3)(in + (1)(2)(in + (1$	$(3)(intra)H_2O$	$+(2)(3)(intra)H_2O$ +(1)(3)(intra)H ₂ O	$2)(3)(intra)H_2O+(1)$	$+(2)(3)(intra)H_2O$ +(1)(3)(intra)H ₂ O
Structural	$tra)H_2O+(intra)H_2O$	$+(intra)H_2O+(4)(5)($	$+(intra)H_2O+(2)H$	$(3)(intra)H_2O+(intra)$	$+(intra)H_2O+(intra)H_2O$
Polymorphism	+(intra)H ₂ O	6)H ₂ O	2O)H ₂ O+(3)(intra)H ₂ O	$a)H_2O$
ΔE (eV)	0.00	0.06	0.08	0.09	0.14
VDE (eV)	3.16	3.13	3.20	3.14	3.12
		.			
			6	7 • • • • • •	30 ²⁰ 34 0
Optimized	900				3 3 3 3 3
Anionic			3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		- 33 - 33 - 4
structure		0 1	• • • • • • • • • • • • • • • • • • • •		aman ahain (A)
	open chain (C)	open chain (A)	open chain (A)	open chain (B)	open chain (A) +(1)(intra)H ₂ O+(
	$+(1)(2)(intra)H_2O+($	$+(1)(2)(intra)H_2O+($	$+(1)(2)(intra)H_2O$	+(1)(2)(intra)H2O+($+(1)(IIIIa)H_2O+(4)($ 2)(intra) $H_2O+(4)($
	$(1)(2)(\text{intra})H_2O+(1)$ 2)(3)(intra)H ₂ O+(1)	1)(intra) $H_2O+(2)$ (in	$+(1)(2)(intra)H_2O+(2)$	$2)(3)(intra)H_2O+(1)$	6)(intra) $H_2O+(4)$ (
Structural	$(3)(intra)H_2O+(intra)$	$tra)H_2O+(intra)H_2O$)(intra)H ₂ O+(intra	$(3)(intra)H_2O+(intra)$	5)(6)(intra)H ₂ O+(
Polymorphism	a)H ₂ O+(intra)H ₂ O	$+(1)(3)H_2O$)H ₂ O+(intra)H ₂ O)H ₂ O+(intra)H ₂ O	intra)H ₂ O
ΔE (eV)	0.29	0.32	0.39	0.44	0.47
VDE (eV)	2.77	3.08	2.64	2.89	3.09
					Α
	<u> </u>	P. .			
	<u>"</u>			, • •••	
Optimized				4 <u>9</u> 9	
Optimized Anionic					
*					
Anionic		open chain (C)	β-pyranose (² C ₅ -	β-pyranose (² C ₅ -	α- furanose (C ₄ -
Anionic	open chain (A)	$+(1)(2)(intra)H_2O+($	chair)	chair)	endo)
Anionic	$+(1)(2)(intra)H_2O+($	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5)	chair) +(3)(4)H ₂ O+(2)(3)	chair) +(1)(3)(intra)H ₂ O+(endo) +(3)(intra)H ₂ O+
Anionic structure	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1)	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6)
Anionic	$+(1)(2)(intra)H_2O+($	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5)	chair) +(3)(4)H ₂ O+(2)(3)	chair) +(1)(3)(intra)H ₂ O+(endo) +(3)(intra)H ₂ O+
Anionic structure	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O+(4)(5)(6)H ₂ O	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr a)H ₂ O+(1)(intra)H ₂	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(intra)H ₂ O+(1)(intr	chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1) (intra)H ₂ O+(intra)H	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6) (intra)H ₂ O+(intra
Anionic structure Structural Polymorphism	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O+(4)(5)(6)H ₂ O +(intra)H ₂ O	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr a)H ₂ O+(1)(intra)H ₂ O	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(intra)H ₂ O+(1)(intr a)H ₂ O+(intra)H ₂ O	chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1) (intra)H ₂ O+(intra)H ₂ O+(3)(intra)H ₂ O	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6) (intra)H ₂ O+(intra)H ₂ O+(intra)H ₂ O
Anionic structure Structural Polymorphism ΔE (eV)	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O+(4)(5)(6)H ₂ O +(intra)H ₂ O 0.48	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr a)H ₂ O+(1)(intra)H ₂ O 0.64	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(intra)H ₂ O+(1)(intr a)H ₂ O+(intra)H ₂ O 0.83	chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1) (intra)H ₂ O+(intra)H ₂ O+(3)(intra)H ₂ O 0.91	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6) (intra)H ₂ O+(intra)H ₂ O+(intra)H ₂ O
Anionic structure Structural Polymorphism ΔE (eV)	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O+(4)(5)(6)H ₂ O +(intra)H ₂ O 0.48	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr a)H ₂ O+(1)(intra)H ₂ O 0.64	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(intra)H ₂ O+(1)(intr a)H ₂ O+(intra)H ₂ O 0.83	chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1) (intra)H ₂ O+(intra)H ₂ O+(3)(intra)H ₂ O 0.91	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6) (intra)H ₂ O+(intra)H ₂ O+(intra)H ₂ O
Anionic structure Structural Polymorphism ΔE (eV) VDE (eV)	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O+(4)(5)(6)H ₂ O +(intra)H ₂ O 0.48	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr a)H ₂ O+(1)(intra)H ₂ O 0.64	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(intra)H ₂ O+(1)(intr a)H ₂ O+(intra)H ₂ O 0.83	chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1) (intra)H ₂ O+(intra)H ₂ O+(3)(intra)H ₂ O 0.91	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6) (intra)H ₂ O+(intra)H ₂ O+(intra)H ₂ O
Anionic structure Structural Polymorphism ΔE (eV) VDE (eV) Optimized	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O+(4)(5)(6)H ₂ O +(intra)H ₂ O 0.48	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr a)H ₂ O+(1)(intra)H ₂ O 0.64	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(intra)H ₂ O+(1)(intr a)H ₂ O+(intra)H ₂ O 0.83	chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1) (intra)H ₂ O+(intra)H ₂ O+(3)(intra)H ₂ O 0.91	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6) (intra)H ₂ O+(intra)H ₂ O+(intra)H ₂ O
Anionic structure Structural Polymorphism ΔE (eV) VDE (eV) Optimized Anionic	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O+(4)(5)(6)H ₂ O +(intra)H ₂ O 0.48	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr a)H ₂ O+(1)(intra)H ₂ O 0.64	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(intra)H ₂ O+(1)(intr a)H ₂ O+(intra)H ₂ O 0.83	chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1) (intra)H ₂ O+(intra)H ₂ O+(3)(intra)H ₂ O 0.91	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6) (intra)H ₂ O+(intra)H ₂ O+(intra)H ₂ O
Anionic structure Structural Polymorphism ΔE (eV) VDE (eV) Optimized	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O+(4)(5)(6)H ₂ O +(intra)H ₂ O 0.48 2.95	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr a)H ₂ O+(1)(intra)H ₂ O 0.64	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(intra)H ₂ O+(1)(intr a)H ₂ O+(intra)H ₂ O 0.83	chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1) (intra)H ₂ O+(intra)H ₂ O+(3)(intra)H ₂ O 0.91	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6) (intra)H ₂ O+(intra)H ₂ O+(intra)H ₂ O
Anionic structure Structural Polymorphism ΔE (eV) VDE (eV) Optimized Anionic	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O+(4)(5)(6)H ₂ O +(intra)H ₂ O 0.48 2.95 α- furanose (C ₄ -	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr a)H ₂ O+(1)(intra)H ₂ O 0.64	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(intra)H ₂ O+(1)(intr a)H ₂ O+(intra)H ₂ O 0.83	chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1) (intra)H ₂ O+(intra)H ₂ O+(3)(intra)H ₂ O 0.91	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6) (intra)H ₂ O+(intra)H ₂ O+(intra)H ₂ O
Anionic structure Structural Polymorphism ΔE (eV) VDE (eV) Optimized Anionic	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O+(4)(5)(6)H ₂ O +(intra)H ₂ O 0.48 2.95	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr a)H ₂ O+(1)(intra)H ₂ O 0.64	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(intra)H ₂ O+(1)(intr a)H ₂ O+(intra)H ₂ O 0.83	chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1) (intra)H ₂ O+(intra)H ₂ O+(3)(intra)H ₂ O 0.91	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6) (intra)H ₂ O+(intra)H ₂ O+(intra)H ₂ O
Anionic structure Structural Polymorphism ΔE (eV) VDE (eV) Optimized Anionic	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O+(4)(5)(6)H ₂ O +(intra)H ₂ O 0.48 2.95 α- furanose (C ₄ - endo)	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr a)H ₂ O+(1)(intra)H ₂ O 0.64	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(intra)H ₂ O+(1)(intr a)H ₂ O+(intra)H ₂ O 0.83	chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1) (intra)H ₂ O+(intra)H ₂ O+(3)(intra)H ₂ O 0.91	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6) (intra)H ₂ O+(intra)H ₂ O+(intra)H ₂ O
Anionic structure Structural Polymorphism ΔE (eV) VDE (eV) Optimized Anionic	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra))H ₂ O+(4)(5)(6)H ₂ O +(intra)H ₂ O 0.48 2.95 α- furanose (C ₄ - endo) +(3)(intra)H ₂ O+	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr a)H ₂ O+(1)(intra)H ₂ O 0.64	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(intra)H ₂ O+(1)(intr a)H ₂ O+(intra)H ₂ O 0.83	chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1) (intra)H ₂ O+(intra)H ₂ O+(3)(intra)H ₂ O 0.91	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6) (intra)H ₂ O+(intra)H ₂ O+(intra)H ₂ O
Structural Polymorphism ΔΕ (eV) VDE (eV) Optimized Anionic structure Structural Polymorphism	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O+(4)(5)(6)H ₂ O +(intra)H ₂ O 0.48 2.95 α- furanose (C ₄ - endo) +(3)(intra)H ₂ O+(6)(i ntra)H ₂ O+(intra)H ₂ O	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr a)H ₂ O+(1)(intra)H ₂ O 0.64	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(intra)H ₂ O+(1)(intr a)H ₂ O+(intra)H ₂ O 0.83	chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1) (intra)H ₂ O+(intra)H ₂ O+(3)(intra)H ₂ O 0.91	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6) (intra)H ₂ O+(intra)H ₂ O+(intra)H ₂ O
Structural Polymorphism ΔE (eV) VDE (eV) Optimized Anionic structure	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(intra)H ₂ O+(4)(5)(6)H ₂ O +(intra)H ₂ O 0.48 2.95 α- furanose (C ₄ - endo) +(3)(intra)H ₂ O+(6)(i ntra)H ₂ O+(intra)H	+(1)(2)(intra)H ₂ O+(2)(intra)H ₂ O+(3)(5) (intra)H ₂ O+(6)(intr a)H ₂ O+(1)(intra)H ₂ O 0.64	chair) +(3)(4)H ₂ O+(2)(3) (intra)H ₂ O+(1)(3)(intra)H ₂ O+(1)(intr a)H ₂ O+(intra)H ₂ O 0.83	chair) +(1)(3)(intra)H ₂ O+(2)(3)(intra)H ₂ O+(1) (intra)H ₂ O+(intra)H ₂ O+(3)(intra)H ₂ O 0.91	endo) +(3)(intra)H ₂ O+ (4)(intra)H ₂ O+(6) (intra)H ₂ O+(intra)H ₂ O+(intra)H ₂ O

Figure S20 Optimized geometries of the typical low lying anionic isomers of (fructose+ $(H_2O)_4$) based on M062X/6-31++G(d) calculations. The relative energies and structural polymorphs are indicated. The blue squares indicate addition of H_2O units at the marked position. The C ordering is the same as that of fructose parent anions. For open chain structures (1)C to (6)C is ordered from left to right. For both furanose and pyranose structures (1)C to (6)C is ordered from right to left in a clockwise direction.

Table S1 Solubility comparisons of different monosaccharides.

	pentoses		hexoses		
Aldo-	ribose	arabinose	mannose	talose	
	100 g/L (25 °C)	834 g/L (25 °C)	2480 g/L (17 °C)	100 g/L	
Keto-	ribulose		fructose	tagatose	
	~678 g/L		3750 g/L (20 °C)	~100 g/L	

More pentose (e.g., arabinose, ribulose...) and hexose (e.g., mannose, talose, tagatose...) aldo/keto-monosaccharides will be explored both experimentally and theoretically to compare comprehensively and systematically these uncovered behavioral differences. A few examples of such monosaccharide water cluster/solubility comparisons can be suggested that can help characterize the various monosaccharides: arabinose is an aldopentose, but with ~ 8 times greater solubility than that of ribose; tagatose, like fructose, is a ketohexose, however, it evidences similar solubility to that of ribose; ribulose (a ketopentose) whose solubility is greater than that of ribose; and mannose and talose (aldohexoses), which have solubilities of $\sim 2\times10^3$ g/L and ~ 100 g/L, respectively. And depending on what can be extracted from such systematic comparisons, we can anticipate a much deeper understanding of cluster vs solvation behavior. Perhaps these efforts will shed some light on the evolutionarily determined choices for various saccharides being employed for different biological applications.