Electronic Supplementary Information

A Synergistic Combination of Local Tight Binding Theory and Second Harmonic Generation Elucidating Surface Properties of ZnO Nanoparticles

C. B. Nelson ${ }^{\text {a }}$, T. Zubkov ${ }^{\text {b }}$, J. D. Adair ${ }^{\text {b }}$, and M. Subir ${ }^{\text {b* }}$
a. Department of Physics and Astronomy, St. Cloud State University, St. Cloud Minnesota 56301, United States
b. Department of Chemistry, Ball State University, Muncie Indiana 47306, United States
*Email: msubir@bsu.edu

Table of Content

- Calculation of surface vs. bulk number density ratio
- Calculation of the damping coefficient
- Figure S1 - Theoretical un-normalized plots of $\left|P_{z}^{(2)}(2 \omega)\right|^{2}$ as a function polarization angle
- Figure S2 - Effect of surface relaxation on $\left|P_{z}^{(2)}(2 \omega)\right|^{2}$ as a function polarization angle
- Figure S3 - Plots of experimental SHG $\left|P_{z}^{(2)}(2 \omega)\right|^{2}$ as a function polarization angle in the presence of varying concentration of C343
- Figure S4 - Plots of experimental SHG $\left|P_{z}^{(2)}(2 \omega)\right|^{2}$ as a function polarization angle in the presence of varying concentration of C3
- References

Calculation of surface vs bulk number density ratio

Consider a tetrahedron ${ }^{1}$ of side $a_{T}=1.98 \times 10^{-10} \mathrm{~m}$. The area of one side of this is
$A_{0}=a_{T}^{2} \sqrt{3}=6.79 \times 10^{-20} \mathrm{~m}^{2}$. Now consider a cube with a diagonal $d=2\left(1.98 \times 10^{-10} \mathrm{~m}\right)=3.96 \times 10^{-20} \mathrm{~m}$. The side of this cube is $a_{C}=\frac{d}{\sqrt{3}}=2.28 \times 10^{-10} \mathrm{~m}$,

So the volume of this cube is $V_{0}=a_{C}^{3}=1.19 \times 10^{-29} \mathrm{~m}^{3}$. Now the surface number density and the volume number density are given by,

$$
N_{S}=\frac{4 \pi r^{2}}{A_{0}}, N_{B}=\frac{4 \pi r^{3}}{3 V_{0}}
$$

The ratio of the surface to volume densities is

$$
\frac{N_{S}}{N_{V}}=\frac{3 V_{0}}{A_{0} r}=\frac{5.27 \times 10^{-10} \mathrm{~m}}{r}
$$

This indicates that surface contributions do not dominate until the radius of the nanoparticle is less than 5 Å.

Calculation of the damping coefficient

Here we calculate the value of the damping coefficient, γ, for C343. We assume that the form is given $b^{2,3}$

$$
\gamma=\frac{1}{4 \pi \varepsilon_{0}} \frac{4 \omega_{0}^{3} e^{2}\langle\pi| r\left|\pi^{*}\right\rangle^{2}}{3 \hbar c^{3}} .
$$

Here we take the constant terms in MKS units to be,

$$
\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{C^{2}}, c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}, e=1.6 \times 10^{-19} \mathrm{C}, \hbar=1.054 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} .
$$

We take the resonant frequency for the C343 molecule to be $\omega_{0}=4.34 \times 10^{15} \mathrm{~Hz}$.
The dipole amplitude is determined by assuming the ionization energy is $E_{P}=-14.14 \mathrm{eV} .{ }^{4}$ We assume the Pi pseudo wave functions can be approximated as $\phi_{P} \approx r e^{-\mu r} \cos (\theta)$. Then we have $-\frac{(\hbar \mu)^{2}}{2 m}=-E_{p}$, which gives us $\mu=1.92 A^{-1}$. With this in mind we take the dipole amplitude to be $\langle\pi| r\left|\pi^{*}\right\rangle \approx 8.5 \times 10^{-8} \mathrm{~m}$.

This large amplitude on the order of hundreds of Angstroms is due to delocalization of the π^{*} orbital over the area of the coumarin molecule. We realize this crude calculation will mostly serve to obtain the magnitude of γ for this process. Substituting all these quantities into the equation above yields $\gamma \approx 6.4 \times 10^{13} \mathrm{~s}^{-1}$.

This is in agreement with the values reported previously for various substituted coumarin dyes., ${ }^{5,6}$ This term is far too small to affect the denominator in any of the calculations of $\chi_{i j k}^{2}$ in the main text.

Supplementary Data

Figure S1 Plots of $\left|P_{z}^{(2)}(2 \omega)\right|^{2}$ as a function of polarization angle of the fundamental field (equation 2) as calculated using TB model. These represent SHG contributions from (a) Zn-terminated surfaces, (b) Oterminated surface, and (c) the bulk of ZnO . The overall contribution is shown in (d).

Figure S2 Effect of surface relaxation, as explored by varying the $\mathrm{Zn}-\mathrm{O}$ bond length, on the plots of $\left|P_{z}^{(2)}(2 \omega)\right|^{2}$ as a function of polarization angle of the fundamental field (equation 2) as calculated using TB model. These represent SHG contributions from (a) ZnO NP only, without C343 and (b) ZnO NP and C343.

Figure S3 Plots of experimental SHG $\left|P_{z}^{(2)}(2 \omega)\right|^{2}$ as a function of polarization angle of the fundamental field for ZnO NPs with varying concentration of C343 dye ($5 \mathrm{uM}, 10 \mathrm{uM}, 20 \mathrm{uM}, 35 \mathrm{uM}, 46 \mathrm{uM}$, and 70 uM). The $\left|P_{z}^{(2)}(2 \omega)\right|^{2}$ of ZnO NP (no dye) is also shown as black markers.

Figure S4 Plots of experimental SHG $\left|P_{z}^{(2)}(2 \omega)\right|^{2}$ as a function of polarization angle of the fundamental field for ZnO NPs with varying concentration of C3 dye ($5 \mathrm{uM}, 10 \mathrm{uM}, 21 \mathrm{uM}, 30 \mathrm{uM}, 42 \mathrm{uM}$, and 75 uM). The $\left|P_{z}^{(2)}(2 \omega)\right|^{2}$ of ZnO NP (no dye) is also shown as black markers.

References

1. A. Jeffrey, in Handbook of Mathematical Formulas and Integrals (Third Edition), Academic Press, Burlington, 2004, pp. 1-24.
2. M. L. Skully and M. Zubairy, Quantum Optics, Cambridge University Press, New York, 2006.
3. R. W. Boyd, Nonlinear Optics, Academic Press, San Diego, 2003.
4. W. A. Harrison, Elemetary Electronic Structure, World Scientific, 2004.
5. J. Cerezo, F. J. Avila Ferrer, G. Prampolini and F. Santoro, Journal of Chemical Theory and Computation, 2015, 11, 5810-5825.
6. J. Cerezo, F. J. Avila Ferrer and F. Santoro, Physical Chemistry Chemical Physics, 2015, 17, 1140111411.
