Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Electronic Supplementary Information

A Synergistic Combination of Local Tight Binding Theory and Second Harmonic Generation Elucidating Surface Properties of ZnO Nanoparticles

- C. B. Nelson a, T. Zubkovb, J. D. Adairb, and M. Subirb*
- a. Department of Physics and Astronomy, St. Cloud State University, St. Cloud Minnesota 56301, United States
- b. Department of Chemistry, Ball State University, Muncie Indiana 47306, United States

Table of Content

- Calculation of surface vs. bulk number density ratio
- Calculation of the damping coefficient
- Figure S1 Theoretical un-normalized plots of $\left|P_z^{(2)}(2\omega)\right|^2$ as a function polarization angle
- Figure S2 Effect of surface relaxation on $\left|P_z^{(2)}(2\omega)\right|^2$ as a function polarization angle
- Figure S3 Plots of experimental SHG $\left|P_{\varepsilon}^{(2)}(2\omega)\right|^2$ as a function polarization angle in the presence of varying concentration of C343
- Figure S4 Plots of experimental SHG $\left|P_{\varepsilon}^{(2)}(2\omega)\right|^2$ as a function polarization angle in the presence of varying concentration of C3
- References

^{*}Email: msubir@bsu.edu

Calculation of surface vs bulk number density ratio

Consider a tetrahedron 1 of side $~a_{T}=1.98\times10^{-10}\,m$. The area of one side of this is

 $A_0 = a_T^{-2} \sqrt{3} = 6.79 \times 10^{-20} m^2 \ . \ \text{Now consider a cube with a diagonal } d = 2(1.98 \times 10^{-10} m) = 3.96 \times 10^{-20} m \ .$ The side of this cube is $a_C = \frac{d}{\sqrt{3}} = 2.28 \times 10^{-10} m$,

So the volume of this cube is $V_0=a_C^3=1.19\times 10^{-29}\,m^3$. Now the surface number density and the volume number density are given by,

$$N_S = \frac{4\pi r^2}{A_0}, \ N_B = \frac{4\pi r^3}{3V_0}$$

The ratio of the surface to volume densities is

$$\frac{N_S}{N_V} = \frac{3V_0}{A_0 r} = \frac{5.27 \times 10^{-10} \, m}{r}$$

This indicates that surface contributions do not dominate until the radius of the nanoparticle is less than 5 Å.

Calculation of the damping coefficient

Here we calculate the value of the damping coefficient, γ , for C343. We assume that the form is given by^{2,3}

$$\gamma = \frac{1}{4\pi\varepsilon_0} \frac{4\omega_0^3 e^2 \langle \pi | r | \pi^* \rangle^2}{3\hbar c^3} .$$

Here we take the constant terms in MKS units to be,

$$\frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \frac{N \cdot m^2}{C^2}, c = 3.0 \times 10^8 \, \text{m/s}, e = 1.6 \times 10^{-19} \, \text{C}, \hbar = 1.054 \times 10^{-34} \, \text{J} \cdot \text{s}.$$

We take the resonant frequency for the C343 molecule to be $\omega_0 = 4.34 \times 10^{15} Hz$.

The dipole amplitude is determined by assuming the ionization energy is $E_P = -14.14 eV$. We assume

the Pi pseudo wave functions can be approximated as $\phi_p \approx re^{-\mu r}\cos(\theta)$. Then we have $-\frac{\left(\hbar\mu\right)^2}{2m} = -E_p$, which gives us $\mu = 1.92A^{-1}$. With this in mind we take the dipole amplitude to be $\langle\pi|r|\pi^*\rangle \approx 8.5 \times 10^{-8} \, m$.

This large amplitude on the order of hundreds of Angstroms is due to delocalization of the π^* orbital over the area of the coumarin molecule. We realize this crude calculation will mostly serve to obtain the magnitude of γ for this process. Substituting all these quantities into the equation above yields $\gamma \approx 6.4 \times 10^{13} \, s^{-1}$.

This is in agreement with the values reported previously for various substituted coumarin dyes.^{5, 6} This term is far too small to affect the denominator in any of the calculations of χ^2_{iik} in the main text.

Supplementary Data

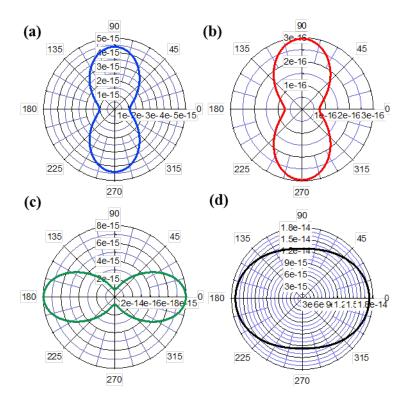


Figure S1 Plots of $|P_z^{(2)}(2\omega)|^2$ as a function of polarization angle of the fundamental field (equation 2) as calculated using TB model. These represent SHG contributions from **(a)** Zn-terminated surfaces, **(b)** Oterminated surface, and **(c)** the bulk of ZnO. The overall contribution is shown in **(d)**.

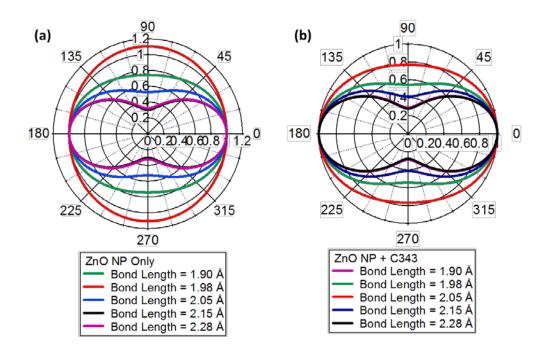


Figure S2 Effect of surface relaxation, as explored by varying the Zn–O bond length, on the plots of $\left|P_z^{(2)}(2\omega)\right|^2$ as a function of polarization angle of the fundamental field (equation 2) as calculated using TB model. These represent SHG contributions from **(a)** ZnO NP only, without C343 and **(b)** ZnO NP and C343.

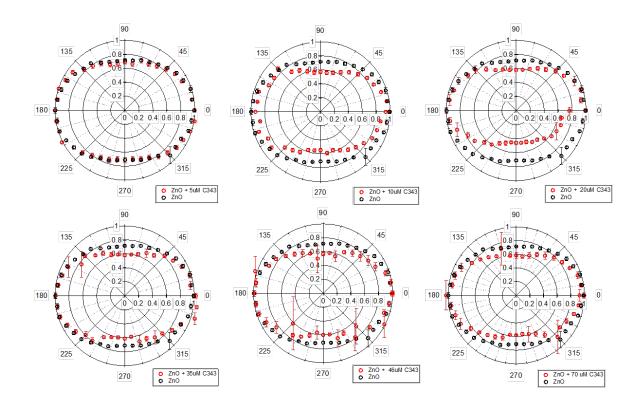


Figure S3 Plots of experimental SHG $\left|P_z^{(2)}(2\omega)\right|^2$ as a function of polarization angle of the fundamental field for ZnO NPs with varying concentration of C343 dye (5uM, 10uM, 20uM, 35uM, 46uM, and 70uM). The $\left|P_z^{(2)}(2\omega)\right|^2$ of ZnO NP (no dye) is also shown as black markers.

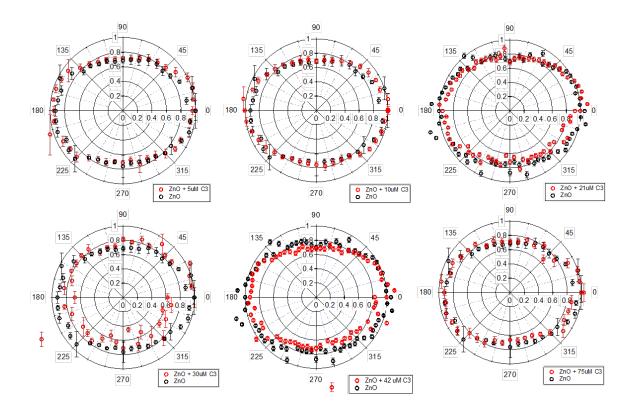


Figure S4 Plots of experimental SHG $\left|P_z^{(2)}(2\omega)\right|^2$ as a function of polarization angle of the fundamental field for ZnO NPs with varying concentration of C3 dye (5uM, 10uM, 21uM, 30uM, 42uM, and 75uM). The $\left|P_z^{(2)}(2\omega)\right|^2$ of ZnO NP (no dye) is also shown as black markers.

References

- 1. A. Jeffrey, in *Handbook of Mathematical Formulas and Integrals (Third Edition)*, Academic Press, Burlington, 2004, pp. 1-24.
- 2. M. L. Skully and M. Zubairy, *Quantum Optics*, Cambridge University Press, New York, 2006.
- 3. R. W. Boyd, Nonlinear Optics, Academic Press, San Diego, 2003.
- 4. W. A. Harrison, *Elemetary Electronic Structure*, World Scientific, 2004.
- 5. J. Cerezo, F. J. Avila Ferrer, G. Prampolini and F. Santoro, *Journal of Chemical Theory and Computation*, 2015, **11**, 5810-5825.
- 6. J. Cerezo, F. J. Avila Ferrer and F. Santoro, *Physical Chemistry Chemical Physics*, 2015, **17**, 11401-11411.